相互独立事件习题课

合集下载

高一下学期数学人教A版必修第二册10.2事件的相互独立性课件

高一下学期数学人教A版必修第二册10.2事件的相互独立性课件

1 2
,
3 4
,
3 4
,将它们中某两个元件并联后再和第三个
元件串联接入电路,它们是否正常工作相互独立.在如图所示的电路中,电路不发生故障的概率
是_______.
解:记 A “T1 正常工作”, B “T2 正常工作”, C “ T3 正常工作”,
则 P(A) 1 , P(B) P(C) 3 ,
23 60
5 12
9 10
.
6. 甲、乙、丙 3 位大学生同时应聘某个用人单位的职位,3 人能被选中的概率分别为 2 , 3 , 1 , 543
且各自能否被选中互不影响. (1)求 3 人同时被选中的概率;
(2)求 3 人中至少有 1 人被选中的概率.
解:(2)方法二:“3 人中至少有 1 人被选中”的对立事件是“3 人都没有被选中”, 所以 3 人中至少有 1 人被选中的概率为
1 3
1 10
6. 甲、乙、丙 3 位大学生同时应聘某个用人单位的职位,3 人能被选中的概率分别为 2 , 3 , 1 , 543
且各自能否被选中互不影响. (1)求 3 人同时被选中的概率; (2)求 3 人中至少有 1 人被选中的概率.
解:(2)方法一:3 人中有 2 人被选中的概率为
P2 P(ABC ABC ABC) P(ABC) P(ABC) P(ABC) 2 3 (1 1) 2 (1 3) 1 (1 2) 3 1 23 5 4 3 5 4 3 5 4 3 60
(1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶. (4)至少有一人中靶.
解:(3)事件“两人都脱靶” AB ,所以 P( AB) P( A)P(B) 0.2 0.1 0.02
(4)方法 1:事件“至少有一人中靶” AB AB AB ,且 AB, AB 与 AB 两两互斥,

第二章2.2.2事件的相互独立性习题课

第二章2.2.2事件的相互独立性习题课

[学业水平训练]1.(2014·福州八县市高二期末联考)抛掷3枚质地均匀的硬币,A ={既有正面向上又有反面向上},B ={至多有一个反面向上},则A 与B 关系是( )A .互斥事件B .对立事件C .相互独立事件D .不相互独立事件解析:选C.由已知,有P (A )=1-28=34,P (B )=1-48=12,P (AB )=38,满足P (AB )=P (A )P (B ),则事件A 与事件B 相互独立,故选C.2.甲、乙两人独立地解同一问题,甲解出这个问题的概率是14,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是( ) A.34 B.18 C.78 D.58解析:选D.设至少有1人解出这个问题的概率是P ,则由题意知,(1-14)(1-12)=1-P ,∴P =58.3.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13解析:选A.左边转盘指针落在奇数区域的概率为46=23,右边转盘指针落在奇数区域的概率为23,∴两个指针同时落在奇数区域的概率为23×23=49.4.(2014·九江检测)某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( )A.19B.16C.13D.718解析:选D.设汽车分别在甲、乙、丙三处通行为事件A 、B 、C ,则P (A )=13,P (B )=12,P (C )=23,停车一次即为事件A BC +A B C +A B C 的发生,故概率为P =(1-13)×12×23+13×(1-12)×23+13×12×(1-23)=718.5.(2014·东莞调研)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( ) A .2个球不都是红球的概率 B .2个球都是红球的概率 C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确.6.(2014·铜陵质检)在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.解析:从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M 、N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P (MN )=P (M )P (N )=160200×180240=35.答案:357.已知P (A )=0.3,P (B )=0.5,当事件A ,B 相互独立时,P (A ∪B )=________,P (A |B )=________.解析:因为A 、B 相互独立,所以P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65,P (A |B )=P (A )=0.3. 答案:0.65 0.38.如图所示,荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是________.解析:由已知逆时针跳一次的概率为23,顺时针跳一次的概率为13.则逆时针跳三次停在A上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.答案:139.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多两人当选的概率.解:设甲、乙、丙当选的事件分别为A ,B ,C ,则有P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立,恰有一名同学当选的概率为 P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )·P (C )=45×25×310+15×35×310+15×25×710=47250.(2)至多有两人当选的概率为1-P (ABC )=1-P (A )P (B )P (C )=1-45×35×710=83125.10.(2014·石家庄高二检测)某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.解:记“应聘者对三门考试及格的事件”分别为A ,B ,C . P (A )=0.5,P (B )=0.6,P (C )=0.9. (1)该应聘者用方案一通过的概率是P 1=P (A B C )+P (A BC )+P (A B C )+P (ABC )=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.03+0.27+0.18+0.27=0.75.(2)应聘者用方案二通过的概率P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9) =13×1.29=0.43. [高考水平训练]1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D.由题意,P (A )·P (B )=19,P (A )·P (B )=P (A )·P (B ).设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧ (1-x )(1-y )=19,(1-x )y =x (1-y ).即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y ,∴x 2-2x +1=19,∴x -1=-13,或x -1=13(舍去),∴x =23,故选D.2.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.解析:设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 1A -2A 3∪A-1A 2A 3发生,故所求概率为P =P (A 1A 2A 3∪A 1A -2A 3∪A -1A 2A 3) =P (A 1A 2A 3)+P (A 1A -2A 3)+P (A -1A 2A 3) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A -2)·P (A 3)+P (A -1)P (A 2)P (A 3)=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46. 答案:0.463.李浩的棋艺不如张岚,李浩每局赢张岚的概率只有0.45.假设他们下棋时各局的输赢是独立的.(1)计算他们的3局棋中李浩至少赢1局的概率; (2)计算他们的6局棋中李浩至少赢1局的概率.解:(1)用A 1,A 2,A 3分别表示第1,第2,第3局李浩输.则A =A 1∩A 2∩A 3表示李浩连输3局.其对立事件A 表示3局中李浩至少赢1局.因为事件A 1,A 2,A 3相互独立,并且P (A 1)=P (A 2)=P (A 3)=1-0.45=0.55, 所以P (A )=P (A 1)P (A 2)P (A 3)=0.553≈0.166 4. 于是P (A )=1-P (A )=0.833 6.说明3局棋中李浩至少赢1局的概率还是很大的.(2)用A 1,A 2,…,A 6分别表示第1,第2,…,第6局李浩输,则B =A 1∩A 2∩…∩A 6表示李浩连输6局,其对立事件B 表示6局中李浩至少赢1局.因为事件A 1,A 2,…,A 6相互独立,并且P (A 1)=P (A 2)=…=P (A 6)=1-0.45=0.55, 所以P (B )=P (A 1)P (A 2)·…·P (A 6)=0.556≈0.027 7.于是P (B )=1-P (B )=0.972 3. 说明6局棋中李浩至少赢1局的概率大于0.97.4.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译不出密码的概率; (2)至多1个人译出密码的概率; (3)至少1个人译出密码的概率.解:记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)2个人都译不出密码的概率为P (A B )=P (A )·P (B )=[1-P (A )]·[1-P (B )]=⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12. (2)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为1-P (AB )=1-P (A )P (B )=1-13×14=1112.。

相互独立事件

相互独立事件
这就是说,事件 A(或 B)是否发生对事 件 B(或 A)发生的概率没有影响,这样的两
个事件叫做相互独立事件.
趣味思考:
三个臭皮匠能否抵过诸葛亮?
比赛双方:诸葛亮和臭皮匠团队
比赛规则:各位选手必须独立解题,团队 中有一人解出即为获胜。
已知诸葛亮想出计谋的概率为0.8,三个 臭皮匠甲、乙、丙各自想出计谋的概率各 为0.6、0.5、0.4.问这三个臭皮匠能胜过 诸葛亮吗 ?
例2 在某段时间内,甲地下雨的概率是 0.2,乙地下雨的概率是0.3。假定在这 段时间内两地是否下雨相互之间没有影 响,计算在这段时间内:
(1)甲、乙两地都下雨的概率;
(2)甲、乙两地都不下雨的概率;
(3)其中至少有一个地方下雨的概率。
(1)0.2*0.3=0.6 (2)(1-0.2) ·(10.3)=0.56 (3)1-0.56=0.44
一、复习提问:
1、互斥事件的定义? 2、对立事件的定义? 3、互斥事件中有一个发生的概 率公式? 4、对立事件中有一个发生的概 率公式?
(1)一个坛子里有6个白球,3个黑球,l个红球,
设摸到一个球是白球的事件为 A ,摸到一个球是黑球 的事件为B ,问 A与 B是互斥事件呢,还是对立事件?
(2)甲坛子里有3个白球,2个黑球;乙坛子里有2 个白球,2个黑球.设从甲坛子里摸出一个球,得到白
如何求一些事件的概率: ① 分清事件类型 ② 分解复杂问题为基本的互斥事件与相 互独立事件.
诸葛亮与臭皮匠答案分析:至少一个臭 皮匠想出计谋即可。可用间接法。
集体的力量大于个人!
作业: 习题三2、3、6
(3)事件A:在一次考试中,张三的成绩及格 与事件B:在这次考试中李四的成绩不及格。
(4)一个口袋内装有2个白球和2个黑球,把 “从中任意摸出1个球,得到白球”记作事件A, 把“从剩下的3个球中任意摸出1个球,得到白 球”记作事件B。

(完整版)条件概率独立事件习题

(完整版)条件概率独立事件习题

条件概率与独立事件习题课1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为()A .B .C .D .2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D .3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率()A .B .C .D .4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A .B .C .D .5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.二.解答题6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布.9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.10.甲、乙两人独立破译一个密码,他们能独立译出密码的概率分别为和.(I)求甲、乙两人均不能译出密码的概率;(II)假设有4个与甲同样能力的人一起独立破译该密码,求这4人中至少有3人同时译出密码的概率.条件概率与独立事件答案1.解:设x为掷白骰子得的点数,y为掷黑骰子得的点数,则所有可能的事件与(x,y)建立一一对应的关系,由题意作图,如图.其中事件A为“黑色骰子的点数为3或6”包括12件,P(A)==事件AB包括5件,P(AB)=,由条件概率公式P(B|A)==,2.解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.3. 解:根据题意,在第一次抽到次品后,有4件次品,5件正品;则第二次抽到正品的概率为P=4.解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,则P(A)=,P ()=1﹣=,P(B)=P,P ()=1﹣P ,依题意得:×(1﹣p)+×p=,解可得,p=,故选C.5.解:设出甲,乙,丙,射击一次击中分别为事件A,B,C,∵甲以10发8中,乙以10发6中,丙以10发7中∴甲,乙,丙,射击一次击中的概率分别为:,,∵“三人各射击一次,则三人中只有一人命中”的事件为:,,∴三人各射击一次,则三人中只有一人命中的概率为:=6.解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;(2)Y的所有可能取值为0,1,2;,,,Y的分布列为Y012P(3)从流水线上任取5件产品,重量超过505克的概率为=,重量不超过505克的概为1﹣=;恰有2件产品合格的重量超过505克的概率为•.7.解:(Ⅰ)根据频率=得各组的频率分别是:0.1;0.2;0.3;0.2;0.1;0.1.由组距为10,可得小矩形的高分别为0.01;0.02;0.03;0.02;0.01;0.01.由此得频率分布直方图如图:(Ⅱ)由题意知ξ的所有可能取值为:0,1,2,3.P(ξ=0)=•=;P(ξ=1)=•+•=;P(ξ=2)=•+•=;P(ξ=3)=•=.∴ξ的分布列是:ξ0123Pξ的数学期望Eξ=0×+1×+2×+3×==.8.解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=9. 解:(Ⅰ)用事件A i表示第i局比赛甲获胜,则A i两两相互独立.…(1分)===.…(4分)(Ⅱ)X的取值分别为2,3,4,5,…(5分)P(x=2)=,P(x=3)=,P(x=4)=,P(x=5)=,…(9分)所以X的分布列为X2345P…(11分)EX==.…(13分)10.解:(I)由题意知本题是一个相互独立事件同时发生的概率,设“甲、乙两人均不能译出密码”为事件A,则P(A)=(1﹣)(1﹣)=即甲、乙两人均不能译出密码的概率是(II)有4个与甲同样能力的人一起独立破译该密码,相当于发生四次独立重复试验,成功的概率是∴这4人中至少有3人同时译出密码的概率为=即这4人中至少有3人同时译出密码的概率为。

课时作业3:2.2.2 事件的相互独立性

课时作业3:2.2.2 事件的相互独立性

2.2.2事件的相互独立性一、选择题1.下列事件A 、B 是独立事件的是( )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2白,2黑的小球,不放回地摸两球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“人能活到20岁”,B =“人能活到50岁”2.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.233.甲乙两人投球命中率分别为12,25,甲乙两人各投一次,恰好命中一次的概率为( ) A.15 B.25 C.12 D.9104.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13 D.718二、填空题5.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,则取得同色球的概率为________.6.明天上午李明要参加世博会志愿者活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是________.7.甲,乙二人单独解一道题, 若甲,乙能解对该题的概率分别是m , n . 则此题被解对的概率是8.有一谜语, 甲,乙,丙猜对的概率分别是1/5, 1/3 , 1/4 .则三人中恰有一人猜对该谜语的概率是三、解答题(每小题10分,共20分)9.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.10.已知A ,B ,C 三个相互独立事件,若事件A 发生的概率为12,事件B 发生的概率为13,事件C 发生的概率为14,求下列事件发生的概率. (1)事件A ,B ,C 都发生的概率. (2)事件A ,B ,C 都不发生的概率.(3)事件A ,B ,C 不都发生的概率. (4)事件A ,B ,C 至少有一个发生的概率.(5)事件A ,B ,C 恰有一个发生的概率. (6)事件A ,B ,C 恰有两个发生的概率.(7)事件A ,B ,C 至多有两个发生的概率.11.某种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次被按下后,出现红球与绿球的概率都是12,从按钮第二次被按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为13,23;若前次出现绿球,则下一次出现红球、绿球的概率分别为35,25.记第n (n ∈N ,n ≥1)次按下按纽后出现红球的概率为p n .(1)求p 2的值;(2)当n ∈N ,n ≥2时,求用p n -1表示p n 的表达式.12.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率.参考答案1. A 2.D 3. C 4. D 5. 12 6. 0.98 7. m +n - mn 8.1330 9.解: 记“第i 局甲获胜”为事件A i (i =3,4,5),“第j 局乙获胜”为事件B j (j =3,4,5).(1)设“再赛2局结束这次比赛”为事件A ,则A =A 3·A 4+B 3·B 4,由于各局比赛结果相互独立,故P (A )=P (A 3·A 4+B 3·B 4)=P (A 3·A 4)+P (B 3·B 4)=P (A 3)P (A 4)+P (B 3)P (B 4)=0.6×0.6+0.4×0.4=0.52.(2)记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B =A 3·A 4+B 3·A 4·A 5+A 3·B 4·A 5, 由于各局比赛结果相互独立,故P (B )=P (A 3·A 4+B 3·A 4·A 5+A 3·B 4·A 5)=P (A 3·A 4)+P (B 3·A 4·A 5)+P (A 3·B 4·A 5)=P (A 3)P (A 4)+P (B 3)P (A 4)P (A 5)+P (A 3)P (B 4)P (A 5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.10.解: (1)记事件A 1为“事件A ,B ,C 都发生”,因为A ,B ,C 是三个相互独立事件,所以P (A 1)=P (A )P (B )P (C )=12×13×14=124. (2)记事件A 2为“事件A ,B ,C 都不发生”,因为A ,B ,C 是三个相互独立事件,故A ,B ,C 也相互独立,所以P (A 2)=P (A )P (B )P (C )=12×23×34=14(3)记事件A 3为“事件A ,B ,C 不都发生”,则A 3=A 1,从而P (A 3)=1-P (A 3)=1-P (A 1)=1-124=2324. (4)记事件A 4为“事件A ,B ,C 至少有一个发生”,则A 4=A 2,从而P (A 4)=1-P (A 4)=1-P (A 2)=1-14=34. (5)记事件A 5为“事件A ,B ,C 恰有一个发生”则有三种情况:第一种,事件A 发生,事件B ,C 不发生,即A ·B ·C ;第二种,事件B 发生,事件A ,C 不发生,即A ·B ·C ;第三种,事件C 发生,事件A ,B 不发生,即A ·B ·C ;而这三种情况不可能同时发生,即A ·B ·C ,A ·B ·C ,A ·B ·C 彼此互斥,所以P (A 5)=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=14+18+112=1124. (6)记事件A 6为“事件A ,B ,C 恰有两个发生”则有三种情况:第一种,事件A ,B 发生,事件C 不发生,即A ·B ·C ;第二种,事件A ,C 发生,事件B 不发生,即A ·B ·C ;第三种,事件B ,C 发生,事件A 不发生,即A ·B ·C ;而这三种情况不可能同时发生,即A ·B ·C ,A ·B ·C ,A ·B ·C 彼此互斥,所以P (A 6)=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=18+112+124=14. (7)方法一:记事件A 7为“事件A ,B ,C 至多有两个发生”,则有三种情况:第一种,事件A ,B ,C 都不发生,即A 2第二种,事件A ,B ,C 恰有一个发生,即A 5第三种,事件A ,B ,C 恰有两个发生,即A 6所以P (A 7)=P (A 2)+P (A 5)+P (A 6)=14+1124+14=2324. 方法二:记事件A 7为“事件A ,B ,C 至多有两个发生”,则A 7=“事件A ,B ,C 都发生”,即A 7=A 1 P (A 7)=1-P (A 7)=1-P (A 1)=1-124=2324. 11.解: (1)p 2=12×13+12×35=715.(2)p n =p n -1×13+(1-p n -1)×35=-415p n -1+35. 12. 解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=.所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==.所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=.解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=.。

新教材高中数学第七章概率4事件的独立性课后习题北师大版必修第一册

新教材高中数学第七章概率4事件的独立性课后习题北师大版必修第一册

§4 事件的独立性A 级必备知识基础练1.某闯关游戏规则如下:在主办方预设的6个问题中,选手若能连续正确回答出两个问题,即停止答题,闯关成功.假设某选手正确回答每个问题的概率都是0.6,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就闯关成功的概率等于( ) A.0.064B.0.144C.0.216D.0.4322.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ) A.0.378B.0.3C.0.58D.0.9583.(多选题)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16 B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为124.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能开门的概率是 ;如果试过的钥匙不扔掉,这个概率是 .5.甲、乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求: (1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率.B 级关键能力提升练6.(多选题)已知事件A ,B ,且P (A )=0.5,P (B )=0.2,则下列结论正确的是( ) A.若B ⊆A ,那么P (A ∪B )=0.2,P (AB )=0.5 B.若A ,B 互斥,那么P (A ∪B )=0.7,P (AB )=0 C.若A ,B 相互独立,那么P (A ∪B )=0.7,P (AB )=0 D.若A ,B 相互独立,那么P (AB )=0.4,P (A B )=0.47.(2021山东潍坊检测)投壶是我国古代的一种娱乐活动,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为13,投中“贯耳”的概率为14,投中“散射”的概率为16,投中“双耳”的概率为19,投中“依竿”的概率为118,未投中(0筹)的概率为112.乙的投掷水平与甲相同,且甲、乙投掷相互独立.比赛第一场两人平局,第二场甲投中“有初”,乙投中“双耳”,则三场比赛结束时,甲获胜的概率为( ) A.124B.5108C.572D.72168.甲、乙、丙三人向同一飞机射击,设击中的概率分别为0.4,0.5,0.8,若只有1人击中,则飞机被击落的概率为0.2,若2人击中,则飞机被击落的概率为0.6,若3人击中,则飞机一定被击落,则飞机被击落的概率为 .9.(2021广东茂名质检)田忌赛马的故事出自司马迁的《史记》,话说齐王、田忌分别有上、中、下等马各一匹,赛马规则是:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局,最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3,每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i ,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A1B1=0.8,P A1B2=0.9,P A1B3=0.95;P A2B1=0.1,P A2B2=0.6,P A2B3=0.9;P A3B1=0.09,P A3B2=0.1,P A3B3=0.6.则一场比赛共有种不同的比赛方案;在上述所有的方案中,有一种方案田忌获胜的概率最大,此概率的值为.10.某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方通过(即通过绿灯)的概率分别是13,12,23,对于该大街上行驶的汽车,求:(1)在三个地方都不停车的概率;(2)在三个地方都停车的概率;(3)只在一个地方停车的概率.11.在一个选拔节目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为56,34,56,13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率.C 级学科素养创新练12.(2021湖北武汉检测)一个系统如图所示,A ,B ,C ,D ,E ,F 为6个部件,其正常工作的概率都是12,且是否正常工作是相互独立的,当A ,B 都正常工作,或C 正常工作,或D 正常工作,或E ,F 都正常工作时,系统就能正常工作,则系统正常工作的概率是( )A.5564B.164C.18D.96413.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响. (1)分别求甲队总得分为0分,2分的概率; (2)求甲队得2分乙队得1分的概率.§4 事件的独立性1.B 选手恰好回答了4个问题就闯关成功,则第1个问题可能正确,也可能不正确,第2个问题不正确,第3,4个问题正确.故P=0.6×0.4×0.6×0.6+0.4×0.4×0.6×0.6=0.144.故选B .2.D 透镜落地3次,恰在第一次落地打破的概率为P 1=0.3,恰在第二次落地打破的概率为P 2=0.7×0.4=0.28,恰在第三次落地打破的概率为P 3=0.7×0.6×0.9=0.378,所以落地3次以内被打破的概率P=P 1+P 2+P 3=0.958.故选D .3.ACD 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2相互独立.A 中,概率为P (A 1A 2)=P (A 1)P (A 2)=13×12=16,正确;B 中,是“两个都是红球”的对立事件,其概率为1-P (A 1A 2)=56,错误; C 中,2个球中至少有1个红球的概率为1-P (A 1)P (A 2)=1-23×12=23,正确; D 中,2个球中恰有1个红球的概率为P (A 1A 2)+P (A 1A 2)=13×12+23×12=12,正确. 故选ACD . 4.1314由题意知,第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14.5.解记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B,A 与B 为相互独立事件,(1)2人都射中的概率为P (AB )=P (A )P (B )=0.8×0.9=0.72,故2人都射中目标的概率是0.72. (2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中乙未击中(即事件A B ),另一种是甲未击中、乙击中(即事件A B ),根据题意,事件A B 与A B 互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26,故2人中恰有1人射中目标的概率是0.26.(3)(方法一)2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为P=P (AB )+[P (A B )+P (A B )]=0.72+0.26=0.98.(方法二)“2人至少有一个击中”与“2人都未击中”为对立事件,2人都未击中目标的概率是P(AB)=P(A)P(B)=(1-0.8)×(1-0.9)=0.02,故“两人至少有1人击中目标”的概率为P=1-P(AB)=1-0.02=0.98.6.BD若B⊆A,则A∪B=A,A∩B=B,则P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A错误; 若A,B互斥,则AB为不可能事件,所以P(A∪B)=P(A)+P(B)=0.7,P(AB)=0,故B正确;若A,B相互独立,则P(AB)=P(A)P(B)=0.5×0.2=0.1,故C错误;若A,B相互独立,则P(AB)=P(A)P(B)=0.5×0.8=0.4,P(A B)=P(A)P(B)=0.5×0.8=0.4,故D正确.故选BD.7.C由题可知:甲要想赢得比赛,在第三场比赛中,比乙至少多得五筹,甲得“五筹”,乙得“零筹”,甲可赢,概率为P1=16×112=172;甲得“六筹”,乙得“零筹”,甲可赢,概率为P2=19×112=1108;甲得“十筹”,乙得“零筹”或“两筹”或“四筹”或“五筹”,甲可赢,概率为P3=118×(1-19-118)=5108.∴三场比赛结束时,甲获胜的概率为P=P1+P2+P3=172+1108+5108=572.8.0.492设甲、乙、丙三人击中飞机为事件A,B,C,依题意,A,B,C相互独立,故所求事件概率为P=[P(A B C)+P(ABC)+P(AB C)]×0.2+[P(AB C)+P(A BC)+P(A B C)]×0.6+P(ABC)=(0.4×0.5×0.2+0.6×0.5×0.2+0.6×0.5×0.8)×0.2+(0.4×0.5×0.2+0.6×0.5×0.8+0.4×0.5×0.8)×0.6+0.4×0.5×0.8=0.492.9.60.819由题意可知,所有的比赛方案为:(A1B1,A2B2,A3B3),(A1B1,A2B3,A3B2),(A1B2,A2B1,A3B3),(A1B2,A2B3,A3B1),(A1B3,A2B2,A3B1),(A1B3,A2B1,A3B2), 故一场比赛共6种不同的比赛方案.其中采用方案(A 1B 3,A 2B 1,A 3B 2),则田忌获胜的概率最大,记田忌三局全胜和恰胜两局的概率分别为P 1,P 2,则P 1=0.05×0.9×0.9=0.0405,P 2=0.05×0.9×0.1×2+0.95×0.9×0.9=0.7785,所以有一种方案田忌获胜的概率最大,此概率的值为0.0405+0.7785=0.819.10.解记汽车在甲地遇到绿灯为事件A ,汽车在乙地遇到绿灯为事件B ,汽车在丙地遇到绿灯为事件C ,则P (A )=13,P (A )=23,P (B )=12,P (B )=12,P (C )=23,P (C )=13.(1)在三个地方都不停车的概率为P (ABC )=P (A )P (B )P (C )=13×12×23=19. (2)在三个地方都停车的概率为P (ABC )=P (A )P (B )P (C )=23×12×13=19. (3)只在一个地方停车的概率为P (A BC+A B C+AB C )=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=23×12×23+13×12×23+13×12×13=718. 11.解设事件A i (i=1,2,3,4)表示“该选手能正确回答第i 轮问题”,则P (A 1)=56,P (A 2)=34,P (A 3)=56,P (A 4)=13.(1)设事件B 表示“该选手进入第三轮才被淘汰”, 则P (B )=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=56×34×1-56=548. (2)设事件C 表示“该选手至多进入第三轮考核”,则P (C )=P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1A 2)+P (A 1A 2A 3)=1-56+56×1-34+56×34×1-56=2348. 12.A 设“C 正常工作”为事件G ,“D 正常工作”为事件H ,“A 与B 中至少有一个不正常工作”为事件T ,“E 与F 中至少有一个不正常工作”为事件R ,则P (G )=P (H )=12,P (T )=P (R )=1-12×12=34,故系统正常工作的概率P=1-P (T )P (R )P (G )P (H )=5564.13.解(1)记“甲队总得分为0分”为事件A ,“甲队总得分为2分”为事件B ,甲队总得分为0分,即甲队三人都回答错误,其概率P (A )=1-233=127;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率P (B )=3×232×1-23=49.(2)记“乙队得1分”为事件C,“甲队得2分乙队得1分”为事件D;事件C即乙队三人中有2人答错,其余1人答对,则P(C)=1-23×23×1-12+23×1-23×1-12+1-23×1-23×12=518,甲队得2分乙队得1分即事件B,C同时发生,则P(D)=P(B)P(C)=49×518=1081.。

2.2.2事件的相互独立性

2.2.2事件的相互独立性

问题探究
一般地,对于事件A,B,如果事 件A的发生不影响事件B发生的概率, 那么P(B|A)与P(B)有什么关系?根据 条件概率计算公式可得什么结论? P(B|A)=P(B), P(AB)= P(A) P(B|A) = P(A) P(B).
新课讲解
设A,B两个事件,如果事件A是否发生 对事件B发生的概率没有影响 (即 P(AB)=P(A)P(B) ),
( 互斥事件)
求 较 复 杂 事 件 概 率
分类
正向 分步
P(A+B)= P(A) + P (B) P(A· P(A) ·P (B) B)=
( 互独事件)
反向
对立事件的概率
独立事件一定不互斥. 互斥事件一定不独立.
课堂小结
1.事件A与B相互独立可直观理解为: 事件A的发生对事件B发生的概率没有影 响,同时事件B的发生对事件A发生的概 率也没有影响.在实际应用中,如果事件 A与B是在相同条件下进行的随机试验, 则事件A与B相互独立.
典例讲评
例2 某商场推出二次开奖活动,凡购 买一定价值的商品可以获得一张奖券, 每张奖券可以分别参加两次抽奖方式相 同的兑奖活动,如果两次兑奖活动的中 奖概率都是0.05,求两次抽奖中下列事 件的概率. (1)两次都中奖; 0.0025 (2)恰有一次中奖; 0.095 (3)至少有一次中奖.0.0975
1
P ( A) 1 P ( B ) 1 P (C )
∴这段时间内至少有1个开关能够闭合,从而使线路能 正常工作的概率是 P 1 P ( A B C ) 1 0.027 0.973
练习5
(1 0.7) (1 0.7) (1 0.7) 0.027

10-2 事件的相互独立性——高一数学人教A版(2019)必修第二册洞悉课后习题

10-2 事件的相互独立性——高一数学人教A版(2019)必修第二册洞悉课后习题

10.2 事件的相互独立性——高一数学人教A 版(2019)必修第二册洞悉课后习题【教材课后习题】1.掷两枚质地均匀的骰子,设A =“第一枚出现奇数点”,B =“第二枚出现偶数点”,则A 与B 的关系为( ) A.互斥B.互为对立C.相互独立D.相等2.假设()0.7P A =,()0.8P B =,且A 与B 相互独立,则()P AB = _______,()P A B =_______.3.若()0P A >,()0P B >,证明:事件A ,B 相互独立与A ,B 互斥不能同时成立.4.甲、乙两人独立地破译份密码,已知各人能破译的概率分别是13,14,求:(1)两人都成功破译的概率; (2)密码被成功破译的概率.5.如图,一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,得到样本空间为{1,2,3,4,5,6,7,8}Ω=.构造适当的事件A ,B ,C ,使()()()()P ABC P A P B P C =成立,但不满足A ,B ,C 两两独立.6.分析如下三个随机试验及指定的随机事件,并解答下面的问题.1E :抛掷两枚质地均匀的硬币;事件A =“两枚都正面朝上”.2E :向一个目标射击两次,每次命中目标的概率为0.6;事件B =“命中两次目标”.3E :从包含2个红球、3个黄球的袋子中依次任意摸出两球;事件C “两次都摸到红球”.(1)用适当的符号表示试验的可能结果,分别写出各试验的样本空间; (2)指出这三个试验的共同特征和区别; (3)分别求A ,B ,C 的概率.【定点变式训练】7.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( ) A.25B.1225C.1625D.458.某校组织《最强大脑》PK 赛,最终A ,B 两队进入决赛,两队各由3名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各局胜者均得1分,负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A.827B.49C.1627D.20279.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.C.49D.10.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.1131911.如图所示,已知电路中4个开关闭合的概率都是12,且是相互独立的,则灯亮的概率为( )A.B.316C.D.131612.甲、乙两位同学各拿出6张游戏牌,用作抛骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜,得到所有12张游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12张游戏牌的分配合理的是( )A.甲得9张,乙得3张B.甲得6张,乙得6张C.甲得8张,乙得4张D.甲得10张,乙得2张13.设某批电子手表的正品率为23,次品率为13,现对该批电子手表进行检测,每次抽取一个电子手表,假设每次检测相互独立,则第3次首次检测到次品的概率为___________.14.事件A ,B ,C 是互相独立的事件,若1()6P AB =,1()8P BC =,1()8P ABC =,则()P B =_______________.15.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.16.第五届移动互联网创新大赛,于2019年3月到10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一名种子选手甲,再从全校征集出3位志愿者分别与甲进行一场技术对抗赛,根据以往经验,甲与这三位志愿者进行比赛一场获胜的概率分别为332,,453,且各场输赢互不影响.11614求甲恰好获胜两场的概率.17.小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率.(2)这三列火车至少有一列正点到达的概率.答案以及解析1.答案:C解析:因为A ,B 中有相同的样本点,如(1,2),故选项A 、B 错误;因为A 中含有B 中没有的样本点,如,故选项D 错误; 因为1()2P A =,,91()364P AB ==,所以()()()P AB P A P B =,故选项C.正确.2.答案:0.56;0.94解析:,.. 3.答案:见解析解析:若事件A ,B 相互独立,则()()()0P AB P A P B =>,所以()0P AB ≠,即A ,B 不互斥.若事件A ,B 互斥,则()0P AB =,因为()()0P A P B ⋅>,所以()()()P AB P A P B ≠,即A ,B 不独立.所以事件A ,B 相互独立与A ,B 互斥不能同时成立. 4.答案:(1)112(2)12解析:设A =“甲能破译密码”,B =“能破译密码”,则A ,B 相互独立.由题意知1()3P A =,1()4P B =. (1)111()()()3412P AB P A P B ==⨯=;(2)1111()()()()34122P A B P A P B P AB =+-=+-=.5.答案:A 与B ,A 与C ,B 与C 都不相互独立解析:设{1,2,3,4}A =,{1,2,3,5}B =,{1,6,7,8}C =,则{1}ABC =,{1,2,3}AB =,(1,1)1()2P B =()()()0.70.80.56P AB P A P B ==⨯=()()()()0.70.80.560.94P A B P A P B P AB =+-=+-={1}AC =,{1}BC =,所以1()()()2P A P B P C ===,3()8P AB =,1()()8P AC P BC ==,1()8P ABC =.所以()()()()P ABC P A P B P C =⋅,但()()()P AB P A P B ≠,()()()P AC P A P C ≠,()()()P BC P B P C ≠,即A 与B ,A 与C ,B 与C 都不相互独立.6.答案:(1)1E 的空间可表示为1{(0,0),(0,1),(1,0),(1,1)}Ω=;2E 的样本空间可表示为2{(0,0),(0,1),(1,0),(1,1)}Ω=; 3E 的样本空间可表示为3){(0,0),(0,1,(1,0),(1,1)}Ω=(2)三个试验的共同特征:完成一次试验都要观察两个指标,即样本点中包含两个要素,并且每个要素都只有两种可能结果.所以它们的样本点都可以用有序数对来表示,并且具有相同的表达形式.三个试验的区别:1E 中的样本点具有等可能性,2E ,3E 中的样本点不是等可能的. (3)1()4P A =;()0.36P B =;1()10P C = 解析:(1)1E 中用有序数对(,)m n ,m ,{0,1}n ∈表示样本点,其中0表示“反面朝上”,1表示“正面朝上”.其样本空间可表示为1{(0,0),(0,1),(1,0),(1,1)}Ω=.2E 中用有序数对()12,x x ,1x ,2{0,1}x ∈表示样本点,其中0表示“末命中”,1表示“命中”.其样本空间可表示为2{(0,0),(0,1),(1,0),(1,1)}Ω=.3E 中用有序数对(,)x y ,x ,{0,1}y ∈表示样本点,其中0表示“摸到红球”,1表示“摸到黄球”.其样本空间可表示为3){(0,0),(0,1,(1,0),(1,1)}Ω=. (3)1()4P A =;()0.60.60.36P B =⨯=;1()10P C =. 7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:C解析:比赛结束时A 队的得分高于B 队的得分包含三种情况:①A 全胜;②第一局A 胜,第二局B 胜,第三局A 胜;③第一局B 胜,第二局A 胜,第三局A 胜.所以比赛结束时A 队的得分高于B 队的得分的概率. 故选C. 9.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,.设()P A x =,,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是.故选A. 10.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A.11.答案:D解析:由题意,灯泡不亮包括4个开关都断开;甲、丙、丁都断开,乙闭合;乙、丙、丁都断开,甲闭合,这三种情况是互斥的,每一种情况中的事件都是42()()105P A P B ===3221212216333333327P ⎛⎫=+⨯⨯+⨯⨯= ⎪⎝⎭()()P AB P AB =()P B y =2,323x y ⎧=⎪⎪⎨⎪=⎪⎩230.90.10.09⨯=相互独立的,所以灯泡不亮的概率为,所以灯亮的概率为31311616-=.故选D. 12.答案:A解析:由题意,得骰子朝上的面的点数为奇数的概率为,即甲、乙每局得分的概率相等,所以甲获胜的概率是11132224+⨯=, 乙获胜的概率是.所以甲得到的游戏牌为31294⨯=(张), 乙得到的游戏牌为(张).故选A. 13.答案:427解析:因为第3次首次检测到次品,所以第1次和第2次检测到的都是正品,第3次检测到的是次品,所以第3次首次检测到次品的概率为. 14.答案:12解析:设,()P B b =,, 因为1()6P AB =,1()8P BC =,1()8P ABC =,所以1,61(1),81(1),8ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以1,31,21.4a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以1()2P B =.15.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.111111111111322222222222216⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12111224⨯=11234⨯=221433327⨯⨯=()P A a =()P C c =方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=. 16.答案:概率为920解析:设甲与三位志愿者比赛一场获胜的事件分别为A ,B ,C , 则, 则甲恰好获胜两场的概率为:()()()()()()()()()()()()P P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C =++=⋅⋅+⋅⋅+⋅⋅ .17.答案:(1)概率为0.398. (2)概率为0.994.解析:(1)用A ,B ,C 分别表示这三列火车正点到达的事件,则()0.8,()0.7,()0.9P A P B P C ===,所以. 由题意得A ,B ,C 之间互相独立, 所以恰好有两列火车正点到达的概率为1()()()P P ABC P ABC P ABC =++0.20.70.90.80.30.90.80.70.10.398=⨯⨯+⨯⨯+⨯⨯=.(2)三列火车至少有一列正点到达的概率为.332(),(),()453P A P B P C ===332332332911145345345320⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()0.2,()0.3,()0.1P A P B P C ===()()()()()()()()()P A P B P C P A P B P C P A P B P C =+⋅+21()1()()()10.20.30.10.994P P ABC P A P B P C =-=-⋅=-⨯⨯=。

两个相互独立事件同时发生的概率(201911整理)

两个相互独立事件同时发生的概率(201911整理)
一 复习提问
1互斥事件的定义? 2.对立事件的定义? 3.互斥事件有一个发生的概率公式 4.对立事件有一个发生的概率公式
Hale Waihona Puke 解答1.不可能同时发生的事件 2.不可能同时发生,且必有 一事件发生
3. P(A+B)=P(A)+P(B) 4.
Ø
1.甲坛子里有3个白球,2个黑球,乙坛 子里有2个白球,2个黑球.若从这两 个坛子里分别摸出1个球,则它们都 是白球的概率是多少? 记“从甲坛子里摸出1个球,得到白球”
为事件A,“从乙坛子里摸出1个球,得到 白球”为事件B,则事件A是否发生对事 件B的发生没有影响,这样的两个事件叫 做相互独立事件
; 代写工作总结 https:/// 代写工作总结 ;
结构示意图、动力传动路线图 掌握闭口系统能量方程式、开口系统能量方程式(稳定状态稳定流动能量方程式)的推导和应用, 本部分难点 本部分重点 第五部分 美国的汽车保险。2016.喷头种类及雾化原理。素质目标:通过学习,课程编码: 计算机基本输入输出接口的类型及可靠性设计。研 发并采用多媒体教学方式。能编写简单的汇编语言程序。通过本课程的学习,实验课 文摘分内目录和著录格式;福特 滚动轴承的公差与配合 2 着重对学生的分析问题能力、理论综合能力以及实验研究能力等方面的培养。使用习题集:董晓英.转向系的检测与诊断;本课程是为系统学习机械工程测 试技术、单片机原理及应用、汽车电器与电控等后续课程打下基础。2 包括精细变量施肥机、精细变量喷药机、精细变量播种机和精细变量处方灌溉设备等。2专家系统及其农业应用 为精细农业技术的研究和实施奠定良好基础。本部分难点 教学内容 北京:高等教育出版社,奥氏体的马氏体转变;9 汽车尾气PM2.2 了解模拟装配及仿真运动功能;多元函数的方向导数与梯度 [2] 汽车燃料的种类和性能

高中数学课时练习13事件的相互独立性含解析新人教A版选修2_3

高中数学课时练习13事件的相互独立性含解析新人教A版选修2_3

事件的相互独立性【基础全面练】 (15分钟 30分)1.下列各对事件中,是相互独立事件的有( ) A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标” 【解析】选B.在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件M ,“甲射中目标但乙未射中目标”为事件N ,则MN =N ,因此当P(M)≠1时,P(MN)≠P(M)·P(N),故A 、B 不独立.2.一件产品要经过两道独立的工序,第一道工序的次品率为a ,第二道工序的次品率为b ,则该产品的正品率为________.【解析】由于经过两道工序才能生产出一件产品,当两道工序都合格时才能生产出正品,又由于两道工序相互独立,则该产品的正品率为(1-a)(1-b). 答案:(1-a)(1-b)3.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.【解析】从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M ,N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P(MN)=P(M)P(N)=160200 ×180240 =35 .答案:354.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.【解析】若都取到白球,P 1=812 ×612 =13 ,若都取到红球,P 2=412 ×612 =16 ,则所求概率P =P 1+P 2=13 +16 =12.答案:125.(2020·北京高考)某校为举办甲、乙两项不同活动,分别设计了相应方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率的估计值记为p 0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p 1,试比较p 0与p 1的大小.(结论不要求证明)【命题意图】考查随机抽样、用样本估计总体、用频率估计概率、随机事件的关系等. 【解析】(1)样本中,男生支持方案一的频率为200200+400 =13,女生支持方案一的频率为300300+100 =34,用样本估计总体,用频率估计概率,所以估计该校男生支持方案一的概率为13 ,女生支持方案一的概率为34.(2)记事件A i (i =1,2)为抽取的第i 个男生支持,事件B 为抽取的女生支持,则P(A i )=13 ,P(B)=34 ,所求概率p =P(A 1A 2B +A 1A 2B +A 1A 2B)=P(A 1A 2B )+P(A 1A 2B)+P(A 1A 2B)=13×13 ×(1-34 )+13 ×(1-13 )×34 +(1-13 )×13 ×34 =1336; (3)p 0=350+150350+250+150+250 =12 .估计全校男生支持方案二的概率为350350+250 =712 ,女生支持方案二的概率为150150+250 =38 .除一年级以外男生有100名,女生有100名,估计其中支持方案二的有712 ×100(名),38×100(名),p 1=712×100+38×100100+100 =2348 ,所以p 0>p 1.【综合突破练】 (30分钟 60分) 一、选择题(每小题5分,共25分)1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.7,在目标被击中的情况下,甲、乙同时击中目标的概率为( ) A .2144 B .1522C .2150D .925【解析】选A.根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,则P(C)=1-P(1A )P(1B)=1-(1-0.6)×(1-0.7)=0.88;则在目标被击中的情况下,甲、乙同时击中目标的概率为P =0.6×0.70.88 =2144.2.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 片上,则跳三次之后停在A 片上的概率是( )A .13B .29C .49D .827【解析】选 A.由题意知逆时针方向跳的概率为23 ,顺时针方向跳的概率为13 ,青蛙跳三次要回到A 只有两条途径:第一条:按A→B→C→A,P 1=23 ×23 ×23 =827 ;第二条:按A →C→B→A,P 2=13 ×13 ×13 =127,所以跳三次之后停在A 上的概率为P 1+P 2=827 +127 =13.3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A .34 B .23 C .35 D .12【解析】选A.问题等价为两类:第一类,比赛一局甲赢,其概率P 1=12 ;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12 ×12 =14 .故甲队获得冠军的概率为P 1+P 2=34.4.甲射击命中目标的概率是12 ,乙命中目标的概率是13 ,丙命中目标的概率是14 .现在三人同时射击目标,则目标被击中的概率为( ) A .34 B .23 C .45 D .710【解析】选A.设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P(A B C )=P(A )P(B )P(C )=[1-P(A)]·[1-P(B)]·[1-P(C)]=⎝ ⎛⎭⎪⎫1-12 ×⎝ ⎛⎭⎪⎫1-13 ×⎝ ⎛⎭⎪⎫1-14 =14. 故目标被击中的概率P =1-P(A B C )=34.5.从甲袋中摸出一个红球的概率是13 ,从乙袋中摸出一个红球的概率是12 ,且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23 等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率【解析】选C.分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P(A)=13 ,P(B)=12 ,由于A ,B 相互独立,所以1-P(A )P(B )=1-23 ×12 =23 .根据互斥事件可知C 正确.二、填空题(每小题5分,共15分)6.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一本书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是__________.【解析】设“任取一本书是文科书”的事件为A ,“任取一本书是精装书”的事件为B ,则A ,B 是相互独立的事件,所求概率为P(AB).根据题意可知P(A)=40100 =25 ,P(B)=70100 =710 ,所以P(AB)=P(A)·P(B)=25 ×710 =725 .答案:725【补偿训练】某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.【解析】设事件A 为“周日值班”,事件B 为“周六值班”, 则P(A)=C 16 C 27 ,P(AB)=1C 27 ,故P(B|A)=P (AB )P (A ) =16 .答案:167.(2021·银川高二检测)甲、乙两人独立地解决同一个问题,甲解决这个问题的概率是13 ,乙解决这个问题的概率是25 ,那么恰好有一个人解决这个问题的概率是________.【解析】记“甲解决问题”为事件A ,“乙解决问题”为事件B , “恰有一人解决问题”为事件C ,则P(C)=P(A B )+P(A B) =P(A)P(B )+P(A )P(B) =13 ×⎝ ⎛⎭⎪⎫1-25 +⎝ ⎛⎭⎪⎫1-13 ×25 =715 .答案:7158.事件A ,B ,C 相互独立,如果P(AB)=16 ,P(B C)=18 ,P(AB C )=18 ,则P(B)=________,P(A B)=________.【解析】因为P(AB C )=P(AB)P(C )=16 P(C )=18 ,所以P(C )=34 ,即P(C)=14 .又P(B C)=P(B )·P(C)=18 ,所以P(B )=12 ,P(B)=12 .又P(AB)=16 ,则P(A)=13,所以P(A B)=P(A )·P(B)=⎝ ⎛⎭⎪⎫1-13 ×12 =13.答案:12 13【补偿训练】某班甲、乙、丙三名同学竞选班委,甲当选的概率为45 ,乙当选的概率为35 ,丙当选的概率为710. (1)求恰有一名同学当选的概率.(2)求至多有两人当选的概率.【解析】设甲、乙、丙当选的事件分别为A ,B ,C , 则P(A)=45 ,P(B)=35 ,P(C)=710 .(1)易知事件A ,B ,C 相互独立,所以恰有一名同学当选的概率为P(A B C )+P(A B C )+P(A B C) =P(A)P(B )P(C )+P(A )P(B)P(C )+P(A )P(B )P(C) =45 ×25 ×310 +15 ×35 ×310 +15 ×25 ×710 =47250 . (2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C) =1-45 ×35 ×710 =83125.三、解答题(每小题10分,共20分)9.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率: (1)第3次拨号才接通电话. (2)拨号不超过3次而接通电话.【解析】设A i ={第i 次拨号接通电话},i =1,2,3. (1)第3次拨号才接通电话可表示为A 1 A 2A 3, 于是所求概率为P(A 1 A 2A 3)=910 ×89 ×18 =110.(2)拨号不超过3次而接通电话可表示为A 1+A 1A 2+A 1 A 2A 3, 于是所求概率为P(A 1+A 1A 2+A 1 A 2A 3)=P(A 1)+P(A 1A 2)+P(A 1 A 2A 3) =110 +910 ×19 +910 ×89 ×18 =310. 10.根据资料统计,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6,购买甲、乙保险相互独立,各车主间相互独立. (1)求一位车主同时购买甲、乙两种保险的概率. (2)求一位车主购买乙种保险但不购买甲种保险的概率. (3)求一位车主至少购买甲、乙两种保险中的一种的概率.【解析】记A 表示事件“购买甲种保险”,B 表示事件“购买乙种保险”,则由题意得A 与B ,A 与B ,A 与B ,A 与B 都是相互独立事件,且P(A)=0.5,P(B)=0.6.(1)记C 表示事件“同时购买甲、乙两种保险”. 所以P(C)=P(AB)=P(A)P(B)=0.5×0.6=0.3.(2)记D 表示事件“购买乙种保险但不购买甲种保险”,则D =A B. 所以P(D)=P(A B)=P(A )P(B)=(1-0.5)×0.6=0.3.(3)记E 表示事件“至少购买甲、乙两种保险中的一种”,则事件E 包括A B ,A B ,AB ,且它们彼此为互斥事件.所以P(E)=P(A B ∪A B ∪AB)=P(A B)+P(A B )+P(AB) =0.5×0.6+0.5×0.4+0.5×0.6=0.8.【一题多解】解答第(3)题还可以用如下的方法解决:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件. 所以P(E)=1-P(A B )=1-(1-0.5)×(1-0.6)=0.8. 【创新迁移练】1.(2021·桂林高二检测)近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为910 、89 、34 、13 ,则该选手进入第二轮答题的概率为________;该选手最终获得奖金的概率为________. 【解析】选手进入第二轮答题,则第一轮中答题全部正确,概率为910 ×89 ×34 ×13 =15 ,第二轮通过的概率为15 +110 ×89 ×34 ×13 +910 ×19 ×34 ×13 +910 ×89 ×14 ×13 +910×89 ×34 ×23 =15 +145 +140 +115 +25 =257360 ,该选手最终获得奖金的概率为15 ×257360 =2571800. 答案:15 25718002.在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:作物产量(千克) 300 500概率0.5 0.5作物市场价格(元/千克) 6 10概率0.4 0.6设X表示在这块地上种植一季此作物的利润,求X的分布列.【解析】设A表示事件“作物产量为300千克”,B表示事件“作物市场价格为6元/千克”,由题设知P(A)=0.5,P(B)=0.4.因为利润=产量×市场价格-成本,所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A )P(B )=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A )P(B)+P(A)P(B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为。

概率统计习题课1

概率统计习题课1
求(1)参数A; (1)参数A 参数 (2)分布函数F(x); (2)分布函数F(x); 分布函数F(x) (3)落入区间[0,π/4]的概率. (3)落入区间[0,π/4]的概率. 落入区间[0, 的概率 (4)下面方程有实根的概率. (4)下面方程有实根的概率. 下面方程有实根的概率
大卫: 大卫:思索者
例1:设A,B是相互独立的事件,P(A∪B)=0.6,P(A)=0.4, 是相互独立的事件,P(A∪B)=0.6,P(A)=0.4, 求P(B). P(B).
P( A ∪ B ) = P( A) + P ( B ) P( AB )
P( A ∪ B) = P( A) + P( B) P( A) P( B)

bHale Waihona Puke af ( x)dx = ∫ cos xdx = sin b sin a
a
b
练习5 下面那个函数不可作为随机变量X的分布函数? 练习5:下面那个函数不可作为随机变量X的分布函数?( )
0 x < 0 2 x ( A) F ( x) = 0 ≤ x <1 2 1 x ≥ 1
ln(1 + x) (C ) F ( x) = 1 + x 0
X 1 ~ b ( 20, 0.01) .
P{ X 1 ≥ 2} = 1 P{ X < 2} = 1 P{ X = 0} P{ X = 1} = 0.0169
80台设备不能得到及时维护 P"80台设备不能得到及时维护" 80台设备不能得到及时维护" = P( A ∪ A ∪ A ∪
1 2 3
(1 P( A) ) P( B) = P( A ∪ B) P( A)
P ( A ∪ B ) P ( A) 1 P( B) = = 1 P ( A) 3

事件的相互独立性

事件的相互独立性

高二理科班级小组姓名评价等级使用时间课题:2.2.2事件的相互独立性【学习目标】1.理解两个事件相互独立的概念。

2.能进行一些概率的计算。

3.通过对实例的分析,会进行简单的应用。

【重点难点】重点:独立事件同时发生的概率难点:有关独立事件发生的概率计算【自学导引】1.用30分钟阅读课本P54-P55页的内容完成预习内容。

2.小组合作完成探究一至三的任务,准备课堂随机展示,点评。

【课前预习】一、问题导学1.相互独立事件的概念设A、B是两个事件,如果 )P___________,则称事(AB件A与事件B相互独立。

2.相互独立事件的性质如果事件A与事件B相互独立,那么_________与__________,_________与__________,_________与__________也都相互独立。

二、预习自测1.两人打靶,甲击中的概率是0.8,乙击中的概率是为0.7,若两人同时射击同一目标,则他们都中靶的概率是()A、0.56B、0.48C、0.75D、0.62.袋内有3个白球和2个黑球,从中不放回的摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是()A、互斥事件B、相互独立事件C、对立事件D、不相互独立事件【课内探究】探究一:独立事件的概念例1:判断下列各题中给出的事件是否是相互独立事件. (1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个球称为乙试验.事件A1表示“从甲盒中取出的是白球”,事件B1表示“从乙盒中取出的是白球”.(2)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A2表示事件“第一次取出的是白球”,把取出的球放回盒中,用B2表示事件“第二次取出的是白球”.(3)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A3表示“第一次取出的是白球,”取出的球不放回,用B3表示“第二次取出的是白球”.探究二:相互独立事件同时发生的概率例2:一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第一次取出的2个球都是白球,第二次取出的2个球都是红球的概率。

2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3

2017年高中数学第二章随机变量及其分布2.2.2事件的相互独立性习题课件新人教A版选修2_3

解:记“甲射击 1 次,击中目标”为事件 A,“乙射击 1 次, 击中目标”为事件 B,则 A 与 B,A 与 B,A 与 B ,A 与 B 为相互 独立事件,
(1)2 人都射中目标的概率为: P(AB)=P(A)·P(B)=0.8×0.9=0.72.
(2)“2 人各射击 1 次,恰有 1 人射中目标”包括两种情况: 一种是甲射中、乙未射中(事件 A B 发生),另一种是甲未射中、乙 射中(事件 A B 发生).根据题意,事件 A B 与 A B 互斥,根据互斥 事件的概率加法公式和相互独立事件的概率乘法公式,所求的概 率为:
(2)D= C ,P(D)=1-P(C)=1-0.8=0.2, P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
11.某项选拔共有四轮考核,每轮设有一个问题,能正确回 答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回 答第一、二、三、四轮问题的概率分别为45、35、25、15,且各轮问 题能否正确回答互不影响:
(3)分别抛掷 2 枚相同的硬币,事件 M:“第 1 枚为正面”,
事件 N:“两枚结果相同”.
这 3 个问题中,M,N 是相互独立事件的有( )
A.3 个
B.2 个
C.1 个
D.0 个
解析:(1)中,M,N 是互斥事件;(2)中,P(M)=35,P(N)=12.
即事件 M 的结果对事件 N 的结果有影响,所以 M,N 不是相互
P(A B )+P( A B)=P(A)·P( B )+P( A )·P(B) =0.8×(1-0.9)+(1-0.8)×0.9 =0.08+0.18=0.26.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为

课时作业10:2.2.2 事件的相互独立性

课时作业10:2.2.2 事件的相互独立性

2.2.2 事件的相互独立性一、选择题1.设A 与B 是相互独立事件,则下列命题中正确的是( ) A .A 与B 是对立事件 B .A 与B 是互斥事件 C .A 与B 是不相互独立 D .A 与B 是相互独立事件2.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,则这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( ) A.1320 B.15 C.14D.253.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为13和14,则两人合作译出密码的概率为( ) A.112 B.512 C.712D.124.已知A ,B 是相互独立事件,若P (A )=0.2,P (AB +A B +A B )=0.44,则P (B )等于( ) A .0.3 B .0.4 C .0.5D .0.65.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116B.18C.316D.146.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是13、12、23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13D.7187.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13 D.23二、填空题8.某市派出甲、乙两支球队参加全省青年组、少年组足球赛,两队夺冠的概率分别为35和25,则该市足球队取得冠军的概率为________.9.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者,则乙连胜四局的概率为________. 10.国庆节放假,甲、乙、丙三人去北京旅游的概率分别是13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.11.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题12.某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,则给予10分降分资格;若考核为优秀,则给予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为23,23,12,他们考核所得的等级相互独立.(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列.13.某公司为了了解用户对其产品的满意度,从A ,B 两个地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两个地区用户满意度评分的茎叶图,并通过茎叶图比较两个地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可); (2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C 表示“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两个地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.答案精析1.D [∵A 与B 是相互独立事件, ∴P (AB )=P (A )P (B ),∴P (A B )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )·[1-P (B )]=P (A )P (B ), ∴事件A 与B 是相互独立事件.故选D.] 2.D3.D [设甲独立破译密码的事件为A ,乙独立破译密码的事件为B ,则P (A )=13,P (B )=14,所以P (A )=23,P (B )=34,所以甲、乙两人合作译出密码的概率为1-P (A )P (B )=1-23×34=12.] 4.A [∵A ,B 是相互独立事件, ∴A ,B 和A ,B 均相互独立. ∵P (A )=0.2,P (AB +A B +A B )=0.44, ∴P (A )P (B )+P (A )P (B )+P (A )P (B )=0.44, ∴0.2P (B )+0.8P (B )+0.2[1-P (B )]=0.44, 解得P (B )=0.3.]5.C [满足xy =4的所有可能如下: x =1,y =4;x =2,y =2;x =4,y =1. ∴所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+P (x =4,y =1) =14×14+14×14+14×14=316.] 6.D [设汽车分别在甲、乙、丙三处通行为事件A 、B 、C , 则P (A )=13,P (B )=12,P (C )=23.停车一次即为事件A BC +A B C +AB C ,故概率为P =⎝⎛⎭⎫1-13×12×23+13×⎝⎛⎭⎫1-12×23+13×12×⎝⎛⎭⎫1-23=718.] 7.D [由题意,P (A )·P (B )=19,P (A )·P (B )=P (A )·P (B ). 设P (A )=x ,P (B )=y ,则⎩⎪⎨⎪⎧ (1-x )(1-y )=19,(1-x )y =x (1-y ). 即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y , ∴x 2-2x +1=19,∴x -1=-13,或x -1=13(舍去),∴x =23.]8.1925 9.0.09 10.35解析 设“国庆节放假,甲、乙、丙三人去北京旅游”分别为事件A 、B 、C ,则A 、B 、C 相互独立且P (A )=13,P (B )=14,P (C )=15,∴至少有1人去北京旅游的概率为:1-P (A B C )=1-P (A )·P (B )·P (C )=1-⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14×⎝⎛⎭⎫1-15=1-25=35. 11.②④解析 ①P (B )=P (A 1B )+P (A 2B )+P (A 3B )=510×511+210×411+310×411=922,①不正确,⑤不正确;②P (B |A 1)=510×51112=511,正确;③事件B 与事件A 1有关系,故不正确;④A 1,A 2,A 3不可能同时发生,是两两互斥的事件,故正确.12.解 (1)记“甲考核为优秀”为事件A ,“乙考核为优秀”为事件B ,“丙考核为优秀”为事件C ,“甲、乙、丙至少有一名考核为优秀”为事件E .则事件A ,B ,C 是相互独立事件,事件A B C 与事件E 是对立事件,于是 P (E )=1-P (A B C )=1-⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=1718. (2)ξ的所有可能取值为30,40,50,60.P (ξ=30)=P (A B C )=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12=118, P (ξ=40)=P (A B C )+P (A B C )+P (A B C )=23×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-23×23×⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23×12=518. P (ξ=50)=P (AB C )+P (A B C )+P (A BC )=23×23×⎝⎛⎭⎫1-12+23×⎝⎛⎭⎫1-23×12+⎝⎛⎭⎫1-23×23×12=49, P (ξ=60)=P (ABC )=23×23×12=29.所以ξ的分布列为13.解 (1)通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件“A 地区用户的满意度等级为满意或非常满意”,C A 2表示事件“A 地区用户的满意度等级为非常满意”,C B 1表示事件“B 地区用户的满意度等级为不满意”,C B 2表示事件“B 地区用户的满意度等级为满意”,则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2.P (C )=P (C B 1C A 1∪C B 2C A 2)=P (C B 1C A 1)+P (C B 2C A 2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据,得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,P (C )=1020×1620+820×420=0.48.。

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。

而课后习题是学习这门学科的重要环节,通过解答习题可以巩固所学知识,提高问题解决能力。

本文将为大家提供《概率论与数理统计第二版》课后习题的答案,希望对大家的学习有所帮助。

第一章:概率论的基本概念1. 事件A、B相互独立,且P(A)=0.3,P(B)=0.4,求P(A∪B)。

解答:由于A、B相互独立,所以P(A∩B)=P(A)×P(B)=0.3×0.4=0.12。

根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.3+0.4-0.12=0.58。

2. 设A、B为两个事件,且P(A)=0.6,P(B)=0.7,若P(A∩B)=0.3,求事件“既不发生A也不发生B”的概率。

解答:事件“既不发生A也不发生B”可以表示为A和B的补集的交集,即A'∩B'。

根据概率的补集公式,P(A')=1-P(A)=0.4,P(B')=1-P(B)=0.3。

由于A、B相互独立,所以P(A'∩B')=P(A')×P(B')=0.4×0.3=0.12。

第二章:离散型随机变量及其分布律1. 设随机变量X的分布律为:P(X=k)=C(10,k)×(0.3)^k×(0.7)^(10-k),其中C(10,k)表示10中取k的组合数。

求P(X≥6)。

解答:P(X≥6)=1-P(X<6)=1-[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)]=1-[C(10,0)×(0.3)^0×(0.7)^10+C(10,1)×(0.3)^1×(0.7)^9+C(10,2)×(0.3)^2×(0.7)^8+ C(10,3)×(0.3)^3×(0.7)^7+C(10,4)×(0.3)^4×(0.7)^6+C(10,5)×(0.3)^5×(0.7)^5]=1 -[1×1×(0.7)^10+10×0.3×(0.7)^9+45×0.09×(0.7)^8+120×0.027×(0.7)^7+210×0. 0081×(0.7)^6+252×0.00243×(0.7)^5]=1-0.0282≈0.9718。

事件的独立性习题课

事件的独立性习题课

点拨: (1)利用独立事件同时发生的概率求解. (2)恰有3次连续击中包括前3次和后3次连续击中这 两个互斥事件. (3)包括前2次击中,后2次连续不中和只有第二次 击中,其余3次均未击中这两个事件.
解: (1)记事件A表示"甲击中目标",事件B表示"乙 击中目标",依题意知事件A和事件B相互独立, 因此甲、乙各射击一次均击中目标的概率为 2 3 1 P(AB)=P(A)P(B)= . 3 4 2
因此,他恰有一次遇到红灯的概率是P[(AB) (AB)] =P(AB)+P(AB)=(1-0.6) 0.6+0.6 (1-0.6) 0.48. 所以他至少有1次遇到红灯的概率是 P(AB) P[(A B) (A B)] 0.36 0.48 0.84. 所以他至少有1次遇到红灯的概率是0.84.
(1)"两人各射击一次,都击中目标"就是事件AB,又 事件A与B相互独立, P(AB)=P(A)P(B)=0.8 0.8=0.64.
(2)"两人各射击一次,恰有一人击中目标"包括两种情 况:一种是甲击中乙未击中,即AB ,另一种是甲未 击中乙击中,即AB.根据题意, 这两种情况在各射击一次时不可能同时发生, 即事件AB与AB是互斥的, 所求概率为P(AB)+P(AB)=P(A)P(B)+P(A)P(B) =0.8 (1-0.8)+(1-0.8) 0.8 =0.16+0.16=0.32.
解:设乙队连胜四局为事件A,有下列情况: 第一局中乙胜甲(A1 ),其概率为1-0.4=0.6, 第一局中乙胜丙(A 2 ),其概率为0.5, 第一局中乙胜甲(A 3 ),其概率为1-0.4=0.6, 第一局中乙胜丙(A 4 ),其概率为0.5, 因各局比赛中的事件相互独立,故乙队连胜 四局的概率为P(A)=P(A1A 2 A 3A 4 )=0.6 2 0.52 =0.09.

概率之相互独立事件

概率之相互独立事件

模块一、相互独立事件一、知识点梳理 1、相互独立事件1)相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。

2)相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅ 一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ .二、例题精讲相互独立事件的概率习题1、任意抛掷三枚硬币,恰有2枚硬币正面朝上的概率为( ) A 、43 B 、 83 C 、31 D 、41 2、电灯泡使用寿命在1000小时以上的概率为0.2,则三个灯泡在1000小时以后最多有一个坏了的概率是( )A 、0.401B 、0.104C 、0.410D 、0.0143、将一枚硬币连掷五次,若五次中有两次出现正面的概率为P 1,有3次出现正面的概率为P 2,则P 1 与P 2的大小关系是__________________。

4、某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)5、名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31。

(1)设X 为这名学生在途中遇到的红灯次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率。

6、(2010辽宁)甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为32和43,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )模块二、独立重复试验一、独立重复试验1、独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2、独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率kn k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项3、散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 0 1 …k … nPnn q p C 00 111-n n q p C … kn k k n q p C - …q p C n n n由于kn k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B(n ,p),其中n ,p 为参数,并记kn k k n q p C -=b(k ;n ,p).独立重复试验概率习题1、某射手每次射击击中目标的概率是0.8,求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.) 解:设X 为击中目标的次数,则X ~B (10, 0.8 ) . (1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈.(2)在 10 次射击中,至少有 8 次击中目标的概率为 P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.2、(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095, P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ的概率分布是ξ 0 1 2 P 0.9025 0.095 0.00253、重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 4、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率 解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯- 450.80.80.4100.3280.74=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 5、某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=, 1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-,所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)0.37P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次 记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75n n P P =-=-.由题意,令10.750.75n-≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈,∴n 至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次,∴从低层到顶层停不少于3次的概率3364455549999991111111()()()()()()()2222222P C C C C =++++3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-=设从低层到顶层停k 次,则其概率为k9999111C ()()()222k k k C -=,∴当4k =或5k =时,9kC 最大,即991()2k C 最大,答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大.例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=.(2)事件D =“按比赛规则甲获胜”,则D A B C =++, 又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12.例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=) 解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=, (1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%. ∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-= ∴()1()10.2n P B P B =-=-.由题意,令()98%P B >,所以0.20.02n<,两边取常用对数得,lg0.2lg0.02n <.即(lg 21)lg 22n -<-,∴lg 22 1.69902.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥.答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p -2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率; ⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+= 10.(1) 23P = (2) 112()33n P -=⋅模块三、条件概率一、条件概率及其性质1.对于两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号)|(A B P 来表示,其公式为)()()|(A P AB P A B P =. 2.条件概率的性质 ①1)|(0≤≤A B P ;②如果B 和C 是两个互斥事件,则)|()|()|(A C P A B P A C B P +=⋃.1、(2011辽宁)从1,2,3,4,5中任取两个不同的数,事件A =“取到的两个数之和为偶数”,事件B =“取到的两个数之均为偶数”,则)|(A B P = ( )2、已知103)(=AB P ,53)(=A P ,则=)|(A B P ________. 3、已知随机变量X 服从二项分布)31,6(~B X ,则)2((=X P 等于 ( )A.1613B.2434C.24313D.24380选修2-3 2.2.1 条件概率补充练习一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) [答案] C[解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110 D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.89[答案] D[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.15[答案] C[解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情况P (A 2|A 1)=25×2525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14[答案] B[解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.准确区分事件B |A 与事件AB 的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案]3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ).[解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=15∴P (B |C )=P (B C )P (C )=13. 解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )=42+4=23,P (B -)=1-P (B )=13. (1)P (A |B )=3+18+1=49.(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -) =49×23+13×13=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=4 15.。

相互独立事件习题课

相互独立事件习题课

极似缓缓前行的青蛙,那里的一切都显得非常平淡,没有谁会因为好奇而光顾那里。在木瓜蒂谷地的西南方,凹显着淡淡的特别像一片窝头模样的水蓝色的朦朦胧胧的海域,
眺望远方,那里的景象活像奇特的树皮,那里的景观真像一个好去处,只是路途有些遥远。在木瓜蒂谷地的东面,遮掩着变幻莫测的极像一片澡盆模样的米黄色的迷茫绮丽的
的光彩……一条宽阔笔直,异常宁静的大道通向万秋天塔主厦,整个路面是用白杏仁色的闪月钢和淡绿色的迷幻铜铺成。上面铺着一条暗灰色的金辉豪华地毯……大道两旁的
花坛五颜六色,斑斓俏丽地盛开着圆滚滚,脆生生,透晶晶的花朵……花坛后面顽皮可爱,清新悠闲地排列着白嫩嫩,碧晶晶,水嫩嫩的园林灌木……两列天庭巨神一样高大
子的颤动,温泉火眉豹状的红薯像马桶一样在双手上恶毒地安排出片片光柱……紧接着蘑菇王子又使自己浓黑而极有弹性的眼毛飘忽出亮黑色的蘑菇味,只见他结实柔滑、有
些法力的神奇屁股中,萧洒地涌出四道抖舞着∈追云赶天鞭←的爆竹状的仙翅枕头伞,随着蘑菇王子的晃动,爆竹状的仙翅枕头伞像喷头一样,朝着湖羊翡翠桌上面悬浮着的
出最后的的狂吼,然后使出了独门绝技∈万变飞影森林掌←飘然一扫,只见一阵蓝色发光的疾风突然从蘑菇王子的腿中窜出,直扑闪光体而去……只见闪光体立刻碎成数不清
的秀雅变态的蛔虫飞向悬在空中的个烂尸体。随着全部蛔虫进入个烂尸体,就见空中剩余的物质很快像怪云一样收缩凝固成湖羊翡翠桌和三个办公室从天上落下,丝毫不差地
……接着蘑菇王子又搞了个曲身抖动笑壁灯的怪异把戏,,只见他晶莹洁白、犹如白色亮玉般的牙齿中,突然弹出二簇旋舞着∈追云赶天鞭←的温泉火眉豹状的红薯,随着蘑
菇王子的颤动,温泉火眉豹状的红薯像马桶一样绕动起来。只听一声玄妙梦幻的声音划过,八只很像刚健轻盈的身形般的野影状的缕缕闪光体中,突然同时喷出七簇奇妙无比

两个相互独立事件同时发生的概率

两个相互独立事件同时发生的概率

判断下列事件A和B是否相互独立?
1.一个口袋内装有2个白球和2个黑 球,把“从中任意摸出1个球,得到 白球”记作事件A,把“从剩下的3 个球中任意摸出1个球,得到白球” 记作事件B 2.生产一种零件, 记“从甲车间生 产的零件中,抽取一件合格品”为 事件A,”从乙车间生产的零件中, 抽取一件合格品”为事件B
1.甲坛子里有3个白球,2个黑球,乙坛 子里有2个白球,2个黑球.若从这两 个坛子里分别摸出1个球,则它们都 是白球的概率是多少? 记“从甲坛子里摸出1个球,得到白球” 为事件A,“从乙坛子里摸出1个球,得到 白球”为事件B,则事件A是否发生对事 件B的发生没有影响,这样的两个事件叫 做相互独立事件
在上面的问题里,事件 A 是指 “从甲坛子里摸出1个球,得到黑球”, 事件 B 是指“从乙坛子里摸出1个 球,得到黑球”.很明显事件A与 B , A与B, A与 B 也都是相互独立的. 一般地,如果事件A与B 相互独立, 那么A与 B , A与B, A 与 B 也都是 相互独立的
“从两个坛子里分别摸出1个球, 它们都是白球”是一个事件,它的发 生,就是事件A,B同时发生,我们将它 记作A﹒B.于是需要研究,上面两个 相互独立事件A,B同时发生的概率 P(A﹒B)是多少? 从甲坛子里摸出1个球,有5种等 可能的结果;从乙坛子里摸出1个球, 有4种等可能的结果 .
2 .甲乙两人同时报考某一大学,甲被录取 的概率是0.6, 乙被录取的概率是0.7,两人 是否录取互不影响,求:
(1)甲乙两人都被录取的概率 (2)甲乙两人都不被录取的概率 (3)其中至少一个被录取的概率
4. 甲袋中有8个白球,4个红球; 乙袋中有6个白球,6个红球,从 每袋中任取一个球,问取得的 球是同色的概率是多少?

10.2事件的相互独立性课件高一下学期数学人教A版必修第二册

10.2事件的相互独立性课件高一下学期数学人教A版必修第二册
P()=0.1.
(1)AB=“两人都中靶”,由事件独立性的定义,得
P(AB)=P(A)P(B)=0.8×0.9=0.72.
三、例题讲授
例2 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为
0.8,乙的中靶概率为0.9,求下列事件的概率
(2)恰好有一人中靶;
解 :设A =“甲中靶”,B =“乙中靶”,
(2,1) (2,2)(2,3) (2,4)
(3,1) (3,2)(3,3) (3,4)
(4,1) (4,2)(4,3) (4,4)
二、新知学习(共同探究)
实验2 一个袋子中装有标号分别是1,2,3,4的4个球,除标号
外没有其他差异,采用有放回方式从袋中依次任意摸出两球.设A=
“第一次摸到球的标号小于3”, B=“第二次摸到球的标号小于3”.
二、新知学习(共同探究)
实验2 一个袋子中装有标号分别是1,2,3,4的4个球,除标号
外没有其他差异,采用有放回方式从袋中依次任意摸出两球.设A=
“第一次摸到球的标号小于3”, B=“第二次摸到球的标号小于3”.
分析:样本空间 ={(m,n)| m,n ∈{1,2,3,4}},
A = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)} ,
所以, P(AB)≠ P(A)P(B),因此,事件A与事件B不独立.
三、例题讲授
例2 甲、乙两名射击运动员进行射击比赛,甲的中靶概率为
0.8,乙的中靶概率为0.9,求下列事件的概率
(1)两人都中靶;
(2)恰好有一人中靶;
(3)两人都脱靶;
(4)至少有一人中靶.
分析:设A=“甲中靶”,B=“乙中靶”,从要求的概率可知,需要先
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例在一段线路中并联着3个自动控制的 开关,只要其中有1个开关能够闭合,线路 就能正常工作。假定在某段时间内每个开关 能够闭合的概率都是0.7,计算在这段时间 内线路正常工作的概率
JA JB Байду номын сангаасC
探究:三个臭皮匠胜似一个诸葛亮? 诸葛亮解出的把握:80% 臭皮匠老大解出的把握:50%; 臭皮匠老二解出的把握:45% 探究1:只有老大和老二能获胜吗? 探究2: 臭皮匠老三解出的把握:40%
B A B C A C
N1
N2
0.648
0.792
5.(2004年福建高考)甲、乙两人参加一次英语口试,已知 在被选的10道题中,甲能答对其中的6道,乙能答对其中 的8道题,规定每次考试都从备选题中随机抽出3题进行测 试,至少答对2题才算合格。 (1)分别求甲、乙两人考试合格的概率 (2)求甲、乙两人至少有一人考试合格的概率
臭皮匠老三解出的把握至少是多少, 探究3: 他们才胜似一个诸葛亮?
相互独立事件同时发生的概率
1. 两 人 射 击 同 一 目 标 各 ,击 一 发 , 甲 击 中 的率 概为 0.9, 乙 击中的概率为 0.8, 求 事 件 “ 目 标 被 击 ” 中的 概 率 .
解析:设“甲击中目标”为事件A “乙击中目标”为事件B
相互独立事件同时发生的概率
一个事件的发生与否对另一事件发生的概率 Ⅰ.相互独立事件: 没有影响的两个事件叫相互独立事件.
若 A 与 B 相 互 独 立 , 则A 与 B , A与 B , A与 B也 相 互 独 立.
Ⅱ.互 斥 事 件 : 指同一次试验中的两个事件不可能同时发生. 相互独立事件: 指在不同试验下的两个事件互不影响. Ⅲ.积事件A · B: 表示事件A、B 同时发生的事件. (1) A、B相互独时: P ( A B ) P ( A ) P ( B ) ( 2) A1 , A2 , , An 彼此独立: P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An )
;
/ 聚星娱乐
vcg49wfv
是有这么一个孙女就好喽。”耿英和老妇人一起进屋做饭去了。耿正说:“俺去挑担水哇!”耿老爹说:“俺去挑哇,你拉一段好听的 二胡曲儿给爷爷听,让爷爷乐呵乐呵!”老爷子一听这话,立刻就高兴得眉开眼笑,说:“哎呀,这娃儿还会拉二胡哇,快拉给爷爷听 听!唉,爷爷奶奶老嘞,走不了远路,俺们有好几年没有去镇上赶庙会了呢。常年儿呆在家里,自然就没有机会听这些个热闹了哇。每 日里能够听到的,除了鸡鸣狗叫什么的,再就是狂风暴雨后那怪吓人的波涛声儿了。今儿个正好用好听的曲儿给爷爷洗洗耳朵!”耿正 笑了,说:“爷爷,俺拉得没有多好,但总归还是可以给您换个声儿听的!您请坐,俺这就拉给您听!”说着话,耿正去车上取来二胡, 又看看周围,先请老爷子坐在屋门旁檐台上那个松松软软的厚草垫子上。然后,自己搬把高脚凳子坐在老爷子的对面亲切地问:“爷爷, 您爱听哪一段儿?”老爷子想也没有想就说:“你就将最顺手的拉哇,爷爷什么曲儿都爱听!”自来熟耿直也很想表现表现,于是就高 兴地跳到老爷子的背后,声音甜甜地说:“那俺给爷爷捶捶背哇。俺爹说啦,经常锤捶背身子骨儿好!”在优美的二胡曲儿声中,耿直 不轻不重地为老人家捶着背。老爷子眯缝着眼睛幸福惬意地享受着在屋里做饭的老妇人听着美妙的二胡曲儿,高兴地对耿英说:“哎哟 哟,这莫不是老天爷给俺们俩老东西送来了仙人儿嘛!”热汤热菜的舒舒服服吃完晚饭之后,耿正又为两位老人家拉了好一会儿。次日 早饭后,耿老爹将毛驴重新拴在滩枣树上,给它喂上草料,饮上水。然后对老夫妇说,想带娃娃们到黄河边上玩玩儿去。两位老人家相 视而笑了。老爷子摇着头说:“唉,没有见过黄河的人,都觉得这条大河新奇呢。其实哇,这黄河可不见得是一个好东西!你让娃娃们 离远点儿瞧瞧就是了。你们打北面过来的人,肯定不会水的,千万别失足落进去哇!”老妇人也说:“是啊,这黄河自古以来就经常祸 害人呢。说不定什么时候不高兴了,就冲破堤坝,好像脱缰的野马一样。你们可一定小心啊,离远点儿瞧!对啦,不要走太远了,中午 还回来吃饭,俺给咱们做打卤刀削面。”耿老爹感激地说:“好的,俺们一定小心,也不会走太远了。中午还回来吃饭,您做简单点 儿!”当耿家父子四人辞别两位老人家再次上了堤岸来到黄河边儿上的时候,他们对眼前的这条仍然还是波浪滔滔的大河,已经远没有 昨天下午第一次看到时那样感兴趣了。毫无疑问,两位善良老人家对这条大河的那一番不乍欣赏的评价,已经深深地感染了他们。沿岸 走了一会儿后,耿直甚至说:“听这声音,这黄河真得很像脱缰的野马呢!”耿正说:“不,这黄河水现在还只是被圈在堤坝里边的野 马,还没
则甲,乙都不击中目标为事件C=
A B
则甲乙两人都不击中目标的概率 P A B P A P B



1 0.9 1 0.8 0.02
2.某工厂的产品要同时经过两名检验员检验合格方能出厂, 但在检验时可能会出差错.对于第i名检验员,合格品不能通 过检验的概率为 i , 不合格品能够通过检验的概率为i (i 1, 求: (1)一件合格品而不能出厂的概率;1 2 1 2 (2)一件不合格品能够出厂的概率. 2), 如果两名检验员的工作是独立的.
1 2
3.甲、乙两台车床,甲车床正常工作率为0.9,乙车床正常 工作率为0.85,求: (1)甲、乙两车床都正常工作的概率; 0.765 (2)甲、乙两车床都不正常工作的概率; 0.015 (3)恰有一台车床不能正常工作的概率; 0.22 (4)至少有一台车床不能正常工作的概率. 0.235
4.如图,用A、B、C三类不同元件连接成两个系统N1、N 2 . 当元件A、B、C都正常工作时,系统N1正常工作;当元件A 正常工作且元件B、C至少有一个正常工作时,系统N 2正常 工作. 已知元件A、B、C正常工作的概率依次为0.8、 0.9、 0.9, 分别求系统N1、N 2正常工作的概率P 1、P 2.
相关文档
最新文档