七年级数学全等三角形测试题
初中数学三角形全等证明综合题(含答案)
![初中数学三角形全等证明综合题(含答案)](https://img.taocdn.com/s3/m/37ef49577fd5360cba1adb70.png)
七年级下册数学三角形全等证明综合题北师版一、单选题(共9道,每道11分)1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大家帮他找一下,他到底那个地方扣分了?证明:∵AE=BF∴AE -EF= BF-EF,即AF=EB①又∵AD∥BC∴∠C=∠D②在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()A.①②③④B.②③④C.①②③D.③④答案:B试题难度:三颗星知识点:证明题的书写步骤及定理应用考察2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()对A.1B.2C.3D.4答案:C试题难度:三颗星知识点:全等三角形的个数3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQA.①③⑧B.②③⑦C.②③⑥D.②④⑤答案:C试题难度:三颗星知识点:三角形全等解题思路4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°A.①③⑤B.①③⑥C.②④⑤D.②④⑥答案:D试题难度:三颗星知识点:三角形全等解题思路5.如图,在中,,AB=12,则中线AD的取值范围是()A.7<AD<17B.C.5<AD<12D.答案:B试题难度:三颗星知识点:倍长中线法6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()A.AB-AC<PB-PCB.AB-AC≧PB-PCC.AB-AC=PB-PCD.AB-AC>PB-PC答案:D试题难度:三颗星知识点:截长补短法7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()A.AB=2ADB.AD=CDC.AD⊥BDD.DC⊥AC答案:D解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.试题难度:三颗星知识点:折叠与全等8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()A.AB+AC=AD+AEB.AB+AC≧AD+AEC.AB+AC>AD+AED.AB+AC≦AD+AE答案:C解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.试题难度:三颗星知识点:平移与全等9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()A.直接证明△ABE和△AHE全等可以证明AH=ABB.EF=BE+DFC.AE=AFD.∠AEB=∠AFE答案:B解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF试题难度:三颗星知识点:旋转与全等。
北师大版七年级下数学《全等三角形》单元测试(含答案)
![北师大版七年级下数学《全等三角形》单元测试(含答案)](https://img.taocdn.com/s3/m/2d6b83d658fb770bf68a5512.png)
全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。
北师大版七年级数学下册综合题专练:全等三角形含参考答案
![北师大版七年级数学下册综合题专练:全等三角形含参考答案](https://img.taocdn.com/s3/m/6ba7e4be83d049649b6658f4.png)
(3)在前面的条件下,若 P 是 BE 上一点,G 是 CD 上任一点,PQ 平分∠BPG,PQ∥GN,GM 平分∠DGP,下列结论: ①∠DGP-∠MGN 的值不变;②∠MGN 的度数不变,可以证明只有一个是正确的,请你作出正确的选择并求值.
26.如图,在△ABC 中,已知∠BDC=∠EFD,∠AED=∠ACB. (1)试判断∠DEF 与∠B 的大小关系,并说明理由; (2)若 D、E、F 分别是 AB、AC、CD 边上的中点,S△DEF=4,求 S△ABC.
9.ΔABC中,三个内角的平分线交于点O,过点O作OD ⊥ OB,交边AB于点D.
(1)如图,若∠ABC=40°,则∠AOC=
,∠ADO=
;
(2)猜想∠AOC与∠ADO的关系,并说明你的理由;
10.已知∠α 和∠β 求作∠AOB=2∠α+∠β(要求:只画图形,不写画法)
11.(1)发现:如图1,点B是线段AD上的一点,分别以AB,BD为边向外作等边三角形ABC和等边三角形BDE,连接 AE,CD,相交于点O.
∴ ∠DAB = ∠ABC = ∠ADC = 90°,
∴ 四边形 ABCD 是矩形(
)(填依据),
又∵ AB = BC,
∴ 四边形 ABCD 是正方形.
18.如图所示,点 E 在△ABC 外部,点 D 在 BC 边上,DE 交 AC 于 F,若∠1=∠2,∠C=∠E, AE=AC.
(1)求证: △ABC≌△ADE;
(1)求证:ΔACD≅ΔBCE;
(2)若∠A = 70°,求∠E的度数. 8.如图①,∠MON=70°,点 A、B 在∠MON 的两条边上运动,∠MAB 与∠NBA 的平分线交于点 P. (1)点 A、B 在运动过程中,∠P 的大小会变吗?如果不会,求出∠P 的度数;如果会,请说明理由. (2)如图②,继续作 BC 是平分∠ABO,AP 的反向延长线交 BC 的延长线于点 D,点 A、B 在运动过程中,∠D 的大小 会变吗?如果不会,求出∠D 的度数;如果会,请说明理由. (3)如图②,∠P 和∠D 有怎样的数量关系?(直接写出答案)
北师大七年级下册数学全等三角形习题精选
![北师大七年级下册数学全等三角形习题精选](https://img.taocdn.com/s3/m/e2c1199c9b6648d7c0c7460c.png)
FED CB A 第五章 全等三角形 A一、选择题1.下列三角形不一定全等的是( ) A .有两个角和一条边对应相等的三角形 B .有两条边和一个角对应相等的三角形C .斜边和一个锐角对应相等的两个直角三角形D .三条边对应相等的两个三角形 2.下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等 其中正确的个数是( )A .1个B .2个C .3个D .4个3.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )=BD =DE 平分∠CBD D.图中有两对全等三角形是△ABC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下 列结论中错误的是 ( )=DF =AF =CD D.∠ADE=∠ADF5.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是130°,那么△ABC 中与这个 角对应的角是( ).A .∠AB .∠BC .∠CD .∠B 或∠C6.如图所示,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( ).A .25°B .27°C .30°D .45° 7.如右图,△ABC 中,∠C=90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE⊥AB,且AB =10 cm ,则△BED 的周长为 ( ) A .5 cm B .10 cm; C .15 cm D .20 cm8.如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( )A .3个B .2个C .1个D .0个9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF; B 、AF=BF; C 、AF>BF; D 、AF<BF E DCBAD A CE B CBAEF O二、填空题1.如果△ABC≌△A’B’C’,若AB =A’B’,∠B=50°,∠C=70°,则∠A’= °2.如图,若BD ⊥AE 于B ,DC ⊥AF 于C ,且DC=DC ,∠BAC=40°,∠ADG=130°,则∠DGF=________。
北师大版七年级 数学下 全等三角形的判定小题精炼培优版(包含答案)
![北师大版七年级 数学下 全等三角形的判定小题精炼培优版(包含答案)](https://img.taocdn.com/s3/m/8aeb61bfaef8941ea66e0536.png)
北师大七下全等三角形的判定小题精炼培优版一、单选题1.如图,AD =BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( )A .AB //CD B .△ABC =△CDA C .△A =△CD .AD //BC2.如图,PD △AB ,PE △AC ,垂足分别为D 、E ,且P A 平分△BAC ,则△APD 与△APE 全等的理由是( )A .SASB .AASC .SSSD .ASA3.如图1,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,△A=△1=△C ,DE=DF ,下面的结论一定成立的是( )A .AE=FCB .AE=DEC .AE+FC=ACD .AD+FC=AB 4.如图,AB CD ,//AB CD ,判定ABC △CDA 的依据是( )A.SSS B.SAS C.ASA D.HL5.如图,AD△CD,AE△BE,垂足分别为D,E,且AB=AC,AD=AE,则下列结论△△ABE△△ACD△AM=AN:△△ABN△△ACM;△BO=EO;其中正确的有()A.4个B.3个C.2个D.1个6.如图,点B、F、C、E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DF C.△A=△D D.BF=EC7.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE相交于点F,则△BFD的度数为()A.45°B.90°C.60°D.30°8.如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=()A.60°B.55°C.50°D.无法计算9.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC△△DEF的是A.AB=DE B.△B=△E C.EF=BC D.EF//BC10.如图所示,Rt△ABE△Rt△ECD,点B、E、C在同一直线上,则结论:△AE=ED;△AE△DE;△BC=AB+CD;△AB△DC中成立的是()A.仅△B.仅△△C.仅△△△D.仅△△△△11.如图,AC=AD,BC=BD,则下列结果正确的是()A.AB△CD B.OA=OB C.△ACD=△BDC D.△ABC=△CAB12.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE△△BCD B.△BGC△△AFC C.△DCG△△ECF D.△ADB△△CEA13.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙14.正三角形ABC中,BD=CE,AD与BE交于点P,△APE的度数为().A.45B.55C.60D.7515.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则△1+△2的度数是()A.45°B.55°C.60°D.75°16.如图,在下列条件中,不能证明△ABD△△ACD的是().A .BD =DC ,AB =ACB .△ADB =△ADC ,BD =DC C .△B =△C ,△BAD =△CAD D .△B =△C ,BD =DC17.如图,已知12AC AD ∠=∠=,,从下列条件:△AB AE =;△BC ED =;△C D ∠=∠;△B E ∠=∠中添加一个条件,能使ABC △△AED 的有()A .1个B .2个C .3个D .4个18.如图,在Rt△AEB 和Rt△AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于N ,△E =△F =90°,△EAC =△FAB ,AE =AF,给出下列结论:△△B =△C ;△CD =DN ;△BE =CF ;△△ACN△△ABM;其中正确的结论是( )A .△△△B .△△△C .△△△D .△△△19.如图是由4个相同的小正方形组成的网格图,其中△1+△2等于( )A.150°B.180°C.210°D.225°20.如图,已知△DCE=90°,△DAC=90°,BE△AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A.3B.5C.4D.不确定21.如图,在△ABC中,AB=AC,△BAC=90°,直角△EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:△△APE△△CPF;△AE=CF;△△EAF是等腰直角三角形;△S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个22.如图,△ABC中,AB△BC,BE△AC,△1=△2,AD=AB,则下列结论不正确的是A.BF=DF B.△1=△EFD C.BF>EF D.FD△BC23.如图,已知AB =AC ,AF =AE ,△EAF =△BAC ,点C 、D 、E 、F 共线.则下列结论,其中正确的是( )△△AFB△△AEC ;△BF =CE ;△△BFC =△EAF ;△AB =BC .A .△△△B .△△△C .△△D .△△△△二、填空题 24.如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).25.如图,矩形ABCD 中,E 在AD 上,且EF EC ⊥,EF EC =,2DE =,矩形的周长为16,则AE 的长是______ .26.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B ,D 作BF△a 于点F ,DE△a 于点E ,若DE =8,BF =5,则EF 的长为____.27.如图,△ACB=90°,AC=BC,AD△CE于D,BE△CD于E,AD=2.5cm,DE=1.6cm,则BE的长度为________.28.如图,已知△ABC中,AB=AC=20 cm,BC=16 cm,△B=△C,点D是AB的中点,点P在线段BC上以2 cm/s的速度由B点向C点运动,同时点Q在线段CA上由A点向C点运动,当△BPD与△CQP全等时,点Q的运动速度为______.29.如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=__________.30.在Rt△ABC中,△ACB=90°,BC=2cm,CD△AB,在AC上取一点E,使EC=BC,过点E作EF△AC交CD的延长线于点F,若EF=5cm,则AE= cm.31.如图,CA=CB,CD=CE,△ACB=△DCE=40°,AD、BE交于点H,连接CH,则△CHE=__________.32.如图,△ACB=90°,AC=BC,BE△CE,AD△CE,垂足分别为E,D,AD=25,DE=17,则BE=______.33.如图,在△ABC中,AD△BC于D,BE△AC于E,AD与BE相交于点F,若BF=AC,则△ABC =_____度.34.如图,AC△BC,AD△DB,要使△ABC△△BAD,还需添加条件_____.(只需写出符合条件一种情况)35.如图AB=AC,AD=AE,△BAC=△DAE,△BAD=25°,△ACE=30°,则△ADE=_____.36.如图,等边△ABC 边长为10,P 在AB 上,Q 在BC 延长线,CQ =P A ,过点P 作PE △AC 点E ,过点P 作PF △BQ ,交AC 边于点F ,连接PQ 交AC 于点D ,则DE 的长为_____.37.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ△DA 于Q ,PQ =3,EP =1,则DA 的长是________.38.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.39.如图,AB =BC 且AB △BC ,点P 为线段BC 上一点,P A △PD 且P A =PD ,若△A =22°,则△D 的度数为_________.40.如图,在△ABC中,△A=58°,AB=AC,BD=CF,BE=CD,则△EDF=____________度。
全等三角形单元测试题(含答案)
![全等三角形单元测试题(含答案)](https://img.taocdn.com/s3/m/aec65f91d1f34693daef3e61.png)
全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
鲁教版数学七年级下册10.1全等三角形 习题及答案
![鲁教版数学七年级下册10.1全等三角形 习题及答案](https://img.taocdn.com/s3/m/166813e0a98271fe910ef9ee.png)
鲁教版数学七年级下册10.1全等三角形 习题及答案一、单选题1.如图,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC2.如图,ABC R t ∆沿直角边BC 所在的直线向右平移得到DEF ∆,下列结论中错误的是( )A.△ABC ≌△DEFB. ︒=∠90DEFC.DF AC =D.CF EC =3.如图,将矩形纸片ABCD 沿对角线BD 折叠一次,则图中全等三角形有( )A.2对B. 3对C. 4对D.5对4.如图,已知AB =DC ,AD =BC ,E ,F 是DB 上两点且BF =DE ,若∠AEB =100°,∠ADB =30°,则∠BCF =( )A .150°B .40°C .80°D .70°5.如图,∠B=∠E=90°,AB=DE ,AC=DF ,则△ABC ≌△DEF 的理由是( )A.SASB.ASAC.AASD.HL6.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB =BF.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A、AD=BCB、CD=BFC、∠A=∠CD、∠F=∠CDE7.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°9.如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6 B.8 C.4 D.1011.如图,在△ABC中,点E在边AC上,D E是AB的垂直平分线,△ABC的周长为19,△BCE 的周长为12,则线段AB的长为()A .9B .8C .7D .612.如图,已知AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠2二、填空题13.如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .14. 已知ABC DEF ∆∆≌,AC AB =,且ABC ∆的周长为22cm ,BC=4cm ,则DEF ∆的边=DE cm .15. 在△ABC 中,∠C=90°,BC=4cm ,∠BAC 的平分线交B C 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.16.如图,已知△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC =60°,OH =5 cm ,则∠BAD =_____________,点O 到AB 的距离为____________ cm.17.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB=8cm ,BD=•6cm ,AD=5cm ,则BC=________cm .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.三、解答题19.如图,已知∠AOB=20°.(1)若射线OC⊥OA,射线OD⊥OB,请你在图中画出所有符合要求的图形;(2)请根据(1)所画出的图形,求∠COD的度数.20.如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21. 在ABC∆中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.22.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)ONMBA23.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE24.已知:如图,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?26.如图,已知CA =CD ,CB =CE ,∠ACB =∠DCE ,试说明△ACE ≌△DCB 的理由.27. 如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC ≌△DEC .BDF AAC BDE F28.如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.29.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.30.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P 是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.31.已知:如图,O为△ABC的∠BAC的角平分线上一点,∠1=∠2,求证:△ABC是等腰三角形.32.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC (1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.33.如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD 和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.(1)求证:△ABE≌△DBC.(2)试判断△BMN的形状,并说明理由.参考答案一、单选题1-5 CDDDD 6-10 DCBBB 11-12 CA二、填空题13、 90°14. 915. 5.116. 30° 517. 518. 3三、解答题19、解:(1)如图1、如图2,OC (或OC ′)、OD (或OD ′)为所作;(2)如图1,∵OC ⊥OA ,OD ⊥OB ,∴∠BOD=∠AOC=90°,∴∠COD=360°﹣90°﹣90°﹣20°=160°,∠COD ′=∠BOC ﹣∠AOC=90°+20°﹣90°=20°,如图2,同理可得∠COD=160°,∠COD ′=20°,∴∠COD=20°或160°.(2)如图1,由于OC ⊥OA ,OD ⊥OB ,则∠BOD=∠AOC=90°,于是利用周角的定义可计算出∠COD=160°,利用∠COD ′=∠BOC ﹣∠AOC 可得到∠COD ′=20°,如图2,同理可得∠COD=160°,∠COD ′=20°.20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD ,∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF ,易证△BDE ≌△DBF(SAS),∴BE =DF21.(1)证明①︒=∠+∠90BCE ACD Θ︒=∠+∠90ACD DAC BCE DAC ∠=∠∴ 又︒=∠=∠=90,BEC ADC BC AC CEB ADC ∆∆∴≌.②CEB ADC ∆∆≌ΘCE AD BE CD ==∴,BE AD CD CE DE +=+=∴.(2)CEB ADC ∆∆≌成立,BE AD DE +=不成立,此时应有BE AD DE -=.22.作∠BOA 的平分线交MN 于P 点,就是所求做的点。
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题
![七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题](https://img.taocdn.com/s3/m/08bffb02657d27284b73f242336c1eb91a373330.png)
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。
《全等三角形》测试题A卷及答案
![《全等三角形》测试题A卷及答案](https://img.taocdn.com/s3/m/28899b0cb14e852459fb5731.png)
第十四章全等三角形测试题、选择题(每小题4分,共32 分)1 .下列命题中真命题的个数有()⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,C、1个2.如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和,厶=/ A',若证N ABC B" A'B'C'还要从下列条件中补选一个,错误的选法是(C. BC=B'C'D. AC=A C'4. P是/ AOB平分线上一点,CD丄OP于F,并分别交OA、OB于CD,贝U CD _____________ P点到/ AOB两边距离之和.()A.小于B.大于5.如图,从下列四个条件:①BC= B C,②AC= A 'C,③/ A 'CA=Z B CB,④AB= A B '中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是()A.① B ② C ③ D ①②7 .如图,△ ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ ABC分A .甲和乙 E.乙和丙 C.只有乙 D.只有丙△ ABC全等的图形是(3 .在"ABC 和"A 'B'C'中,AB=A 'B'C.等于D.不能确定(5题)CF = 4,贝V S ABEF 为.三:解答题(共44 分)15、( 5分)已知:如图,AC 、BD 相交于点 O , Z A = Z D , AB=CD.求证:△ AOB ^A DOC ,。
为三个三角形,则 &ABO : S ^BCO : &CAO 等于( B . 1 : 2 : 3 C . 2 : 3 : 4 &如图所示,在 Rt △ ABC 中,AD 是斜边上的高,Z 交AD AC 于点F 、E, EG 丄BC 于 G 下列结论正确的是 A . Z C= / ABC B. BA=BG CC . AE=CE D. AF=FD 二、填空题(每小题4分,共24 分) 9 .如图,Rt △ ABC 中,直角边是 ,斜边是 10.如图,点D,E 分别在线段 AB, AC 上, BE, CD 相交于 /A点 O, AE AD , 要使△ ABE ACD ,需添加一个条件是(只要写一个(10 题) (11题)11.如图,把△ ABC 绕C 点顺时针旋转35。
北师大版七年级(下)全等三角形、对称轴综合测试卷
![北师大版七年级(下)全等三角形、对称轴综合测试卷](https://img.taocdn.com/s3/m/65c6988871fe910ef12df8bc.png)
北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。
【完整版】(真题汇编)人教五四学制版七年级下册数学第18章 全等三角形含答案
![【完整版】(真题汇编)人教五四学制版七年级下册数学第18章 全等三角形含答案](https://img.taocdn.com/s3/m/3dc7cef8ac51f01dc281e53a580216fc700a5393.png)
人教五四学制版七年级下册数学第18章全等三角形含答案一、单选题(共15题,共计45分)1、下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有()A.只有①②B.只有①②④C.只有①④D.①②③④2、在△ABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的长的取值范围为()A.1<AD<7B.2<AD<14C.2.5<AD<5.5D.5<AD<113、如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是( )A.AC=BDB.OD=OCC.∠A=∠CD.OA=OB4、如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面积相等,其中错误的结论个数是()A.3个B.2个C.1个D.0个5、如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O 作EF∥BC,EF与AB、CD分别相交于点E、F,则△DOF的面积与△BOA的面积之比为()A.1:2B.1:4C.1:8D.1:166、如图,将两根钢条 AA',BB' 的中点连接在一起,使AA',BB' 可以绕着点O自由转动,就做成了一个测量工具(卡钳),则图中AB的长等于内槽宽A′B′ ,那么判定△OAB≌△OA′B′ 的理由是( )A.边角边B.边边边C.角边角D.角角边7、如图,在中,,,,BD平分,则点D到AB的距离等于( )A.4B.3C.2D.18、如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3B.4.5C.6D.7.59、如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是()A.70B.74C.144D.14810、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC11、如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°12、如图,已知,添加下列条件还不能判定≌ 的是()A. B. C. D.13、如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°14、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A. B. C. D.15、如图,是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.1个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,△ABC 中,AB=4,AC=2,D 是 BC 中点,若 AD 的长是整数,则AD=________.17、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是________18、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.19、如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________.20、在中,,截三边所得的线段相等,那么的度数是________.21、如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE (只添一个即可),你所添加的条件是________.22、如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE =CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H,若BC=6,则HE=________.23、如图,在中,,为边上一点,,平分的外角,且.连接交于为边上一点,满足,连接交于H.以下结论:①;② ;③ ;④若平分,则平分正确的是________.24、如图,在正方形OABC中,点A的坐标是(-3,1),点B的纵坐标是4,则B点的横坐标是________.25、如图,△ABD≌△CBD,若∠A=100˚,∠ABC=80˚,则∠BDC=________.三、解答题(共5题,共计25分)26、如图,∠C=∠D=90°,DA=CB,∠CBA=28°,求∠DAC.27、如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.28、如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.29、如图,△ABC中,AB=AC,M是BC的中点,过点M作ME⊥AB、MF⊥AC,垂足分别为E、F.求证:ME=MF.30、已知:如图,已知点在同一直线上,是垂足,,求证:.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、D5、A6、A7、C8、C9、B11、D12、A13、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题
![初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题](https://img.taocdn.com/s3/m/809d970780eb6294dc886c61.png)
章节测试题1.【答题】如图△ACB≌A’CB’,∠A’CB=30°,∠ACB’=110°,则∠ACA’的度数是______度.【答案】40【分析】本题主要考查全等三角形对应角相等的性质,对应角都减去∠A′CB得到两角相等是解决本题的关键.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB′,∵∠A′CB=30°,∠ACB′=110°,∴∠ACA′=(110°﹣30°)÷2=40°.故答案为:402.【答题】△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.【答案】40°【分析】利用全等三角形的性质,要求∠DEF即要求∠ABC,分别设出△ABC对应的角度,再利用三角形内角和为180°列方程解出未知数即可.【解答】设∠BAC=4x°,∠ACB=3x°,∠ABC=2x°,所以4x+3x+2x=180,x=20,∴∠ABC=40°,∵△ABC≌△DEF,∴∠ABC=∠DEF=40°.故答案为40°.3.【答题】如图,△ABC≌△DEF,线段AD=5,DE=3,则BD= ______.【答案】2【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DE=3,∴AB=DE=3,∵线段AD=5,∴BD=AD-AB=5-3=2.4.【答题】如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=42°,则∠DAC=______.【答案】36°【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE=42°,∴∠DAC=∠BAE﹣∠BAD﹣∠CAE=120°﹣42°﹣42°=36°.故答案为:36°.5.【答题】如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=______.【答案】66°【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.6.【题文】如图,ΔABC≌ΔD EF,∠A=25°,∠B=65°,B F=3㎝,求∠D FE的度数和E C的长.【答案】∠D FE=65°;E C=3㎝.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm,∴∠DFE=90°,EC=3cm.7.【题文】如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ACB≌△BDA,∴AB=BA;∠CBA=∠DAB,∠CAB=∠DBA,∠C=∠D.8.【题文】如图,已知△ABD≌△CDB,∠ABD=∠CDB,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ABD≌△CDB,∴∴AB的对应边是CD,AD的对应边是CB,BD的对应边是DB,∠A的对应角是∠C,∠ADB的对应角是∠CBD,∠ACB的对应角是∠ECD.9.【题文】如图,已知△ABC≌△EDC,指出其对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:△ABC≌△EDC,∴AB的对应边是ED,AC的对应边是EC,BC的对应边是DC,∠A的对应角是∠E,∠B的对应角是∠D,∠ACB的对应角是∠ECD.10.【题文】如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.【答案】见解析【分析】先根据△ABE≌△ACD,可以确定点A的对应点是A,点B的对应点是C,点D的对应点是E,然后根据对应顶点,结合图形即可找出对应边和对应角. 【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.11.【题文】如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M, ∠E=∠N, ∠EGF=∠NHM (2)MN=2.1cm,HG=2.2cm.【分析】(1)因为△EFG≌△NMH,故有全等三角形的对应边和对应角相等.(2)因为△EFG≌△NMH,故EF=NM,,即可求出各自的长度.【解答】解:(1)△EFG≌△NMH,∠F与∠M是对应角在△EFG和△NMH中,有EF=NM,EG=NH,FG=MH∠F=∠M, ∠E=∠N, ∠EGF=∠NHM ;(2)∵由(1)可知,EF=NM,EF=2.1cm ∴MN="2.1"又MH=FG=3.3 FH=1.1∴=3.3-1.1=2.2cm.12.【答题】如图,已知B,C,E在一条直线上,且△ABC≌△EFC,∠EFC=60°,则∠A=______;【答案】30°【分析】根据全等三角形的性质解答即可.【解答】解:根据三角形全等可得:∠ACB=∠ECF=90°,∠B=∠EFC=60°,则根据△ABC的内角和定理可得:∠A=180°-90°-60°=30°.13.【答题】如图,△ABD≌△AC E,A E=3cm,AC=6 cm,则CD=______cm.【答案】3【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴AD=AE=3cm,∴CD=AC-AD=6 -3=3cm,故答案为:3.14.【答题】如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE长是______cm。
初中数学:《全等三角形》测试题(含答案)
![初中数学:《全等三角形》测试题(含答案)](https://img.taocdn.com/s3/m/83dbd8a9a32d7375a517809c.png)
初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。
初中数学【全等三角形】单元测试题
![初中数学【全等三角形】单元测试题](https://img.taocdn.com/s3/m/10abaa0253d380eb6294dd88d0d233d4b14e3f83.png)
初中数学【全等三角形】单元测试题一、选择题1.根据下列已知条件,能唯一画出△ABC的是( )A.AB=3 , BC=4, AC=8B.∠A=60°,∠B=45°, AB=4C.AB=3 , BC=3 , ∠A=30°D.∠C=90°, AB=62.下列语句中,正确的是()A. 周长相等的锐角三角形都全等;B. 周长相等的直角三角形都全等;C. 周长相等的钝角三角形都全等;D. 周长相等的等腰直角三角形都全等;3.在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A、∠A=∠DB、∠C=∠FC、∠B=∠ED、∠C=∠D4.如图∠1=∠2,BC=EF,欲证△ABC≌△△DEF,则须补充一个条件是()A .AB=DE B.∠ACE=∠DFB C.BF=EC D.∠ABC=∠DEF5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列不正确的是()A.∠DAE=∠CBE4题B.CE=DEC.△DEA不全等于△CBED.△EAB是等腰三角形6.小明不小心把一块三角形形状的玻璃打碎成了三块, 如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()去.A.① B.②C.③ D.①和②7.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.对于上述的两个判断,下列说法正确的是( ) A.①正确,②错误 B.①错误,②正确C.①②都错误 D.①②都正确8.在△ABC和DEF中,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④∠A=∠D, ∠B=∠E,∠C=∠F;其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组9.如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O 点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,其中一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠2第9题图第10题第13题图AB CD14题图16题图11.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA12.在△ABC和△ABC'''中,AB=A B'',∠B=∠B',补充条件后仍不一定能保证△ABC≌△ABC''',则补充的这个条件是( )A.BC=B C''B.∠A=∠A'C.AC=A C''D.∠C=∠C'二、填空题13.如图所示,已知在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE=度.14.如图所示,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .15题图15.如图,AC⊥BD于O,BO=DO,图中共有全等三角形对16.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是:(填上你认为适当的一个条件即可).三、解答题17、如图,已知AB =DC,AC=DB,BE=CE,求证:AE=DE.A D18.如图,铁路上A ,B 两站(视为直线上两点),相距25 km ,C ,D 为铁路同旁的两个村庄(视为两点),DA ⊥AB 于A 点,CB ⊥AB 于B 点,DA=15 km ,CB=10 km ,现在要在铁路AB 上建一个土特产产品收购站E ,使C ,D 两村庄到E 站的距离相等,求E 站应建在离A 站多远处,并说明理由.19.在ABC ∆中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE⊥于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证①ADC ∆≌CEB ∆;②BEAD DE +=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.20.两个大小不同的等腰直角三角板按如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母).。
初中数学全等三角形之动点类型试题和答案
![初中数学全等三角形之动点类型试题和答案](https://img.taocdn.com/s3/m/5bfd844ccc7931b765ce15e4.png)
全等三角形之动点问题(综合测试)1、如图,在直角三角形ABC中,∠B=90°,AB=5cm,BC=6cm,点P从点B开始沿BA 以1cm/s的速度向点A运动,同时,点Q从点B开始沿BC以2cm/s的速度向点C运动.几秒后,△PBQ的面积为9cm2?第1题图第2题图第3题图2、如图所示,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1m/s,点Q运动的速度是2m/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t s,解答下列问题:(1)填空:△ABC的面积为(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(4)当△BPQ是直角三角形时,求t的值3、如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.4、如图,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F,问:点P运动多少时间时,△PEC与QFC全等?请说明理由。
人教版数学《全等三角形》单元测试题(含答案)
![人教版数学《全等三角形》单元测试题(含答案)](https://img.taocdn.com/s3/m/cffae8be03d8ce2f0166232a.png)
《全等三角形》单元测试题一、选择题1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE相交于点M,则△DCE等于()A.△B B.△A C.△EMF D.△AFB2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB△△EDB△△EDC,则△C的度数为()A.15° B.20° C.25° D.30°3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图,点P是△AOB平分线OC上一点,PD△OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 45. 如图,AO是△BAC的平分线,OM△AC于点M,ON△AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm6. 如图,P是△AOB的平分线OC上一点,PD△OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.17. 如图,AB=AC,AD=AE,BE=CD,△2=110°,△BAE=60°,则下列结论错误的是()A.△ABE△△ACD B.△ABD△△ACEC.△C=30° D.△1=70°8. 如图,△ACB△△A'CB',△ACA'=30°,则△BCB'的度数为()A.20°B.30°C.35°D.40°9. 如图,AB△CD,且AB=CD.E,F是AD上两点,CE△AD,BF△AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c10. 现已知线段a,b(a<b),△MON=90°,求作Rt△ABO,使得△O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:△以点O为圆心、线段a的长为半径画弧,交射线ON于点A;△以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题11. 如图,已知AB=BD,△A=△D,若要应用“SAS”判定△ABC△△DBE,则需要添加的一个条件是____________.12. 如图,小明和小丽为了测量池塘两端A,B两点之间的距离,先取一个可以直接到达点A和点B的点C,沿AC方向走到点D处,使CD=AC;再用同样的方法确定点E,使CE=BC.若量得DE的长为60米,则池塘两端A,B两点之间的距离是______米.13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为___________________.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,若AB=AC,BD=CD,△A=80°,△BDC=120°,则△B=________°.16. 如图,在△ABC中,E为AC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题17. 如图,AB△CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.18. 如图,在△ABC中,AC=BC,△C=90°,D是AB的中点,DE△DF,点E,F分别在AC,BC上,求证:DE=DF.19. 如图,已知AP△BC,△P AB的平分线与△CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.20. 操作探究如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如图K-10-17,量得第四根木条DC=5 cm,判断此时△B与△D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2 cm,量得木条CD=5 cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30 cm的三角形,求出木条AD,BC的长度.21. 如图所示,△BAC=△BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:△CAD=△CAE.全等三角形-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C △P 是△AOB 的平分线OC 上一点,PD△OA ,PE△OB ,△PE =PD =2.7. 【答案】C △BE -DE =CD -DE ,即BD =CE. 在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,BD =CE ,AD =AE ,△△ABD△△ACE.由题意易证:△ABE△△ACD ,故A ,B 正确. 由△ABE△△ACD 可得△B =△C. △△2=△BAE +△B ,△△B =△2-△BAE =110°-60°=50°.△△C =△B =50°. 故C 错误.△△ABE△△ACD(已证),△△1=△AED =180°-△2=70°. 故D 正确.故选C.8. 【答案】B △A'CB'-△A'CB.所以△BCB'=△ACA'=30°.9. 【答案】D 10. 【答案】A 二、填空题11. 【答案】AC =DE12. 【答案】60⎩⎨⎧AC =DC ,△ACB =△DCE ,BC =EC ,△△ACB△△DCE(SAS).△DE =AB. △DE =60米,△AB =60米.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】2在△ADE 和△CFE 中,⎩⎨⎧△A =△FCE ,△AED =△CEF ,DE =FE ,△△ADE△△CFE(AAS). △AD =CF =3.△BD =AB -AD =5-3=2.15. 【答案】20 在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,△△BAD△△CAD(SSS). △△BAD =△CAD ,△B =△C.△△BDF =△B +△BAD ,△CDF =△C +△CAD , △△BDF +△CDF =△B +△BAD +△C +△CAD , 即△BDC =△B +△C +△BAC. △△BAC =80°,△BDC =120°, △△B =△C =20°.16. 【答案】10∵AD 平分△BAC ,DM △AC ,DN △AB , ∵DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =12·AB ·DN ,S △ADC =12·AC ·DM , ∵BD∵DC=AB∵AC=2∵3. 设△ABC 的面积为S ,则S △ADC =35S. ∵E 为AC 的中点, ∵S △BEC =12S.∵△OAE 的面积比△BOD 的面积大1, ∵△ADC 的面积比△BEC 的面积大1. ∵35S -12S=1.∵S=10. 故答案为10.三、解答题 17. 【答案】证明:△AB△CD , △△B =△DEF ,(1分) 在△AFB 和△DFE 中,⎩⎨⎧△B =△DEFBF =EF△BFA =△EFD,(3分) △△AFB△△DFE(ASA ),(5分) △AF =DF.(6分)18. 【答案】证明:连接CD ,如解图,(1分)△ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, △ CD =BD ,△CDB =90°,△△CDE +△CDF =90°,△CDF +△BDF =90°, △△CDE =△BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧△ECD =△BCD =BD△CDE =△BDF, △ △CDE△△BDF(ASA ),(9分) △ DE =DF.(10分)19. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.△AE 平分△PAB , △△DAE =△FAE. 在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,△DAE =△FAE ,AE =AE ,△△DAE△△FAE(SAS). △△AFE =△ADE. △AD△BC , △△ADE +△C =180°. 又△△AFE +△EFB =180°, △△EFB =△C. △BE 平分△ABC , △△EBF =△EBC.在△BEF 和△BEC 中,⎩⎨⎧△EFB =△C ,△EBF =△EBC ,BE =BE ,△△BEF△△BEC(AAS). △BF =BC.△AD +BC =AF +BF =AB. 20. 【答案】 解:(1)相等.理由:如图,连接AC.在△ACD 和△ACB 中,⎩⎨⎧AC =AC ,AD =AB ,DC =BC ,△△ACD△△ACB(SSS). △△B =△D.(2)设AD =x cm ,BC =y cm.当点C ,D 均在BA 的延长线上且点C 在点D 右侧时,由题意,得 ⎩⎨⎧x +2=y +5,x +(y +2)+5=30, 解得⎩⎨⎧x =13,y =10.此时AD =13 cm ,BC =10 cm. 经检验,符合题意.当点C ,D 均在BA 的延长线上且点C 在点D 左侧时,由题意,得 ⎩⎨⎧y =x +5+2,x +(y +2)+5=30, 解得⎩⎨⎧x =8,y =15.此时AD =8 cm ,BC =15 cm. △5+8<2+15,△不合题意. 综上,AD =13 cm ,BC =10 cm. 21. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.11△AD 为△ABC 中BC 边上的中线,△BD =CD.在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,△ADB =△FDC ,BD =CD ,△△ADB△△FDC(SAS).△AB =CF ,△B =△DCF.△CE =AB ,△CE =CF.△△ACE =△B +△BAC ,△ACF =△DCF +△BCA ,△BAC =△BCA , △△ACE =△ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,△ACF =△ACE ,CF =CE ,△△ACF△△ACE(SAS).△△CAD =△CAE.。
人教五四学制版七年级下册数学第18章 全等三角形含答案(满分必刷)
![人教五四学制版七年级下册数学第18章 全等三角形含答案(满分必刷)](https://img.taocdn.com/s3/m/617e5818cd1755270722192e453610661ed95acf.png)
人教五四学制版七年级下册数学第18章全等三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B.6对C.7对D.8对2、如图,在中,,,D为BC的中点,,垂足为过点B作交DE的延长线于点F,连接CF,现有如下结论:平分;;;;.其中正确的结论有A.5个B.4个C.3个D.2个3、如图,矩形台球桌ABCD,其中A,B,C,D处有球洞,已知DE=4,CE=2,BC=6 ,球从E点出发,与DC夹角为α,经过BC,AB,AD三次反弹后回到E点,求tanα的取值范围()A. ≤tanα<B. <tanα<C.tanα=D. <tanα<34、如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACFB.点D在∠BAC的平分线上 C.△BDF≌△CDE D.D是BE的中点5、如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°6、如图,AB∥CD,AC∥DB,AD 与 BC 交于点 O,AE⊥BC 于点 E,DF⊥BC 于点 F,那么图中全等的三角形有( )对A.5B.6C.7D.87、如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论:①∠BGD=120°;②BG+DG=CG;=AB2.其中正确的有()③△BDF≌△CGB;④S△ADEA.1个B.2个C.3个D.4个8、如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是()A.当P为BC中点,△APD是等边三角形B.当△ADE∽△BPE时,P为BC 中点C.当AE=2BE时,AP⊥DED.当△APD是等边三角形时,BE+CD=DE9、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8C.4D.610、如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.5B.6C.3D.411、若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为()A.5B.8C.7D.5或812、对于△ABC嘉淇用尺规进行了如下操作:如图:⑴分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;⑵作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线 D.△ABC的角平分线13、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:=3.其中正确结论的个数是①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC( )A.1B.2C.3D.414、正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.1615、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5二、填空题(共10题,共计30分)16、如图,在△ABC中,AC=BC,∠C=90°,BD为∠ABC的平分线,若A点到直线BD的距离为a,则BE的长为________17、如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC≌△DEF,还需要的条件可以是________ ;(只填写一个条件)18、如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC =12cm,AC=10cm,DO=3cm,那么OC的长是________cm.19、如图,有一池塘,要测池塘两端A、B两点的距离,可先在平地上取一个可以直接到达A、B两点的C,连接AC并延长AC到点D,使CD=CA,连结BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长. 这是因为可根据________方法判定△ABC≌△DEC;20、如图,A、C、B、D在同一条直线上,MB=ND,MB∥ND,要使△ABM≌△CDN,还需要添加一个条件为________21、如图,∠AOE=∠BOE=15°,EF∥O B,EC⊥OB,若EC=3,则EF的长为________22、如图,在△ABC中,AB=AC,AD平分∠BAC,则________≌________,理由是________.23、如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC=x,△AEF的面积为y,则y与x之间的函数关系式是________.24、如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则值为________.25、正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB 于F,则EF的长为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由.28、如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.29、如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.30、如图,,,.求证:.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、C6、C7、B8、B9、D10、B11、C12、A13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
苏科版七年级数学下册全等三角形单元测试卷
![苏科版七年级数学下册全等三角形单元测试卷](https://img.taocdn.com/s3/m/1903c98825c52cc58ad6be65.png)
苏科版七年级数学下册全等三角形单元测试卷一、选择题(共10小题;共50分)1. 如图,小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案A. B.C. D.2. 如图,,,于点,于点,,,则的长为3. 下列说法错误的是A. 能够完全重合的两个图形叫做全等图形B. 面积相等的两个三角形是全等图形C. 全等图形的形状和大小都一样D. 平移、旋转前后的图形是全等图形4. 如图所示,工人师傅做了一个长方形窗框,,,,分别是四条边的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间5. 如图,线段与相交于点,连接,,,若,,则下列结论中不正确的是A. B.C. D.6. 下列叙述:①能够完全重合的两个图形一定是全等图形;②全等图形的面积一定相等;③两个周长相等的图形一定是全等图形.其中正确的个数是A. B. C. D.7. 下列事例应用了三角形稳定性的有①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜;③四边形模具.A. 个B. 个C. 个D. 个8. 如图,已知,,分别为,上的点,,则下列结论不一定成立的是A. B. C. D.9. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设和是全等(合同)三角形,且点与点对应,点与点对应,点与点对应,当沿周界及,环绕时,若运动方向相同,则称它们是真正合同三角形(如图①所示);若运动方向相反,则称它们是镜面合同三角形(如图②所示).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻折.下列各组合同三角形中,是镜面合同三角形的是A. B.C. D.10. 如图,工人师傅做了一个长方形窗框,,,,分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间二、填空题(共6小题;共30分)11. 如图,,,,,则,度.12. 空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是.13. 如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用了 .14. 如图,为边上一点,,那么与的位置关系是.15. 如图所示,,,为上任意一点,图中有对三角形全等,它们分别是,使用的判定定理分别是.16. 如图,点,,,在同一条直线上,,,,,则的长为.三、解答题(共8小题;共104分)17. 用直线将下列图形中的全等图形连起来.18. 如图,小明家有一个由六条钢管连接而成的钢架,为使这一钢架稳固,他计划用三条钢管连接使它不变形.请你帮小明解决这个问题.(画图说明,要求用三种不同方法)19. 有一块三角形板材,如图,根据实际生产需要,工人师傅要把平分开,现在他手边只有一把直尺和一根细绳,你能帮工人师傅想个办法吗?说明你的理由.20. 为使五边形木架(用根木条钉成)不变形,哥哥准备如图①那样再钉上两根木条,弟弟准备如图②那样再钉上两根木条,哪种方法能使木架不变形?为什么?21. 如图,点,,,在同一条直线上,且,若,,求证:.22. 如图①,将一张长方形纸片沿一条对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图②的形式,使点,,,在同一条直线上.(1)求证:;(2)若,,请在图中找出除外的一对全等三角形,并说明理由.23. 如图,在由边长为的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度地裁剪出十个与它完全一样的燕尾形工件,问这个网格的长至少为多少(接缝处不计)?24. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个边形()木架在同一平面内不变形,至少还要再钉上几根木条?答案第一部分1. B2. A 【解析】,,,.,.在和中,,,,,,.3. B 【解析】三角形的面积相等时,三角形的形状不一定相同,所以两图形不一定全等.4. B 【解析】若这根木条钉在,两点之间,或,两点之间,或,两点之间都能构成三角形,根据三角形的稳定性,可使窗框稳固,但若这根木条钉在,两点之间,则不能构成三角形,不能使窗框稳固.5. C【解析】A.根据可以证明,故本选项正确;B.根据全等三角形的对应角相等,得,故本选项正确;C. 和显然不是对应边,故本选项错误;D.根据全等三角形的对应角相等得,故本选项正确.6. C 【解析】①②正确.7. B 【解析】①人们通常会在栅栏门上斜着钉上一根木条,利用了三角形的稳定性,②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜,利用了三角形的稳定性,③对于四边形模具,四边形不具有稳定性.故应用了三角形稳定性的有个.8. D 【解析】因为,,,所以,所以,,故A,C正确,不符合题意.因为,,所以,故B正确,不符合题意.9. B 【解析】解题的关键是准确理解题目中新概念的意义和性质.易知要使B中两个三角形重合,必须将其中一个进行翻折.10. B第二部分11. ,12. 三角形稳定性13. 三角形的稳定性14. 垂直平分15. ,与,与,与,,,(或)16.第三部分17. ①与⑨,③与⑧,④与⑩,⑤与⑦.18. 如图所示.19. 如图,用一定长度的绳子在和上分别截取和,使得,再取适当长度(不小于长)的绳子,将其对折,得绳子的中点,把绳子确定的两个端点分别固定在,两点,拽住绳子的中点,向外拉直和,确定出使的点在板材上的位置,过,两点画射线,则平分.理由:在和中,所以.所以.20. 两种方法都能使木架不变形.在图①中,,,的形状和大小不变.在图②中,,的形状和大小不变,故点相对,的位置也不变.21. 证明,,且,,,,即,在和中,,.22. (1)由题意得,故,又,.又,,,.(2).理由如下:由,得,,,,即.在和中,.23. 如图,后面画出的图形与第一个图形完全一样,画第二个图形时,需往右用个格,画第三个图形时,需要再往右用个格,画第四个图形时,需要再往右用个格,,画第十个图形时,网格的长为.这个网格的长至少为.24. 根据三角形的稳定性,要使六边形木架不变形,至少再钉上根木条;要使一个边形木架不变形,至少再钉上根木条.。
北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套
![北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套](https://img.taocdn.com/s3/m/4e3730bb48d7c1c709a14535.png)
全等三角形一.填空题(每题3分,共30分)1。
如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______、2。
如图,△ABD ≌△ACE ,且∠BAD 和∠CAE ,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3、 已知:如图,△ABC ≌△FED ,且BC=DE 、则∠A=__________,A D=_______.4、 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______。
5、 已知:如图,△ABE ≌△ACD ,∠B=∠C,则∠AEB=_______,AE=________。
6.已知:如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE 。
若AB=5 , 则AD=___________.7。
已知:△ABC ≌△A ’B ’C', △A'B ’C ’的周长为12cm ,则△ABC 的周长为、 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________。
4321E D BA9。
如图,∠1=∠2,由AAS 判定△ABD ≌△ACD,则需添加的条件是____________、10。
如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC'为________度、二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是 ( )A 、三条边对应相等B 、两边和一角对应相等C 、两角的其中一角的对边对应相等D 、两角和它们的夹边对应相等12、 如果两个三角形全等,则不正确的是 ( )A B CD 12AA'BC C'A、它们的最小角相等B、它们的对应外角相等C、它们是直角三角形D、它们的最长边相等13、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A、AB=ACB、∠BAE=∠CADC、BE=DCD、AD=DE14、图中全等的三角形是( )A、Ⅰ和ⅡB、Ⅱ和ⅣC、Ⅱ和ⅢD、Ⅰ和Ⅲ15、下列说法中不正确的是( )A、全等三角形的对应高相等B、全等三角形的面积相等C、全等三角形的周长相等D、周长相等的两个三角形全等16、 AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去∠DFE=∠BFC) ( )A、5对B、4对C、3对D、2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A、70°B、 85°C、 65°D、以上都不对18、已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF、则不正确的等式是 ( )A、AC=DF B 、AD=BE C、DF=EF D、BC=EF19。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
![北师大版七年级数学下册第四章 三角形 章节测试(含答案)](https://img.taocdn.com/s3/m/0f13745d69eae009581bec3f.png)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形单元测试
1.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )
A .18
B .15
C .18或15
D .无法确定
2.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种
A .3
B .4
C .5
D .6
3.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( )
A .小于直角;
B .等于直角;
C .大于直角;
D .大
4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )
A . ∠BCA=∠F
B .
∠B=∠E C .
BC ∥EF D .
∠A=∠EDF 5.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( ) A .62º B .38º C .28º D .26º
6.已知△A 1B 1C 1△A 2B 2C 2的周长相等,现有两个判断: ①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;
②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2, 对于上述的两个判断,下列说法正确的是( )
A . ①正确,②错误
B . ①错误,②正确
C . ①,②都错误
D . ①,②都正确
7、如图,在△ABC 和△DEB 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )
A . BC=EC ,∠B=∠E
B . BC=E
C ,AC=DC C . BC=DC ,∠A=∠
D D . ∠B=∠
E ,∠A=∠D
8.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是( )
A . S SS
B . A SA
C . A AS
D . 角平分线上的点到角两边距离相等
9.如上图,已知∠1=∠2,则不一定...
能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .BD =CD C .∠B =∠C D .∠ BDA =∠CDA A B C
F D E
10.如图:(1)AD⊥BC,垂足为D,则∠________=∠________=90°;(2)AE平分∠BAC,交BC于点E
则∠________=∠________
=
2
1
∠
________,
(3)若AF=FC,则△ABC的中线是________;
(4)AH是△ABF的中线.则________=________=________;
11.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C=______.
12、如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.
13.如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个
适当的条件是 .(填一个即可)
14、如图,在四边形ABCD中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()
15.如图,点A.B.D.E在同一直线上,
AD=EB,BC∥DF,∠C=∠F.
求证:AC=EF.
16.已知:如图,AB=AE,∠1=∠2,∠B=∠E。
求证:BC=ED。
B
C
D
A
O
第14题图
17.如图,在四边形ABCD中,AB=AD,CB=CD.说明:∠B=∠D.
18.如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠ADBE.求证:AC=AD.。