数学建模-图论模型
数学建模方法模型
数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。
具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模中的图论方法
数学建模中的图论方法一、引言我们知道,数学建模竞赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。
由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。
因此很多人有这样的感觉,A题入手快,而B题不好下手。
另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。
命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。
这样增加了建立数学模型的难度。
但是这也并不是说无法求解。
一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。
图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。
应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
许多难题由于归结为图论问题被巧妙地解决。
而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如:AMCM90B-扫雪问题;AMCM91B-寻找最优Steiner树;AMCM92B-紧急修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特征向量法)CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。
数学建模-图论
如例2中球队胜了,可从v1引一条带箭头的连线到v2,每 场比赛的胜负都用带箭头的连线标出,即可反映五个球队比 赛的胜负情况。如下图
v5
v1
v2 v3
v4
Байду номын сангаас
由图可知, v1三胜一 负, v4打了三场球, 全负等等
类似胜负这种非对称性的关系,在生产和生活中也是常见 的,如交通运输中的“单行线”,部门之间的领导和被领导关 系,一项工程中各工序之间的先后关系等等。
B
哥尼斯堡七桥问题
从某点出发通过每座桥且每桥只通过一次回到起点 A B D
建模:
C
A B D C
点——陆地 岛屿 边——桥
后来,英国数学家哈密尔顿在1856年提出“周游世界”的 问题:一个正十二面体,20个顶点分别表示世界上20个大城市, 要求从某个城市出发,经过所有城市一次而不重复,最后回到出 发地.这也是图论中一个著名的问题. “四色问题”也是图论中的著名问题:地图着色时,国境 线相邻的国家需要着上不同的颜色,最少需要几种颜色?1976 年,美国人阿佩尔和哈肯用计算机运行1200个小时,证明4种颜 色就够了.但至今尚有争议.
图论起源
图论最早处理的问题是哥尼 斯堡城的七桥问题:18世纪在哥 尼斯堡城(今俄罗斯加里宁格勒) 有一条名叫普莱格尔(Pregel) 的河流横经其中,河上有7座桥, 将河中的两个岛和河岸连结。
C A D
城中的居民经常沿河过桥 散步,于是提出了一个问 题:能否一次走遍7座桥, 后来有人请教当时的大数学家 而每座桥只许通过一次, 欧拉,欧拉用图论的方法证明这个问 最后仍回到起始地点? 题无解,同时他提出并解决了更为一 般的问题,从而奠定了图论的基础, 欧拉也被誉为“图论之父”.
数学建模图论模型
任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许
数学建模第三版习题答案
数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。
数学建模 四大模型总结
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
东北大学数学建模-图论模型朱和贵
每对顶点间的最短路算法
寻求赋权图中各对顶点之间最短路,显然 可以调用 Dijkstra 算法。具体方法是:每次以 不同的顶点作为起点,用 Dijkstra 算法求出从 该起点到其余顶点的最短路径,反复执行次这 样的操作,就可得到每对顶点之间的最短路。 但这样做需要大量重复计算,效率不高。R. W. Floyd(弗洛伊德)另辟蹊径,提出了比这更好 的算法,操作方式与 Dijkstra 算法截然不同。
一个点v6表示第5年年底。 E ={vivj | 1≤i<j≤6}。
F (vi v j ) bi ck
k 1
34
j i
这样上述设备更新问题就变为:在有向赋权 图G = (V, E, F )(图解如下)中求v1到v6的最短路问 题。
35
从上图中容易得到v1到v6有两条最短路: v1v3v6和v1v4v6。
20
重要性质: 如果P是D中从vs到vj的最短路,vi是P中 的一个点,那么,从vs沿P到vi的路是从vs到vi
的最短路。
21
求非负赋权图G中某一点到其它各点最 短路,一般用Dijkstra (迪克斯特拉)标号算 法;求非负赋权图上任意两点间的最短路, 一般用Floyd(弗洛伊德)算法。这两种算法均 适用于有向非负赋权图(Floyd算法也适应 于负赋权图)。
(3,V1)
v2 3 1
6 4 1
v4 3 2
5
v3
(4,V2)
v6
6
v5
(5,V3)
28
(5) S:{V1,V2,V3, V5} S’:{V4,V6} 求出(S→ S’)所有 弧,分别计算: (0,V1) S24 =3 + 6=9 v1 S34 =4 + 4=8 S54 =5 + 2=7 S56=5 + 6=11 Min Sij=S54
数学建模常用方法
数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。
常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。
1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。
常见的线性规划问题包括生产调度问题、资源分配问题等。
2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。
非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。
3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。
动态规划广泛应用于计划调度、资源配置、路径优化等领域。
4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。
整数规划常用于离散变量的问题,如设备配置、路径优化等。
5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。
常见的图论方法包括最短路径算法、最小生成树算法等。
6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。
最优化理论在优化问题建模中起到了重要的作用。
7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。
离散数学方法在计算机科学、工程管理等领域应用广泛。
8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。
概率统计方法在决策分析、风险评估等领域起到了重要的作用。
数学建模中常见的十大模型
数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
数学建模知识点总结
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
应用性问题中常见的数学建模
应用性问题中常见的数学建模【摘要】数统计、格式要求等。
谢谢!在解决实际应用性问题时,数学建模是一个重要的工具。
本文将介绍常见的数学建模方法,包括线性规划模型、整数规划模型、图论模型、动态规划模型和概率模型。
通过这些建模方法,我们可以有效地分析和解决各种实际问题。
结合实际情况进行灵活应用是数学建模的关键,不同类型的数学建模适用于不同类型的应用性问题。
数学建模在解决实际问题中起着重要作用,并且为决策提供了有力的支持。
通过数学建模,我们可以更好地理解问题的本质、优化决策方案,并提高解决问题的效率和准确性。
掌握不同类型的数学建模方法对于解决实际问题具有重要意义。
【关键词】数学建模、应用性问题、线性规划、整数规划、图论、动态规划、概率、实际问题、重要作用、灵活应用1. 引言1.1 应用性问题中常见的数学建模应用性问题中常见的数学建模指的是将实际生活中的问题抽象化为数学形式,并通过数学方法进行求解和分析的过程。
数学建模可以帮助人们更好地理解和解决各种实际问题,包括工程、经济、环境等领域的相关问题。
在现实生活中,人们遇到的问题往往是复杂多样的,而数学建模能够帮助我们系统地分析和解决这些问题。
数学建模的过程通常包括问题的定义、建立数学模型、模型求解和结果的分析等步骤。
通过数学建模,我们可以利用数学工具和方法对问题进行深入分析,并找到最优解或者最优策略。
在实际应用中,数学建模多种多样,包括线性规划模型、整数规划模型、图论模型、动态规划模型、概率模型等。
通过数学建模,我们可以更好地理解实际问题的本质,为决策提供科学依据。
数学建模在解决实际问题中起着重要作用,不同类型的数学建模适用于不同类型的应用性问题,同时数学建模需要结合实际情况进行灵活应用。
数学建模的发展将为人类社会的进步和发展提供更多可能性和机会。
2. 正文2.1 线性规划模型线性规划模型是一种常见的数学建模方法,它在解决各种应用性问题中都具有重要作用。
在线性规划模型中,我们需要定义一个目标函数以及一组约束条件,通过最大化或最小化目标函数来找到最优解。
数学建模常用方法
数学模型分类(六大类)优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型数学建模常用方法一、机理分析法––从基本物理定律以及系统的结构数据来推导出模型。
1.比例分析法--建立变量之间函数关系的最基本最常用的方法。
2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。
6.量纲分析法二、数据分析法––从大量的观测数据利用统计方法建立数学模型。
1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i="1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3.人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
四、综合评价方法1.层次分析法2.模糊综合评判法3.数据包络分析法4.人工神经网络评价法5.灰色综合评价法6.上述综合评价方法的两两集成数学建模常用算法1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关)。
数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (1)
11.1抗生素显著性检验问题摘要在已知抗生素效果情况服从正态分布,且方差相同条件下。
通过用SPSS13.0软件编写程序,进行单因素方差分析。
检验五种抗生素之间是否存在明显差异。
关键词:抗生素方差分析显著性检验一问题重述抗生素注入人体后会与人体血浆蛋白质结合,以致减少了药效。
现在将常用的抗生素注入到牛的体内,得到抗生素与血浆蛋白质结合的百分比。
在总体服从正态分布,且方差相同的条件下分析五种抗生素效果是否存在显著性差异。
二问题分析题目显示各类抗生素效果情况服从正态分布,为了进一步说明抗生素使用效果的差异,需要检查不同抗生素是否有显著性差异,即对数据进行显著性检验。
首先,应该提出抗生素之间没有显著性差异的假设。
然后通过SPSS13.0版本软件进行单因素方差检验[1]。
验证假设是否成立。
三模型假设四符号说明五模型建立与求解题目显示各类抗生素与血浆蛋白质结合的百分比情况属于正态总体,要对各类抗生素是否存在显著性差异。
应用软件SPSS13.0进行单因素方差检验。
其检验步骤如下:Step1. 提出假设:H:各类抗生素之间没有显著性差异;H:各类抗生素之间有显著性差异。
1α0.05。
Step2. 选定显著性水平=Step3. 用软件SPSS13.0进行单因素方差检验用SPSS13.0编写程序得到问题的解:即不同抗生素效果明显不同。
(各抗生素之间具体分析见附录一)六模型评价与改进参考文献[1]薛薇 ,《SPSS统计分析方法及应用》,出版地:电子工业出版社,2009。
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录附录一PSS13.0编写程序得到问题的解:11.2化肥与小麦种子的不同对小麦产量的影响问题摘要化肥与小麦的品种的差异将影响小麦的产量,进而影响农民的生活水平。
本文建立数学模型,就化肥的不同,小麦品种的不同这两种因素定量分析化肥与小麦品种对小麦实际产量的影响。
数学建模_ 图论模型_
图论中最短路算法与程序实现图论中的最短路问题(包括无向图和有向图)是一个基本且常见的问题。
主要的算法有Dijkstra 算法和Floyd 算法。
Dijkstra 算法是求出指定两点之间的最短路,算法复杂度为 Floyd 算法是求出任意两点之间的最短路,算法复杂度为 2()O n 3()O n1.Dijkstra算法2. Floyd算法算法程序(Matlab)为:for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; end endendend起点终点距离起点终点距离起点终点距离12400718160151725013450892001617140243008152851618130221230910180172724024714010111501819204346001015160182518045210111214019201404193101114130192417556230121320020211805720013344002024190673201415190212230068340142619021232707817015161702147350表1 各点距离(m)实例:已知50个点之间相互连接信息见表1及续表。
求最短距离矩阵续表1 各点距离(m)起点终点距离起点终点距离起点终点距离22441602229313640190 22452702230313738135 22481802230423839130 23242402330433941310 23292102331324041140 23302902331364050190 23441502331504250200 24251702432334344260 24281302432354345210 26271402632364546240 26343202633344648280 27281902735374849200 2829260283639n=50; %Matlab实现的Floyd算法A=zeros(n,n);for i=1:nfor j=1:nif(i==j) A(i,j)=0;else A(i,j)=100000;endendend %赋直接距离信息A(1,2)=400;A(1,3)=450; A(2,4)=300;A(2,21)=230; A(2,47)=140;A(3,4)=600;A(4,5)=210;A(4,19)=310;A(5,6)=230;A(5,7)=200; A(6,7)=320; A(6,8)=340;A(7,8)=170;A(7,18)=160;A(8,9)=200;A(8,15)=285; A(9,10)=180; A(10,11)=150; A(10,15)=160; A(11,12)=140; A(11,14)=130; A(12,13)=200; A(13,34)=400;A(14,15)=190;A(14,26)=190; A(15,16)=170; A(15,17)=250; A(16,17)=140;A(16,18)=130; A(17,27)=240; A(18,19)=204; A(18,25)=180; A(19,20)=140; A(19,24)=175; A(20,21)=180; A(20,24)=190; A(21,22)=300; A(21,23)=270; A(21,47)=350;A(22,44)=160;A(22,45)=270;A(22,48)=180;A(23,24)=240; A(23,29)=210;A(23,30)=290;A(23,44)=150;A(24,25)=170;A(24,28)=130; A(26,27)=140;A(26,34)=320;A(27,28)=190;A(28,29)=260;A(29,31)=190; A(30,31)=240;A(30,42)=130;A(30,43)=210;A(31,32)=230;A(31,36)=260; A(31,50)=210;A(32,33)=190;A(32,35)=140;A(32,36)=240;A(33,34)=210; A(35,37)=160;A(36,39)=180;A(36,40)=190;A(37,38)=135;A(38,39)=130; A(39,41)=310;A(40,41)=140;A(40,50)=190;A(42,50)=200;A(43,44)=260; A(43,45)=210;A(45,46)=240;A(46,48)=280;A(48,49)=200;for j=1:nfor i=1:j-1A(j,i)=A(i,j); %使矩阵对称endendB=A;%利用Floyd算法计算最短距离矩阵for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; endendendend %输出距离矩阵到文件fid=fopen('distance.txt','w'); for i=1:nfor j=1:nfprintf(fid,'%4d ',B(i,j)); endfprintf(fid,'\n');endfclose(fid);。
大学生数学建模--常用模型与算法
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模常用算法模型
数学模型的分类按模型的数学方法分:几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等按模型的特征分:静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等按模型的应用领域分:人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等.按建模的目的分:预测模型、优化模型、决策模型、控制模型等一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应按对模型结构的了解程度分:有白箱模型、灰箱模型、黑箱模型等比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型.按比赛命题方向分:国赛一般是离散模型和连续模型各一个,2016美赛六个题目离散、连续、运筹学/复杂网络、大数据、环境科学、政策数学建模十大算法1、蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法2、数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具3、线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现4、图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备5、动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用7、网格算法和穷举法当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具8、一些连续离散化方法很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的9、数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用10、图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理算法简介1、灰色预测模型必掌握解决预测类型题目.由于属于灰箱模型,一般比赛期间不优先使用.满足两个条件可用:①数据样本点个数少,6-15个②数据呈现指数或曲线的形式2、微分方程预测高大上、备用微分方程预测是方程类模型中最常见的一种算法.近几年比赛都有体现,但其中的要求,不言而喻.学习过程中无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系.3、回归分析预测必掌握求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化;样本点的个数有要求:①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小;②样本点的个数n>3k+1,k为自变量的个数;③因变量要符合正态分布4、马尔科夫预测备用类似的名词有,马尔科夫链、马尔科夫模型、,马氏链模型等一个序列之间没有信息的传递,前后没联系,数据与数据之间随机性强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温度高、中、低的概率,只能得到概率.思考马尔科夫和元胞自动机之间的关系5、时间序列预测必掌握与马尔科夫链预测互补,至少有2个点需要信息的传递,ARMA模型,周期模型,季节模型等6、小波分析预测高大上数据无规律,海量数据,将波进行分离,分离出周期数据、规律性数据;可以做时间序列做不出的数据,应用范围比较广7、神经网络预测备用大量的数据,不需要模型,只需要输入和输出,黑箱处理,建议作为检验的办法8、混沌序列预测高大上比较难掌握,数学功底要求高9、插值与拟合必掌握拟合以及插值还有逼近是数值分析的三大基础工具,通俗意义上它们的区别在于:拟合是已知点列,从整体上靠近它们;插值是已知点列并且完全经过点列;逼近是已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们.10、灰色关联分析法必掌握与灰色预测模型一样,比赛不能优先使用11、模糊综合评判备用评价一个对象优、良、中、差等层次评价,评价一个学校等,不能排序12、主成分分析必掌握评价多个对象的水平并排序,指标间关联性很强13、层次分析法AHP必掌握作决策,去哪旅游,通过指标,综合考虑作决策14、数据包络DEA分析法备用优化问题,对各省发展状况进行评判15、秩和比综合评价法高大上评价各个对象并排序,指标间关联性不强16、优劣解距离法TOPSIS法备用17、投影寻踪综合评价法高大上揉和多种算法,比如遗传算法、最优化理论等18、方差分析、协方差分析等备用方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;1992年,作物生长的施肥效果问题协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲及初始情况.2006年,艾滋病疗法的评价及预测问题21、线性规划、整数规划、0-1规划必掌握有约束,确定的目标比较简单,必须掌握22、非线性规划与智能优化算法智能算法至少掌握1-2个,其他的了解即可非线性规划包括:无约束问题、约束极值问题智能优化算法包括:模拟退火算法、遗传算法、改进的遗传算法、禁忌搜索算法、神经网络、粒子群等23、多目标规划和目标规划柔性约束,目标含糊,超过备用24、动态规划备用25、复杂网络优化多因素交错复杂备用,编程好的使用要掌握离散数学中经典的知识点——图论.26、排队论与计算机仿真高大上排队论包括、元胞自动机对编程能来要求较高,一般需要证明其机理符合实际情况,不能作为单独使用这也是大部分队伍使用元胞自动机不获奖的最大原因.27、模糊规划范围约束28、灰色规划难29、图像处理备用MATLAB图像处理,针对特定类型的题目,一般和数值分析的算法有联系.例如2013年国赛B 题,2014网络赛B题.30支持向量机31多元分析1、聚类分析必掌握,参考192、主成分分析必掌握3、因子分析必掌握4、判别分析5、典型相关分析6、对应分析7、多维标度法8、偏最小二乘回归分析32、分类与判别主要包括以下几种方法,1、距离聚类系统聚类常用2、关联性聚类常用3、层次聚类4、密度聚类5、其他聚类6、贝叶斯判别统计判别方法7、费舍尔判别训练的样本比较多8、模糊识别分好类的数据点比较少33、关联与因果1、灰色关联分析方法样本点的个数比较少2、Sperman或kendall等级相关分析3、Person相关样本点的个数比较多4、Copula相关比较难,金融数学,概率密度5、典型相关分析因变量组Y1234,自变量组X1234,各自变量组相关性比较强,问哪一个因变量与哪一个自变量关系比较紧密6、标准化回归分析若干自变量,一个因变量,问哪一个自变量与因变量关系比较紧密7、生存分析事件史分析难数据里面有缺失的数据,哪些因素对因变量有影响8、格兰杰因果检验计量经济学,去年的X对今年的Y有没影响。
数学建模之图论模型讲解
过河问题:摆渡人Ferryman,狼wolf,羊sheep,卷 心菜cabbage过河问题 . 如何摆渡使得它们不能互 相伤害.
考试安排问题:学校期末考试安排n门课的考 试时间时,不能把同一位学生选修的两门课安排在 同一时间考试,问学校考试最少要进行多长时间?
信道分配问题:发射台所用频率从小到大编号 为1,2, …称为信道。用同一信道的两个台站相距得 少于一个常数d,问各台至少需同时使用几个不同 的信道?
A—R,A—C,A—T,
R—P,P—S,S—T,
T—B,B—D,D—C,
A
R—S,R—B,P—D,
S—C,S—D.
T
每种药品作为一个顶 点,不能放在一起的 S 连边。相邻顶点用不 同颜色着色。
R P
这一问题就是图论中的顶点着色问题。
至少需用3个房间:A,S,B/D,T,R/C,P
B C
D
例3 最短路问题(SPP-shortest path problem) 一名司机奉命在最短的时间内将一车货物从甲
问题变成了:能否从这个图上任一顶点出发,
经过每条边一次且仅一次而回到出发顶点。
--Euler-回路(圈)问题。
A
A
B
D
B
D
C
C
例2 药品存储问题
▪ 有8种化学药品A、B、C、D、P、R、S和T要放 进贮藏室保管,出于安全原因,下列各组药品不能 贮在同一室内:A—R,A—C,A—T,R—P, P—S,S—T,T—B,B—D,D—C,R—S, R—B,P—D,S—C,S—D,试为这8种药品设 计一个使用房间数最少的贮藏方案。
G[{v1,v2,v3}] G[{e3,e4,e5,e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在V 中的边的全体为边集的图 G 的子图,称 为G的由V 导出的子图,记为 G[V ] .
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的
•
为一条有向
的D哈密尔A顿路B。 C E
• 该图有3个双连通分支且唯一
线性排序为
1.1.3.Dijkstra算法
• Dijkstra算法是一个用来计算给定赋权图中一点到其他各点之间距 离的算法,也称为最短路算法。 它的主要步骤如下:
• 思路分析:影响乘坐时长主要因素:第一,各条线路的运行速度 是不一样的。第二,换乘时可能会消耗一定时间。第三,所选择 的线路的总运行距离不同。而这些因素都和出行所在时间段是否 在高峰期相关。因此,我们可以根据出行时间段以及这三个因素 的实际情况选择出行线路。
模型建立
• 首先我们根据已知地铁线路建立一张简图,对于每一条线路所经 站点按顺序用一列点表示并且在相邻站点之间用一条线段连接. 对于两不同线路共同的站点(即可更换线路的站点)用线段连接。
模型求解
• 为了构造图的覆盖,对于每一顶点,我们至少要么选取该点要么 选取它的所有邻点。
• 利用代数方法,首先把选择顶点v这个指令简记为符号v,指令 “X或Y”和“X与Y”分别记为X+Y(逻辑和)和XY(逻辑积)。
• 在本例中,我们的指令用于求极小覆盖时就是
化简后为
故有四个极小覆盖:
选取一个覆盖的补作为独立集,去除后再继续这一过程。最终得
• 当犯罪行为发生后犯罪分子的逃逸线路并无规律不易预测我们无 法保证及时有警力到场因此封锁拦截是一个较有效的办法。
• 而要做到及时封锁道路我们需要对城市道路通行情况非常熟悉了 解每一路段的通行情况以及对应的有效封锁路口位置。
• 在安排警力出警时主要考量的是在尽量短的时间内到达各个封锁 路口。
• 封锁的成败在于每一个路口都要在规定时间警力到达。
模型求解
• 下图即为用于制定票价的简图,边的赋值为两站之间经过的站点 数量。运用Dijkstra算法可以计算出两站之间需经过最少站点数目, 从而定价。
1.5 Kruskal算法
• 问题描述:为了改善某地区的交通,国家决定建设连接该地区的 各个主要城镇的小型铁路网络。请设计经济、合理的铁路网络。
• 思路分析:建造铁路网络的主要目的是连接主要城镇,最基本的 要求是居民可以在任意两个城镇之间通过该铁路网络通行。在保 证满足这一基本要求的基础上我们要尽量节约建造成本,也就是 总费用要少。
覆盖与独立集
• 图的一个顶点子集满足图中任意一条边都与其中某一点关联,则 称该子集为图的一个覆盖。
• 所含点数最小的覆盖称为最小覆盖,如果一个点覆盖不包含其他 覆盖,我们称其为图的极小覆盖。
• 如果以顶点集为全集,每个独立集的补集为图的一个覆盖,而任 何一个覆盖的补集为一个独立集。
• 右图中{5,7,8}为一极大独立集, {1,4,7,8}为一最大独立集,{1,2 3,4,6}为一极小覆盖,{2,3,5,6} 为一最小覆盖。
1.1.1 图的独立集
• 图的一个顶点子集如果其中任何两个顶点之间都没有边相连,那 么我们称其为一个独立集。在工程上也叫稳定集。
• 所含顶点个数最多的独立集称为最大独立集, 而这一最大值称 为图的独立数。
• 如果一个独立集不包含于任何其它独立集,我们称其为极大独立 集。
• 独立集可以由贪婪算法直接得到,也可由图的覆盖得到。
• 其次根据出行所在时段的实时数据,给每段线段分别赋值: (1)对于同一线路上两个相邻站点之间的线段赋值为两点之间距 离除以线路运行速度再加上站点停靠时间。 (2)对于不同线路的换乘点之间的线段赋值为换乘时间。
模型求解
• 下图为根据南京地铁草图绘制的简单图,如给出某时段 的运行时间和换乘时间,就可对该图赋权并运Dijkstra算 法计算甲、乙两站点间的最佳乘坐线路和所需时间。
在每条边所连接的城镇间施工建造即可。(图b就是一种方案)
1.6 匹配算法应用
• 问题描述:随着经济的快速发展城市规模日益膨胀,城市道路日 趋复杂这就给应对突发事件带来了很大的困难。以罪犯逃逸为例, 警方需要在短时间内封锁市区内各主要出口并抓捕逃犯但警力有 限且分散在全市各地,如何安排出警?
思路分析
模型建立
我们可以用点来表示乡镇,根据实际情况判定两个城镇之间建立 直通铁路的可行性,以及所需成本。在可以建造铁路的两个乡镇 所代表的点之间连上一条边并且赋上经过核算后的最低造价。 这 样我们就得到了一张赋权图。(下页a图)
模型求解
• 显然在任何两城镇之间都建立直通铁路是相当浪费的。 • 因此我们只需在这张图中找到一最小支撑树。根据此最小支撑树
第一章 图论模型
引例1. 哥尼斯堡七桥问题
• 一个步行者怎样才能不重复、不遗漏地一次走完七座桥 最后回到出发点?
• 该问题被认为是图论起源,被大数学家欧拉解决。
• 问题的本质:人们分别在岸上和岛上行走的路线与距离,桥的形 状长度与本问题无关我们只需要关注过桥的顺序。
• 图的建立:用四个点来表示河的两岸和河中的岛屿而用点之间的 连线表示连接它们之间的桥。
• 而对于地铁运行商来说,一个现实的问题就是如何制定地铁票的 价格标准。
以南京部分线路为例
• 讨论如何建立数学模型来解决以上两个问题。 • 下图是南京地铁1-4号线部分主要站点线图草图。
1.4.1.最佳乘车路线问题
• 问题描述:乘地铁时,对于同一目的地,人们有多种乘车路线, 选择那么究竟哪一种路线才是最佳的呢?
• 问题分析:每次摆渡发生后,羊、狼、菜中最多一个以及人的位 置会发生变化。而根据题意,其中一些位置的组合是不可以出现 的。 因此,整个摆渡过程可以看成是狼、羊、菜、人的位置的可 行的变化过程。
• 用长度为4的0,1序列来表示人、羊、狼、菜摆渡前后的位置其 中1表示北岸,而0表示南岸。
• 用平面上点来表示可能的10个状态,两点用一条线相连,当且仅 当这两点所表示的位置状态可以通过一次摆渡转化。
1.1.2.竞赛图
• 竞赛图是一种特殊的有向图,它的任何一对顶点之间都有一条唯一 的有向边相连。换句话说竞赛图是由对完全图的每条边都赋上一个 方向得到。
• 性质1:任何竞赛图都含有一个有向哈密尔顿路。 • 性质2:任何竞赛图都有一个唯一的双连通分支的线性排序。 • 注:如果图中任意两个顶点之间都有两条方向相反的有向路连接,
和 果是 {v1 ,
时,我们可以写出其对应关联矩阵
, vn }
{e1 , , em }
的一个端点则 为1,否则为0。M (G) (mij )
vi
其中 如 ej
• 邻接矩阵: 当图 的m顶ij 点集为
时,
我们可以定义它的邻接矩阵
G
其中
为连接顶点 与 的边的数目。
{v1 ,
, vn }
• 注:图的邻接矩阵是对称的,我们往往A计(G算)机只(存ai储j )对角线及以
1.4.Dijkstra算法应用
• 在大城市里,乘坐公共交通工具出行是人们主要的出行方式,而 在各种公共出行方式中,地铁无疑是最可靠的。事实上,在大中 型城市,地铁建设正如火如荼地进行。尤其是特大城市,已经形 成了较复杂的地铁网络。
• 面对这样复杂的地铁网络,人们面临的首要问题就是如何选择最 佳的搭乘线路。
模型建立
• 用点来表示运动员,对于两名运动员比赛结果,用一条由胜者到 负者的有向边表示,得到下图。
• 按照哈密尔顿路给出排名或计算 获胜场数均不够合理。 • 采用多级得分向量方法:
一般情形
• 若竞赛图不是双连通的,它的各个双向连通分支可以按优胜顺序 排列。于是在一般的循环赛中可以按下列程序排出名次。
• 图中的点在图论中称为图的顶点,两点之间的连线称为图的边。 和某一点有边连接的点都称为它的邻点。
• 一点出发通过一些边经过不同的点到达另一点的路径我们称之为 两点间的路,所含边的数目称为路的长度。所有连接两点路的长 度的最小值称为这两点之间的距离。
图的表示
• 关联矩阵: 当图 的顶点G集和边集分别为
到课程{a安, c排, e为, g第},一{b时, c,间e,段g,bd,d},,f{;b,第d,二e,时f }间, {段b,ac,,ed,g,;f }第三时间段c。
1.3 竞赛图应用
• 问题描述:某锦标赛采用循环赛制,若干选手两两互相 竞赛。得出竞赛成绩后应该怎样排列参赛者的名次呢?