复数练习题(有答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题

1.复数2

1i

=+( ) A .1i -- B .1i -+

C .1i -

D .1i +

2.复数1

1z i

=-,则z 的共轭复数为( ) A .1i -

B .1i +

C .

1122

i + D .

1122

i - 3.在复平面内,复数534i

i

-(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3-

C .43,55⎛⎫-

⎪⎝

⎭ D .43,55⎛⎫

-

⎪⎝

⎭ 4.

212i

i

+=-( ) A .1

B .−1

C .i -

D .i

5.已知i 为虚数单位,则复数23i

i -+的虚部是( ) A .

35

B .35i -

C .15

-

D .1

5

i -

6.已知复数z 满足()3

11z i i +=-,则复数z 对应的点在( )上 A .直线12

y x =-

B .直线12

y x =

C .直线1

2

x =-

D .直线12

y

7.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i - B .3i --

C .3i +

D .3i -+

8.若(1)2z i i -=,则在复平面内z 对应的点位于( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

9.若

1m i

i

+-是纯虚数,则实数m 的值为( ).

A .1-

B .0

C .1

D

10.若1i i

z ,则2z z i ⋅-=( )

A .

B .4

C .

D .8

11.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4

B .2

C .0

D .1-

12.已知i 是虚数单位,a 为实数,且3i

1i 2i

a -=-+,则a =( ) A .2

B .1

C .-2

D .-1

13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3

B .5

C .6

D .8

14.设a +∈R ,复数()()

()

2

4

2

121i i z ai ++=-,若1z =,则a =( )

A .10

B .9

C .8

D .7

15.设复数2020

11i z i

+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为

( ) A .第四象限

B .第三象限

C .第二象限

D .第一象限

二、多选题

16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i B .|z |=5

C .12z i =+

D .5z z ⋅=

17.已知复数122

z =-+(其中i 为虚数单位,,则以下结论正确的是( ).

A .2

0z

B .2z z =

C .31z =

D .1z =

18.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z

w z

=,则下列结论正确的有( )

A .w 在复平面内对应的点位于第二象限

B .1w =

C .w 的实部为12

-

D .w 的虚部为

2

i

19.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的

是( ) A .2ωω=

B .31ω=-

C .210ωω++=

D .ωω>

20.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =

,则12=z z B .若12=z z ,则12z z =

C .若12z z >则12z z >

D .若12z z >,则12z z >

21.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =

B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限

C .若复数(

)(

)

2

2

34224m m m m +-+--i 是纯虚数,则1m =或4m =-

D .对任意的复数z ,都有20z

22.已知i 为虚数单位,以下四个说法中正确的是( ).

A .234i i i i 0+++=

B .3i 1i +>+

C .若()2

z=12i +,则复平面内z 对应的点位于第四象限

D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 23.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2

B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)1

22

-

C .实数1

2

a =-

是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2

24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:

()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:

()()()n cos sin co i s s n

n n

z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦

+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2

2

z z = B .当1r =,3

π

θ=时,31z =

C .当1r =,3

π

θ=时,122

z =

- D .当1r =,4

π

θ=

时,若n 为偶数,则复数n z 为纯虚数

25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )

A .1z +=

B .z 虚部为i -

C .202010102z =-

D .2z z z +=

26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )

A .3||5

z = B .12i

5

z +=-

C .复数z 的实部为1-

D .复数z 对应复平面上的点在第二象限

27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确

的是( ).

A .38z =

B .z

C .z 的共轭复数为1

D .24z =

相关文档
最新文档