数学建模钢管

合集下载

19569-数学建模-钢管订购和运输 (1)

19569-数学建模-钢管订购和运输 (1)

钢管订购和运输张伟 丁林阁 邓小涛 指导教师:数模组 海军航空工程学院摘要 本模型研究了管道铺设过程中钢管的订购和运输问题,它通过图论和非线性规划的知识建立。

模型使总费用达到最小,很好地解决了向哪个钢厂定货,定货多少,如何运输的问题,并且可以推广到更一般的网络。

同时针对模型中涉及的变量多、求解复杂这一问题,我们对模型进行了适当的简化,大大减少了变量的个数,从而减少了计算量。

一、问题重述要铺设一条1521A A A →→→ 的天然气主管道,可以生产这种主管道钢管的钢厂有721,,S S S 七家。

钢厂的位置,管道的铺设路线,以及从钢厂到铺设地的运输网络(运输网络包括沿管道的公路)均已知。

每个钢厂的钢管价格及其生产能力不全一样,且一个钢厂若要生产这种钢管,至少需要生产500个单位(1千米钢管记为1个单位)。

铁路的运价和公路的运价不一样。

要求在这种情况下,(1)制定一个钢管的订购和运输计划,使总费用最小,并给出总费用。

(2)分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,给出相应的数字结果。

(3)如果铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

二、问题的假设在问题所给条件成立的前提下,我们进一步作如下假设: 1. 假设公路运输费用不是整公里的按整公里计算是合理的。

2. 假设沿管道的公路(施工公路)运输费用也为每公里0.1万元(不足整公里部分按整公里计算)。

3. 假设不考虑铁路、公路及施工公路的运输能力限制。

4. 假设运输费用为单程运输的费用,即从出发点到目的地的单程费用,不考虑空车返回的费用。

5. 假设运输费用已包含装卸费用。

关于假设的一点说明:根据上述假设我们认为在铺设管道的过程中每隔一公里,卸下一单位钢管供工人铺设是合理的。

三、符号约定i S :生产主管道钢管的钢厂 ;j A :管道节点 ;1,+j j l :从j A 到1+j A 铺设钢管的路段长度(单位:公里,14,...,1=j ); i s : 钢厂i S 在指定期限内生产钢管的最大数量(单位:单位钢管); i P : 钢厂i S 单位钢管的出厂价格(单位:万元); ij x :从 钢厂i S 运到j A 的钢管数量(单位:单位钢管); ij c :表示1单位钢管从 钢厂i S 到j A 的最小费用(单位:万元); j X :运到j A 的钢管总数(单位:单位钢管); j L : 从j A 往左铺设的钢管总数(单位:单位钢管),j L 为j X 的一部分; j R : 从j A 往右铺设的钢管总数(单位:单位钢管),这里j j j L X R -=; 其中 15,...,1;7,...,1==j i 四、问题分析本问题分两部分:一部分是图论中的最短路径的问题:确定1单位钢管从 钢厂i S 到j A 的最小费用;另一部分是非线性规划问题:求总的最小费用。

大学竞赛数学建模钢管订购和运输优化模型

大学竞赛数学建模钢管订购和运输优化模型

1)将图1转换为一系列以单位钢管的运输费用为权的赋权图. 所以可先求出钢厂 Si
到铁路与公路相交点 b j 的最短路径.如图3
30
290
320 160 160 1200 690 720 1100 202 20 1150 306 450 80 195 462 520 690 170 88 70 70
5.假设钢管在铁路运输路程超过1000km,铁路每增加1 至100km,1单位钢管运输的运价增至5万元.
6.订购的钢管数量刚好等于需要铺设的钢管数量
二.基本假设
7.销售价和运输价不受市场价格变化的影响
三. 符号说明
第 第 个钢厂, 个钢厂的最大产量, 个点,
输送天然气的主管道上的第 第 钢厂 在点
86
333
621
165
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
比较好的方法:引入0-1变量
fi表示钢厂i是否使用;xij是从钢厂i运到节点j的钢管量 yj是从节点j向左铺设的钢管量;zj是向右铺设的钢管量
0.1 15 Min Aij xij [(1 y j ) y j (1 z j ) z j ] i, j 2 j 1 s.t. 500 f i xij si f i ,
非线性规划模型可用LINGO软件包或MATLAB软件包来求解,但这些软件包不能 直接处理约束条件:
可用分支定界法将此条件改为 模型变为
1)不让钢厂S7生产,模型变为:
计算结果: f1 1278632(万元)(此时每个钢厂的产量都满足条件) 2)要求钢厂S7 产量不小于500个单位,模型变为:

数学建模钢管下料

数学建模钢管下料

班级;数学131班学号: 1320151119 姓名:马美玲题目:某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管长度都是1850mm。

现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过四种。

使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm。

为了使总费用最小,应如何下料?决策变量由于由于不同切割模式不能超过四种,可以Xi用表示按照第Xi种模式(i=1,2,3,4)切割的原料钢管根数,显然它们应当是非负整数。

设所使用的第i种切割模式下每根原料钢管生产290mm、315mm、350mm和455mm的钢管数量分别为R1i,R2i,R3i,R4i(非负整数)决策目标切割原料钢管的总根数最少,目标为min z=X1+X2+X3+X4约束条件R11X1+R21X2+R31X3+R41X4>=15R21X1+R22X2+R23X3+R24X4>=28R31X1+R32X2+R33X3+R34X4>=21R41X1+R42X2+R43X3+R44X4>=30每一种切割模式必须可行、合理,所以每根原料钢管的成品量不能超过1850mm 也不能少于1750mm(余量不能大于100mm),于是1750=<290R11+315R21+350R31+455R41=<18501750=<290R21+315R22+350R23+455R24=<18501750=<290R31+315R32+350R33+455R34=<18501750=<290R41+315R42+350R43+455R44=<1850每种切割模式下的切割次数不能太多,一根原料钢管最多可生产5根产品,故有如下约束:r1i+r2i+r3i+r4i≤5, (i=1,2,3,4)由于切割种类的模式不超过4种且顺序是互不影响的,所以可以假设:x1≥x2≥x3≥x4(由原料钢管的数量和成品规格分析可知原料钢管的根数不可能少于19根,且有如下关系:19≤x1+x2+x3+x4≤22用LINGO求解(Xi和Rji均为整数)得到:只使用3种切割模式,所需总原料为19根。

钢管下料数学建模

钢管下料数学建模

钢管下料数学建模摘要:I.引言- 介绍钢管下料数学建模的背景和意义II.钢管下料数学建模的基本概念- 钢管下料问题的定义和特点- 数学建模的基本步骤和方法III.钢管下料数学模型的构建- 建立切割长度和数量的数学模型- 建立切割方式选择的数学模型- 建立总余料最少和切割总根数最少的数学模型IV.钢管下料数学模型的求解- 求解切割长度和数量的数学模型- 求解切割方式选择的数学模型- 求解总余料最少和切割总根数最少的数学模型V.钢管下料数学建模的应用- 实际工程中的应用案例- 取得的成果和效果VI.总结与展望- 总结钢管下料数学建模的过程和结果- 展望未来的研究方向和应用场景正文:钢管下料数学建模是一种利用数学方法解决钢管下料问题的技术。

在钢管生产中,下料是一个重要的环节,它涉及到钢管的切割、拼接和余料的处理等问题。

通过建立数学模型,可以有效地解决这些问题,提高生产效率和质量。

钢管下料问题的定义是:给定一定长度的钢管,在满足一定约束条件下,如何进行切割和拼接,使得切割后的钢管长度和数量满足要求,同时总余料最少或切割总根数最少。

这个问题具有非线性、整数和组合优化等特点,需要采用合适的数学建模方法进行求解。

钢管下料数学建模的基本步骤包括:问题定义、变量和参数定义、模型构建、模型求解和模型检验等。

其中,问题定义是明确问题的具体要求和约束条件;变量和参数定义是确定需要求解的变量和参数;模型构建是建立数学模型,包括目标函数和约束条件;模型求解是采用合适的算法求解模型,得到最优解;模型检验是对最优解进行检验,确认是否满足要求。

在钢管下料数学模型中,切割长度和数量的数学模型是最基本的模型,它决定了切割后的钢管长度和数量。

切割方式选择的数学模型是为了在满足长度和数量要求的前提下,选择最优的切割方式。

总余料最少和切割总根数最少的数学模型是为了在满足长度和数量要求的前提下,使得总余料最少或切割总根数最少。

钢管下料数学建模的应用非常广泛,可以应用于钢管生产、物流运输、资源分配等领域。

下料问题数学建模(钢管)

下料问题数学建模(钢管)

防盗窗下料问题摘要本文针对寻找经济效果最优的钢管下料方案,建立了优化模型。

问题中的圆形管下料设定目标为切割原料圆形管数量尽可能少且在使用一定数量圆形管的过程中使被切割利用过的原料总进价尽可能低。

问题中的方形管原料不足以提供所需截得的所用钢管,故设目标为使截得后剩余方形管总余量最小。

模型的建立过程中,首先运用了C语言程序,利用逐层分析方法,罗列出针对一根钢材的截取模式;然后根据条件得出约束关系,写出函数关系并对圆形管下料建立了线性模型,对方形管下料建立了非线性模型;接着,在对模型按实际情况进行简化后,借助lingo程序对模型求解,得出了模型的最优解,并给出了最符合经济效果最优原则的截取方案。

关键词:钢管下料;最优化;lingo;问题提出某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢管,分为方形管和圆形管两种,方管规格为25×25×1.2(mm),圆管规格Φ19×1.2(mm)。

每种管管长有4米和6米两种,其中4米圆形管5000根,6米圆形管9000根,4米方形管2000根,6米方形管2000根。

根据小区的实际情况,需要截取1.2m圆管8000根, 1.5m圆管16500根,1.8m圆管12000根,1.4m方形管6000根,1.7m方形管4200根,3m方形管2800根。

请根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。

基本假设和符号说明1、假设钢管切割过程中无原料损耗或损坏;2、假设余料不可焊接;3、假设同种钢材可采用的切割模式数量不限;4、假设不同长度钢管运费、存储资源价值没有区别;5、假设该304型号不锈钢管未经切割则价值不变,可在其它地方使用。

为便于描述问题,文中引入一些符号来代替基本变量,如表一所示:问题分析与模型建立问题中的圆形管原料足够,寻找经济效果最优的下料方案,即目标为切割原料圆形管数量尽可能少。

考虑到6米圆形管与4米圆形管的采购价格应该是不同的,所以我们寻求的是在使用一定数量6米圆形管与4米圆形管的过程中使被切割利用过的原料总进价尽可能低。

数学建模——网络优化——钢管订购与运输问题

数学建模——网络优化——钢管订购与运输问题

图四 钢管从钢厂S1运到各结点的费用权值图
根据图 四,借助求最短路的方法求得aij
求出单位钢管从S1到Aj的最少运输费用(单位:万元)依次为: 170.7,160.3,140.2,98.6,38,20.5,3.1,21.2, 64.2, 92, 96,106,121.2,128,142 加上单位钢管的销售价,得出从钢厂S1购买单位钢管运输到点Aj的最小费用(单 位:万元)依次为: 330.3,320.3,300.2,258.6,198,180.5,163.1,181.2, 224.2,252,256,266,281.2,288,302 同理,可求出从钢厂S2,…S7购买单位钢管运输到点A7的最小总费用
A7 266 0 0 0 0 0 0
A8 0 300 0 0 0 0 0
A9 0 0 664 0 0 0 0
A10 0 0 0 0 351 0 0
A11 0 0 0 0 415 0 0
A12 0 0 0 0 0 86 0
A13 0 0 0 0 0 333 0
290 30 20 30 110 420 A13 210 A12 A14 A15 500
S3 S2
1200 202 1100 20 306 0 600 10 A4 606 195 5 194 A5 10 A6 205 31 201 A7 A8 690 720
S4
690
170 520 70 480 88 462 160 70
三.模型的建立与求解
1 问题一的订购和运输方案 1) 单位钢管从钢厂Si运到点Aj的最少总费用aij 根据图 一,借助求最短路的方法(Djikstra算法) 求aij, 方法一. 方法一 赋权图: 赋边权:(K, L, V) K: K=1(铁路), K=2 (公路) L:路程 V: f(K,L) 阶段运费 方法二 由于钢管从钢厂运到运输点要通过铁路和公路运输,而铁路运输费用是分段函 数,与全程运输总距离有关。又由于钢厂直接与铁路相连,所以可先求出钢厂 Si到铁路与公路相交点bj的最短路径(借助求最短路的方法) 。

数学建模合理下料问题

数学建模合理下料问题

数学建模合理下料问题某钢管零售商从钢管厂进货,然后将钢管按照顾客的要求切割后售出,从钢管厂进货时,每根钢管的长度都是19米①现在有一客户需要50根4米、20根6米、15根8米的钢管,应如何下料最节省?②零售商如果采用的不同切割方式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割方式不能超过3种。

此外,该客户除需要①中的三种钢管外,还需要10根5米的钢管,应如何下料最省?(一)模型假设:1,假设钢管可以任意分割一根钢管可以有以下7种分法:①②③④⑤⑥⑦4米 4 3 2 1 1 0 06米0 1 0 2 1 3 08米0 0 1 0 1 0 2余料 3 1 3 3 1 1 3符号说明:x1-x7,表示对应分割方法下4,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。

客户需要50根4米、20根6米、15根8米的钢管,可以得到以下方程式:4x1+3x2+2x3+x4+x5>=50x2+2x4+x5+3x6>=20x3+x5+x7>=15Min h=3x1+x2+3x3+3x4+x5+x6+3x7模型求解:上述问题属于线性规划,它可以用单纯形法方法求解,也可以用LINDO软件求解。

用LINDO求解如下:直接输入min 3x1+x2+3x3+3x4+x5+x6+3x7subject to4x1+3x2+2x3+x4+x5=50x2+2x4+x5+3x6=20x3+x5+x7=15end将文件存储并命名后,选择菜单“solve”,并对提示“DO RANGE(SENSITIVITY)ANALYSIS”回答“是”或“否”。

即可得输出结果。

LP OPTIMUM FOUND AT STEP 4OBJECTIVE FUNCTION V ALUE1) 35.00000VARIABLE V ALUE REDUCED COSTX1 0.000000 0.000000X2 10.000000 0.000000X3 5.000000 0.000000X4 0.000000 4.750000X5 10.000000 0.000000X6 0.000000 4.750000X7 0.000000 1.500000模型假设:一根钢管可以有以下15种分法:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂44 3 3 2 2 2 1 1 1 0 0 0 0 0 0 米0 1 0 2 1 0 3 1 0 2 2 1 1 0 0 5米0 0 1 0 1 0 0 0 1 1 0 2 1 3 0 6米0 0 0 0 0 1 0 1 1 0 1 0 1 0 2 8米3 2 1 1 0 3 0 2 1 3 1 2 0 1 3 余料符号说明:x1-x15,表示对应分割方法下4,5,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。

钢管下料数学建模

钢管下料数学建模

钢管下料数学建模一、引言钢管下料是工业生产中常见的一项工艺,它涉及到如何将原始的钢管按照预定的尺寸进行切割,以便于后续加工和使用。

在进行钢管下料时,数学建模可以帮助我们计算出最佳的下料方案,以最大程度地减少浪费,提高生产效率。

本文将以钢管下料数学建模为主题,探讨如何利用数学方法求解钢管下料问题。

二、问题描述假设有一根长度为L的钢管,需要按照给定的尺寸进行切割。

切割时需要考虑以下几个因素:1. 切割后的钢管长度需要满足给定的要求;2. 切割时需要考虑钢管的浪费情况,即尽量减少剩余钢管的长度;3. 切割时需要考虑生产效率,即尽量减少切割次数。

三、数学建模钢管下料问题可以抽象为一个数学模型,通过建立数学模型,我们可以计算出最佳的下料方案。

下面将介绍两种常见的数学建模方法。

1. 贪心算法贪心算法是一种简单而常用的数学建模方法,它通过每一步都选择局部最优解来达到全局最优解。

在钢管下料问题中,贪心算法可以按照以下步骤进行:1)将钢管初始长度L赋值给一个变量remain;2)根据给定的尺寸要求,选择一个长度小于等于remain的最大钢管尺寸,将其切割出来;3)将remain减去切割出来的钢管长度,得到剩余的钢管长度;4)重复步骤2和3,直到remain小于等于0。

2. 动态规划动态规划是一种更加复杂但是更加精确的数学建模方法,它通过将原问题划分为多个子问题,并保存子问题的解来求解原问题。

在钢管下料问题中,动态规划可以按照以下步骤进行:1)建立一个长度为L+1的数组dp,dp[i]表示长度为i的钢管的最佳下料方案所需的最少切割次数;2)初始化dp数组,将dp[0]设置为0,其余元素设置为正无穷大;3)从长度为1开始,依次计算dp[1]、dp[2]、...、dp[L]的值;4)最终dp[L]即为所求的最佳下料方案所需的最少切割次数。

四、案例分析为了更好地理解钢管下料数学建模,我们以一个具体的案例进行分析。

假设有一根长度为9米的钢管,需要切割成长度分别为2米、3米和4米的三段钢管。

钢管下料数学建模

钢管下料数学建模

钢管下料数学建模
钢管下料数学建模需要考虑以下几个方面:
1.确定下料长度:根据实际需要,确定每段钢管的下料长度。

这需
要考虑管道的使用场合、管径、壁厚等因素。

2.计算下料余量:在实际下料过程中,需要留有一定的余量,以防
止切割误差或加工误差导致下料长度不足。

一般建议留出
0.5-1mm的余量。

3.建立数学模型:根据实际需要,可以建立数学模型来优化下料过
程。

例如,可以通过优化算法来寻找最短的下料长度组合,或者通过建立数学方程来计算下料长度等。

4.考虑切割角度:在某些情况下,需要对钢管进行切割角度的调整,
以适应实际安装或加工需要。

这时需要在数学模型中考虑切割角度的影响。

5.确定加工误差:需要考虑加工误差对下料长度的影响。

加工误差
包括切割误差、打磨误差、钻孔误差等。

总体来说,钢管下料数学建模需要考虑实际应用场景、管材特性、加工设备等因素,以建立符合实际需求的数学模型。

数学建模-钢管订购和运输

数学建模-钢管订购和运输

221案例10 订购和运输一、问题重述和分析要铺设一条1521A A A →→→ 的输送天然气的主管道,如图1所示,经筛选后可以生产这种主管道的钢厂有721,,,S S S . 图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km ).图1为了方便,1km 主管道称为1单位钢管. 一个钢厂如果承担制造这种钢管,至少需要生产500个单位. 钢厂i S 在指定期限内能生产该钢管的最大生产数量为i s 个单位,钢厂出厂销价为i p 万元,如下表:72221单位钢管的铁路运价如下表:表21000以上每增加1至100运价增加5万元. 公路运输费用为1单位管道每公里0.1万元(不足整公里的按整公里计算). 管道可由铁路、公路运往铺设地点(不只是运到点1521A A A →→→ ,而是管道全线).问题1. 制定一个主管道钢管的订购和运输计划,使总费用最小,并给出总费用. 问题2. 就(1)的模型进行分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果.二、基本假设1. 在计算运费时,沿管道铺设路线上的公路与其它普通公路相同(1单位钢管每公里0.1万元);2. 订购的钢管数量刚好等于需要铺设的钢管数量;3. 管道可由铁路、公路、管道全线运往铺设地点(不只是运到点1521,,,A A A ); 4. 模型只考虑钢管销价费用和钢管从钢管厂运送到铺设点的钢管运费,而不考虑其它费用,如不计换车、转站的时间和费用,不计装卸费用等;5. 不计运输时由于运输工具出现故障等意外事故引起工期延误造成损失; 6. 销售价和运输价不受市场价格变化的影响.三、符号说明i S : 第i 钢管厂i s :表示i S 的最大生产能力j A : 表示需要铺设管道路径上的车站 i j x :从所有i S 运往j A 的钢管数223c i j :表示单位钢管从i S 地运往j A 地的最小费用 i p :从i S 订购钢管的单位价格Q : 订购的所有钢管全部运到)15,,2,1( =j A j 点的总运费 T : 当钢管从钢厂i S 运到点j A 后,钢管向j A 的左右两边运输(铺设)管道的运输费用Z :用于订购和运输的总费用j y : 运到j A 地向左铺设的数目 j z : 运到j A 地向右铺设的数目d : 单位钢管1公里的公路运输费用1 ,+j j A : 表示1+j j A A 和之间需要铺设的管道长度四、模型的建立与求解问题1.1、 模型的建立钢管的订购和运输方案是直接影响工程费用的主要原因,因此,选取费用最小的路线运送货物,合理的订购计划是决定该工程费用的重要因素,首先利用图论的方法,来确定从钢管生产厂家到施工结点的费用最小路线,然后建立工程费用的优化模型,从中优化出最佳购运方案.对本问题而言,实际上是一个要求制定订购和运输计划,使总费用最小的优化问题. 本模型的总费用包括钢管的销价和运输总的费用. 首先,向某厂订购钢管,然后将在每个厂订购的钢管运往需要铺设的全路段. 欲解决本问题可以按以下方案进行思考:首先,需要确定将货物从i 地运往j 地的最优路线(费用最小);然后,求出向每个钢管厂的订购计划,并确定出运输计划;最后计算将运往j 地的钢管铺到各个管道上的运输费用,我们不妨假设运往以j 为终点的钢管只铺到与j 点相邻的两段管道上. 因此,本问题可以按以下步骤求解.第一步:确定从i 地到j 地的最优路径,从而确定出单位钢管从i 地运往j 地的最小运费.)7,2,1( =i s i 表示钢管厂)7,2,1( =i S i 的最大生产能力,)15,,2,1( =j A j 表示需要铺设钢管路径上的车站. 假设从i S 运往j A 的钢管用于铺设j A 点左右侧的钢管数为j i x ,单位,单位产品从i S 到j A 地的运费为j i F ,万元,用j i ,c 表示单位钢管从i S 地224 运往j A 地的最小费用,则:j c min ij i F =(1)第二步:建立从i S 厂运送j ,i x 单位钢管到j A 点的运费的模型: 用Q 表示订购的所有钢管全部运到)15,,2,1( =j A j 点的总运费,则:15711Q c i j i j j i x ===∑∑;(2)第三步:将运到j A 处的钢管铺到相邻两段路上的运输费用对于运到j A 的钢管,它向左运输的总量j y ,它向左运输的总费用为:(1)(2)1j j j y d y d y dd ⨯+-⨯+-⨯⨯=()0.1(12)0.051j j j y y y ⨯+++=+(万元); 同理它向右运输的总费用为j j z z d2)1(+=()0.051j j z z +用T 表示当钢管从钢厂i S 运到点j A 后,钢管向j A 的左右两边运输(铺设)管道的运输费用,得()()15j j j 1T 0.051y y 1j j z z =⎡⎤=+++⎣⎦∑(3)j z j y 和之间存在的关系为7i j i 11,1x ;(1,2,,15);(1,2,,14)j j jj j j y z j z y A j =++⎧=+=⎪⎨⎪+==⎩∑ (4)(1 ,+j j A 表示1+j j A A 和之间需要铺设的管道长度)第四步:建立订购费用的模型设W 表示订购管道的总费用,则可建立如下模型:225715, 1j 1W i i j i p x ===∑∑(5)又因为一个钢厂如果承担制造钢管任务,至少需要生产500个单位,钢厂i S 在指定期限内最大生产量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x , 用Z 表示订购和运输的总费用,由(2)、(3)、(4)、(5),本问题可建立如下的非线性规划模型:目标函数()()71515i 111min W Q T ()0.0511i i j i j j j j j j j Z p c x y y z z ===⎡⎤=++=+++++⎣⎦∑∑∑约束条件7i j i 11,1151522x ;(1,2,,15);(1,2,,14)5000;(1,2,,7)0 1,,7,2,,15j j j j j j ij i ij j j ij y z j z y A j x s x i x i j =++==⎧=+=⎪⎪+==⎪⎪⎨⎪≤≤==⎪⎪≥==⎪⎩∑∑∑或 (6)其中1 ,+j j A 表示1+j j A A 和之间需要铺设的管道长度.2、模型的求解(1)首先求解 i j c 由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总距离有关. 又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短路径. 依据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边. 再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路(也是公路)添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边. 这样就转换为以单位钢管的运输费用为权的赋权图,再利用E.W.Dijkstra 的最短路算法计算出一个单位钢管从钢厂运到工地的最少费用系数阵()ij c ,MA TLAB 程序(略).226(2)根据以上结果, 继续求解非线性规划模型:()()71515i 111min ()0.0511i i j i j j j j j j j Z p c x y y z z ===⎡⎤=+++++⎣⎦∑∑∑7i j i 11,1151522x ;(1,2,,15);(1,2,,14).5000;(1,2,,7)0 1,,7,2,,15j j j j j j ij i ij j j ij y z j z y A j s t x s x i x i j =++==⎧=+=⎪⎪+==⎪⎪⎨⎪≤≤==⎪⎪≥==⎪⎩∑∑∑或由于不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:()()71515i 111min ()0.0511i i j i j j j j j j j Z p c x y y z z ===⎡⎤=+++++⎣⎦∑∑∑2277i j i 11,1152x ;(1,2,,15);(1,2,,14).;(1,2,,7)0 1,,7,2,,15j j j j j j ij i j ij y z j z y A j s t x s i x i j =++=⎧=+=⎪⎪+==⎪⎪⎨⎪≤=⎪⎪≥==⎪⎩∑∑用LINGO 求解(程序略). 分析结果后发现购运方案中钢厂7S 的生产量不足500单位,下面我们采用不让钢厂7S 生产和要求钢厂7S 的产量不小于500个单位两种方法计算:1)不让钢厂7S 生产,程序略.计算结果:1Z =1278632(万元)(此时每个钢厂的产量都满足条件). 2)要求钢厂7S 的产量不小于500个单位,程序略.计算结果:2Z =1285281(万元) (此时每个钢厂的产量都满足条件). 比较这两种情况,得最优解为,121min min(,)Z Z Z Z ===1278632(万元). 所以根据上述的模型,得运输总费用最小为1278632(万元). 具体的购运计划和铺设方案如表4,表5.228问题2. 针对问题一的求解模型,讨论钢厂钢管的销售价格变化对购运计划和总费用影响及钢厂钢管产量的上限变化对购运计划和总费用的影响.定义 方案中运往各点i A 的运输量的变化量的绝对值之和称为运输方案变化量. 1、讨论钢厂钢管的销售价格变化对购运计划和总费用的影响当钢厂钢管销售价格变化时,会对购运计划和总费用造成影响. 为了更好地观察每一个钢厂钢管销售价格所造成的影响,采用比较法,即每次只让一个钢厂钢管的销售价格发生相同的变化,其余钢厂钢管的销售价格不发生变化.我们将各个钢厂单位钢管的销价分别增加1万元和减少1万元,借助LINGO 软件得出相应的总费用、运输方案、订购方案变化情况如表6、表7所示由上述表格观察分析可得: 6S 钢厂销价变化对总费用影响最大,56,S S 钢厂钢管的销价的变化对购运计划影响最大.2、讨论钢厂钢管产量的上限的变化对购运计划和总费用的影响同样采用比较法,即每次只让一个钢厂钢管产量的上限的发生相同的变化,其余钢厂钢管产量的上限不发生变化. 将各个钢厂的产量的上限分别增加100个单位和减少100个单位,分别计算,得到购运计划和总费用变化情况如表8、表9所示.S钢厂钢管的产量的上限的变化对总费用影响最大,由上述表格观察分析可得:1购运计划影响较小.五、模型的评价及改进由于总费用由订购费用和运输费两部分组成,运输费又由一般线路上的运输费和铺设管道上的运输费组成. 利用求网络中最短路径的Dijkstra算法,进行改进得到新的算法,可对含多种权重计算方式的网络进行搜索,得出最小费用路径(最短路径),算出两点之间的最优路径,进而根据非线性规划,借助于Lingo软件求解即可求出相应的结果.1.优点1)本问题中运用了求网络中最短路径的Dijkstra算法的思想,进行改进和修改得到新的算法,可对含多种权重计算方式的网络进行搜索,算出两点之间的最优路径,计算结果准确,从而得出相应的购运单价的矩阵.2)本问题构造出的模型算法较简单,也可以运用相应的其他编程软件来得到比较满意的结果.3)本模型计算步骤清晰,借助于Lingo软件求解,可靠性较高.2.缺点1)由于题意中不考虑铁路公路间转运的中转费用,也不限制转运次数,因此在算法设计中存在着考虑不周全的缺限,如我们考虑是先通过铁路再通过公路到铺设点,但这不一定是最小费用路径,有可能先通过公路,然后经铁路再经公路运到铺设点,费用更少,这里没有理论证明.2292) 问题二要求根据问题一的分析,指出哪家钢厂销价的变化对购运计划和总费用影响最大,哪家钢厂钢管产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果. 这个问题属于规划问题的灵敏度分析,一般来说,应该对于销价的变化△p 和产量上限的变化△s求出相应的总费用的变化△w,但要得到△w关于△p和△s的函数关系,几乎是不可能的,只对每个钢厂进行单独讨论.3.模型改进这个数学模型可以应用于西部开发中"天然气东送”问题,当然,西部开发中"天然气东送”问题远比我们的假设还要复杂的多,但无论如何,他们的本质一样,我们可将本问题运用于时间的变化等范围的推广. 本文还可以把问题1归结为网络最小费用流问题,建立了线性和非线性最小费用流模型,并运用相应的解法和分支定界法求解,简洁,层次分明.参考文献:[1] 甘应爱,田丰等等. 运筹学.清华大学出版社,北京,1994.[2] 袁亚湘.孙文瑜著. 最优化理论与方法.科学出版社,北京,1997.[3] 徐俊明著. 图论及其应用.中国科学技术大学出版社,合肥,1997.[4] 赵静,但琦. 数学建模与数学实验[M].北京:高等教育出版社,2003.习题1. 如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络(图2),请就这种更一般的情形给出一种解决办法,制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用).230231图217。

数学建模--钢管下料问题

数学建模--钢管下料问题

钢管下料问题摘要:如何建立整数规划模型并得出整数规划模型的求解方法是本实验要点,本题建立最常见的线性整数规划,利用分支定界法和Lingo 软件进行求解原料下料类问题,即生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小;按照工艺要求,确定下料方案,使所用材料最省,或利润最大。

分支定界法可用于解纯整数或混合的整数规划问题,此方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。

Lingo 软件的功能是可以求解非线性规划(也可以做线性规划,整数规划等),特点是运算速度快,允许使用集合来描述大规模的优化问题。

大规模数学规划的描述分为四个部分: model:1.集合部分(如没有,可省略) SETS:集合名/元素1,元素2,…,元素n/:属性1,属性2,… ENDSETS2.目标函数与约束部分3.数据部分(如没有,可省略)4.初始化部分(如不需要初始值,可省略) end关键字:材料 Lingo 软件 整数规划问题描述:某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料都是19米。

(1)现有一顾客需要50根4米、20根6米和15根8 米的钢管。

应如何下料最节省?(2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5米的钢管。

应如何下料最节省。

(1)问题简化:问题1. 如何下料最节省 ? 节省的标准是什么?原料钢管:每根19米 4米50根 6米20根 8米15根问题2. 客户增加需求:由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。

如何下料最节省?问题分析:切割模式,例如:按照客户需要在一根原料钢管上安排切割的一种组合。

为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?两种标准:1.原料钢管剩余总余量最小。

数学建模之钢管下料问题案例分析学习资料

数学建模之钢管下料问题案例分析学习资料

数学建模之钢管下料问题案例分析钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。

(1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。

应如何下料最节省?(2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。

应如何下料最节省。

问题(1)分析与模型建立首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819k k k ++≤的整数解。

但要求剩余材料12319(468)4r k k k =-++<。

容易得到所有模式见表1。

表1 钢管切割模式决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。

以切割原料钢管的总根数最少为目标,则有 1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有 1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为:1234567min z x x x x x x x =++++++123672567346432503220..215,1,2,,7i x x x x x x x x x s t x x x x i ++++≥⎧⎪+++≥⎪⎨++≥⎪⎪=⎩取整 解得:12345670,12,0,0,0,15,0x x x x x x x =======目标值z=27。

即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。

15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。

《数学建模(第四版)》4.7钢管切割问题

《数学建模(第四版)》4.7钢管切割问题

摘要该问题在于确定钢管切割模式的安排上,显然是一个优化问题。

是一个在原料和成品长度等约束下求最小费用的优化模型。

我们在分析题目的各种限制因素后,找到初步的目标函数,找到约束条件,建立IP (整数优化)模型。

在求解模型过程中,由于问题的规模小,我们通过分析约束条件采取枚举法分析可行域,运用MATLAB找到钢管切割模式的可行解。

然后在目标函数下,进而求出最优解集合。

考虑到实际生活常识,通过对满足约束条件下的最优解来进行分析,找到符合实际的最优解。

依此来确定最终的切割模式方案。

在求解模型的过程中,针对不同的假设背景下,可以简化模型的求解过程。

我们运用 LINDO/LINGO 或 MATLAB 编写程序来进行求解,同时用 LINDO/LINGO 软件进行初步的可行性和灵敏度分析。

为了使主要结果的直观性和形象性,对获得的数据运用 MATLAB 处理成图表。

在文章的最后,我们对模型的改进和模型的应用范围进行了适当的分析,提出关于与模型的相关问题的见解。

关键词:切割模式优化MATLAB/LINGO灵敏度分析.一、问题重述原料钢管长度1850mm,现要从这一批原料钢管中切割出15 根 290mm, 28 根 315mm,21根 350mm 和 30根 455mm 三种特定长度的成品钢管。

合理的切割模式确定后,求使切割总费用最小的切割方案。

问题中的原料和成品长度都有限定,切割费用也与切割模式有关。

在阅读分析题目后,其中限制条件主要有:1 原料钢管长度限制,所以每根钢管的切割模式总长度不能超过1850mm 。

2一根钢管最多生产 5 根成品钢管,切割后的成品根数有限制。

3切割模式的种类不能超过 4 种。

4一根钢管在每种切割模式下的余料不能超过100mm 。

5费用的计算方式是和切割模式的使用频率有关。

二、基本假设(1)切割过程中原料钢管不发生长度损失。

(2)在切割过程中,只发生因切割而产生的费用。

(3)切割费用只与切割模式使用频率有关,而与其他因素无关。

数学建模之钢管下料问题

数学建模之钢管下料问题

数学建模之钢管下料问题案例分析钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m。

(1)现在一客户需要50根4m、20根6m和15根8m的钢管。

应如何下料最节省?(2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。

此外,该客户除需要(1)中的三种钢管外,还需要10根5m的钢管。

应如何下料最节省。

问题(1)分析与模型建立首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819k k k ++≤的整数解。

但要求剩余材料12319(468)4r k kk =-++<。

容易得到所有模式见表1。

表1 钢管切割模式模式 4m 6m 8m 余料(m)1 4 0 0 323 1 0 1 3 2 0 1 34 0 0 2 35 0 3 0 16 1 1 1 17 123决策变量 用ix 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。

以切割原料钢管的总根数最少为目标,则有1234567min z x x x x x x x =++++++约束条件 为满足客户的需求,4米长的钢管至少50根,有1236743250x x x x x ++++≥6米长的钢管至少20根,有25673220x x x x +++≥8米长的钢管至少15根,有346215x x x ++≥因此模型为:1234567min z x x x x x x x =++++++123672567346432503220..215,1,2,,7i x x x x x x x x x s t x x x x i ++++≥⎧⎪+++≥⎪⎨++≥⎪⎪=⎩取整解得:12345670,12,0,0,0,15,0x x x x x x x =======目标值z=27。

数学建模:钢管订购和运输

数学建模:钢管订购和运输

钢管订购和运输摘要:本文运用线性规划理论建立了钢管订购和运输计划问题的数学模型。

在求解时分别利用了图论中求最短路长的算法、整数规划中的0—1规划的解法及运输问题的表上作业法。

关键词:线性规划,运输问题一、问题重述有一条从A1→A2→ →A15的天然气管道需要铺设,如图1。

经筛选,只有7家厂商获得认可,分别记为S1,S2, ,S7。

图中粗线表示铁路,单细线表示公路,双细线表示管道(假设管道沿线有公路或建有施工公路)。

圆圈表示公路,每段铁路公路和管道旁的数字表示管道的里程(单位km),记1km为一个单位。

一个钢厂如果承担这种钢管的生产,则最少需要500个单位。

钢厂Si在制定期内最多能生产钢管的数量记为si个单位,钢管出场售价为每单位Pi万元,如下表。

一单位钢管的铁路运价如下表:1000km每增加100km运费增加5万元公路运输费为每公里0.1万元(不足整公里部分按1公里计算)。

1:制定一个主管道的订购和运输计划,市总费用最小(给出总费用)。

2:就问题1的模型进行分析,那个钢管厂的钢管销售价格变化对够运计划和总费用影响最大;哪个钢管厂钢管的产量上限的变化对够运计划和总费用的影响最大,并给出相应的数字结果。

3:如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,对这种更一般的情形给出一种解决办法,并对图2按问题1的要求给出模型和结果。

二、基本假设假设铺设钢管可从Aj向前后两个方向铺设或向同一方向铺设和不考虑火车运载与汽车运载的装卸费。

三、符号说明1 第Si 个钢管厂承担制造钢管的任务。

0 - 1变量Ri, Ri=0 第Si 个钢管厂不承担制造钢管的任务。

ai 表示向第Si 个钢管厂订购的钢管的数量。

xij 表示从钢管厂Si 沿着费用最小的路线运输到火车站Aj 点的钢管的数量。

bj 表示从各个钢管厂运输到Aj 点的钢管的总数。

cij 表示从钢管厂Si 运输单位钢管到Aj 的最小费用。

数学建模2000B题

数学建模2000B题
结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,
铁路、公路和管道构成网络,请就这种更一般的情形给出
一种解决办法,并对图二按(1)的要求给出模型和结果。
第十九页,共53页。
订购(dìnggòu)与
n=5171
运输方案
Si
1
2
3
4
5
6
7
供货量 ? ? ? ? ? ? ?
收点
发点
B1
B2
..….
第二十六页,共53页。
3、模型(móxíng)
的建立 (1)决策
( jué1cè)变
t量i
0
x ij
yj
zj
(2)目标函数
( i 1 , , 7 ) ( j 1 , , 1 )
目标(mùbiāo)函数是总W 费用 :钢管出厂Q 总 价输,费运P ,及铺设费 T ,即 WQPT其中
7 15
7 15
B题 钢管(gāngguǎn)订购和 运输
第一页,共53页。
读题
信息
(语言(yǔyán)、 数据)
问题(wèntí) (第一问,…,)
问题
所属 (suǒshǔ) 类型
做题
思路和关键点
结果 表示形式
第二页,共53页。
要铺设(pū shèA )1一 条A 2 A 15
输送天然气的主管道,
如图一所示。经筛选后可以生产这种主管(zhǔguǎn)道钢管 的钢厂有 S1,S2, ,S7。图中粗线表示铁路(tiělù),单细线表示公路,双细
第十四页,共53页。
例 运输(yùnshū)问题
设有某物资从m个发点 A1,A2, ,Am 输送到n个收点
B1,B2, ,Bn 其中每个发点发出量分别为a1,a2,...a,m 每个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模钢管下料问题
实验一
钢管下料问题
摘要
生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成规定大小的某种,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.下面我们采用数学规划模型建立线性规划模型并借助LINGO 9.0来解决这类问题.
关键词线性规划最优解钢管下料
一,问题重述
1、问题的提出
某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm,28根315 mm,21根350 mm和30根455 mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm,为了使总费用最小,应该如何下料?
2、问题的分析
首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少.
二,基本假设与符号说明
1、基本假设
假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行.
2、定义符号说明
(1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x .
(3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数).
三、模型的建立
由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,
i r 3,i r 4(非负整数).
决策目标 切割钢管总费用最小,目标为:
Min=(1x ⨯1.1+2x ⨯1.2+3x ⨯1.3+4x ⨯1.4)⨯a (1)
为简化问题先不带入a 约束条件 为满足客户需求应有
11r ⨯1x +12r ⨯2x +13r ⨯3x +14r ⨯4x ≧15 (2)
21r ⨯1x +22r ⨯2x +23r ⨯3x +24r ⨯4x ≧28 (3) 31r ⨯1x +32r ⨯2x +33r ⨯3x +34r ⨯4x ≧21 (4)
41r ⨯1x +42r ⨯2x +43r ⨯3x +44r ⨯4x ≧15 (5)
每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是:
1750≦290⨯11r +315⨯21r +350⨯31r +455⨯41r ≦1850 (6)
1750≦290⨯12r +315⨯22r +350⨯32r +455⨯42r ≦1850 (7)
1750≦290⨯13r +315⨯23r +350⨯33r +455⨯43r ≦1850
(8)
1750≦290⨯14r +315⨯24r +350⨯34r +455⨯44r ≦1850 (9)
由于排列顺序无关紧要因此有
1x ≧2x ≧3x ≧4x
(10)
又由于总根数不能少于
(15⨯290+28⨯315+21⨯350+30⨯455)/1850≧18.47 (11) 也不能大于
(15⨯290+28⨯315+21⨯350+30⨯455)/1750≦19.525 (12) 由于一根原钢管最多生产5根产品,所以有
i r 1+i r 2+i r 3+i r 4≦5
(13)
290*r14+315*r24+350*r34+455*r44<=1850;
290*r11+315*r21+350*r31+455*r41>=1750;
290*r12+315*r22+350*r32+455*r42>=1750;
290*r13+315*r23+350*r33+455*r43>=1750;
290*r14+315*r24+350*r34+455*r44>=1750;
x1+x2+x3+x4>=19;
x1+x2+x3+x4<=20;
x1>=x2;
x2>=x3;
x3>=x4;
r11+r21+r31+r41<=5;
r12+r22+r32+r42<=5;
r13+r23+r33+r43<=5;
r14+r24+r34+r44<=5;
@gin(x1);@gin(x2);@gin(x2);@gin(x4);
@gin(r11);@gin(r12);@gin(r13);@gin(r14);
@gin(r21);@gin(r22);@gin(r23);@gin(r24);
@gin(r31);@gin(r32);@gin(r33);@gin(r34);
@gin(r41);@gin(r42);@gin(r43);@gin(r44);
end
经运行得到输出如下:
Global optimal solution found.
Objective value: 21.40000
Objective bound: 21.40000
Infeasibilities: 0.000000
Extended solver steps: 1
Total solver iterations: 34507
Variable Value Reduced Cost X1 14.00000 -0.1000000 X2 5.000000 0.000000
X3 0.000000 0.1000000 X4 0.000000 0.2000000 R11 0.000000 0.000000 R12 3.000000 0.000000 R13 0.000000 0.000000 R14 0.000000 0.000000 R21 2.000000 0.000000 R22 0.000000 0.000000 R23 1.000000 0.000000 R24 0.000000 0.000000 R31 2.000000 0.000000 R32 0.000000 0.000000 R33 3.000000 0.000000 R34 0.000000 0.000000 R41 1.000000 0.000000 R42 2.000000 0.000000 R43 1.000000 0.000000 R44 4.000000 0.000000
实验二:
摘要
一、问题重述
二、基本假设与符号说明
基本假设:
符号说明:
三、模型的建立
四、模型的求解
五、模型评价
六、参考文献
附录。

相关文档
最新文档