10kV馈线自动化开关实践探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV馈线自动化开关实践探讨
发表时间:2016-09-14T10:45:55.037Z 来源:《基层建设》2015年29期作者:邓建丰[导读] 摘要:馈线自动化在配电自动化中起着重要的作用,具有对故障的检测、判断、隔离与网络重构等功能,是提高配电系统供电可靠性的有效手段。
广州鑫广源电力设计有限公司广东广州 510000 摘要:馈线自动化在配电自动化中起着重要的作用,具有对故障的检测、判断、隔离与网络重构等功能,是提高配电系统供电可靠性的有效手段。本文介绍了10kV配电网的馈线自动化开关的科学布点、分配数量,对10kV架空线就地型馈线自动化开关的应用进行了分析,并提出了自动化开关中存在的问题和解决策略,以望能为有关需要提供参考。
关键词:10kV配电网;馈线自动化开关;实践 0 引言
随着我国社会的进步和经济的快速发展,电力工业也取得了巨大的进步,配电网正在向更具灵活性、可靠性、高效性及智能化的方向发展。配电自动化技术以其能提高供电可靠性、改善电能质量、提升服务水平、降低企业运行成本及减轻人员负担等功能日益受到重视。而馈线自动化是配电自动化系统中最重要的部分,对馈线自动化的应用展开研究是当前的一个重要课题之一。基于此,笔者对10kV配电网的馈线自动化开关进行了相关介绍。
1 10kV馈线自动化开关的科学布点
应该根据电力线路的长短、负荷大小以及服务的用户范围等因素来决定电压—时间型自动化开关的定位与布局,应该根据三分段一联络的具体规定,在主体线路上装配两台自动化分段开关,根据线路长短,如果过长则可以视情况增设一台分段开关,当电力分支线路经过范围较广时,设备容易风化,为了确保安全供电,则应该安装自动化负荷开关或断路器。
负荷、线路长度等也是决定电压—电流型自动化开关的定位与布局的重要因素,一般来说,主体线路也要安装分段负荷开关,大概为2-3个,这样就能将主体线路划分成3-4个区段,一些电力线路的长度很长、范围很广,特别是主线或者分支线路开关分段在5段以上时,则需安装一个主线分段断路器,而且科学的定位是安装于1/3线路,从而控制停电的规模和范围。这是因为变电站开关首次重合闸后,如果故障信息没能被检测出来,开关会闭锁分闸,那就意味着当变电站开关再次重合闸时,电压—电流型自动化开关还在闭合状态。如果电力线路的长度越长,故障的定位范围就越大,如果出现在线路末端,就很容易造成变电站开关误动问题,从而对其他线路的正常运行带来不利影响。
2 10kV馈线自动化开关的数量标准
只有先对起初的开关实施自动化改造发展,一些新线路也要安装自动化开关,这样才能最大程度地实现自动化开关控制,使10kV配电网馈线自动化开关得到有效应用,其功能得到有效发挥,从而减少故障影响范围,确保供电安全持续。
通过对10kV线路故障位置的实践调查得出:配网主线路故障发生率为42%,支路故障发生率则高达58%,一级支路故障率达到23%,二级故障率则达到34%。在自动化开关装配数量方面,经过研究得出:随着其数量的上升,对应的成本会上升,因此,经济效益也会随之下降。所以,要想获得可观的经济效益,就要有重点、有针对性地实施自动开关改造,从10kV架空馈线主干线分段与联络开关作为切入点,进行自动化开关改造,不仅有效控制了成本,同时,也收到了良好的经济效益,为了获得更加可观的经济效益,应该积极控制支路自动化开关的台数,一般来说,<3台为最佳。
3 10kV就地型自动化开关的实践 3.1 电压—时间型自动化开关
这一类型开关系统的实际图如图1所示。
图1
观察图1可以看到,cb为馈线出线断路器,能够发挥时限保护、二次重合闸等多方面的作用,fsw1、fsw2都为分段负荷开关,设置在主干线上,zsw1开关则位于支线路上,lsw则为联络开关。
此开关具体的运行原理为:第一,K1出现严重故障问题时,cb继电保护分闸,由于失去了电压的供应,fsw1、fsw2、zsw1则会分闸,lsw一端也失去了电压,大概5秒钟以后,首次重合闸,开关fsw1获电,3秒时间内失去电压,关闭合闸。 lsw一端断电45秒,过一会儿合闸,由于fsw1关闭合闸,这样就有效隔断了发生故障问题K1段,其他线路不会受到影响,依旧工作运转。
第二,K2出现严重故障问题时,cb分闸,同样,由于没有电压的供应,fsw1、fsw2、zsw1也会分闸,lsw一端也失去了电压,大概过5秒钟,cb首次重合闸,过7秒钟,fsw1合闸。由于K2属于长期性的故障问题,CB分闸,将fsw1合闸3秒,该处开关也失去了电压,闭锁合闸;fsw2获电,3秒内丧失了电压,闭锁合闸,过5秒,cb再次合闸。lsw一端断电45秒,延时合闸,从而fsw1、fsw2不能够合闸,这样K2段就处于隔断状态,其他非故障线路能够如常运行。
第三,K3出现严重故障问题时,cb分闸,fsw1、fsw2、zsw1也对应分闸,lsw一端也失去了电压,过5秒,cb首次重合闸,过7秒,fsw1、fsw2延时合闸,由于K3出现了严重的故障问题,fsw2合闸以后,3秒丧失电压,闭锁合闸;lsw获得电压,3秒之内丧失了电压,闭锁合闸,过5秒再次合闸。fsw1、zsw1延长了合闸时间,fsw2、lsw闭锁合闸。这样故障区K3就处于隔断状态,其他区域依然能够正常运行。
这一类型开关的实际工作过程图如图