初中七年级下数学应用题
人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。
小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。
七年级数学下册应用题30道

应用题30道1.小明和小东各有课外书若干本,小明课外读物的数量是小东的2倍,小明送给小东10本后,小东课外读物的数量是小明剩余数量的3倍,求小明和小东原来各有课外读物有多少本?2.某商店出售的某种茶壶每只定价20元,茶杯每只3元,该商店在营销淡季规定一项优惠方法,即买一只茶壶赠送一只茶杯。
某顾客花了170元,买回茶壶和茶杯一共38只,问该顾客买回茶壶和茶杯各多少只?3.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?4.一列快车长70米,慢车长80米。
若两车同向而行,快车从追上慢车到完全离开慢车所用的时间为20秒;若两车相向而行,则两车从相遇到离开所用的时间为4秒。
求两车每小时各行多少千米?5.已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度。
6.某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?7.在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?8.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?9.某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?10.某班同学去18千米的北山郊游。
七年级下册数学实际问题应用题

1.学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少...2300元,求最省钱的租车..要有一名教师,且总的租车费用不超过方案.2.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元(1) 若商场同时购进其中两种不同型号电视机共50台,问甲、乙各有多少台?(2) 若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案(3) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,哪种获利最多?3.某学校计划在总费用不超过2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要一名教师.现有甲,乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量(人/辆)45 30租金(元/辆)400 280(1)若设租甲种客车x(辆),根据题意,求出x的取值.(2)有几种租车方案?最少的租车费用是多少?4.2台大收割机和5台小收割机均工作2天共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5天,共收割小麦8公顷.(1)1台大收割机和1台收割机每天各收割小麦多少公顷?(2)设大收割机每台租金600元/天,小收割机每台租金120元/天,某农场准备租用两种收割机共15台,要求大收割机的数量不少于小收割机的一半,若每天总租金不超过5000元,若设大收割机要a台,①共有几种租赁方案?写出解答过程;②那种租赁方案每天收割小麦最多?5.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?6.列方程组(或不等式组)解应用题.某文具店老板购甲、乙两种练习本,第一次购甲种练习本50本和乙种练习本50本,共花费750元,第二次购甲种练习本30本和乙种练习本60本共花费750元.(1)甲种练习本和乙种练习本的进价各是多少元?(2)现在文具店老板用500元去购买甲、乙两种练习本,根据平时销售量发现,两种练习本销售量的和超过60本,销售甲种练习本的利润率是20%,乙种练习本的利润率是30%,若要求销售这批练习本至少获利135元,求可购买乙种练习本的数量?7.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.8.某学校为了表彰进步学生,需要购进一批文具套装作为奖品,套装内包含一个笔盒和一支笔,A和B两个商店均以同样的价格出售同样的笔盒和笔,笔盒每个20元,笔每支5元,但是在A商店购买超过100套装以后,再购买一笔盒就送一支笔,在B商店购买超过150套装以后,超出的套装打六折。
七年级下册数学期末复习应用题

1.芦山地震发生后我市决定向灾区捐献一批矿泉水和帐篷共3200件,其中矿泉水比帐篷多800件.(1)求矿泉水和帐篷各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批矿泉水和帐篷全部运往灾区中小学.已知每辆甲种货车最多可装矿泉水400件和帐篷100件,每辆乙种货车最多可装矿泉水和帐篷各200件.问安排甲、乙两种货车时有几种方案?请你帮助设计出来.2.列方程组或不等式组解应用题:为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金230万元,改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过380万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?哪种改造方案所需资金最少,最少资金为多少?3.某饮料厂有甲,乙两条饮料灌装生产线,根据市场需求,计划平均每天灌装饮料700箱.如果两条生产线同时工作,则完成一天的生产任务需要工作7小时;如果两条生产线同时工作2.5小时后,再由乙生产线单独工作,则完成一天的生产任务还需10小时.(1)求甲、乙两条灌装生产线每小时各灌装多少箱饮料?(2)已知甲灌装生产线工作1小时的成本费用为550元,乙灌装生产线工作1小时的成本费用为495元,如果每天用于灌装生产线的成本费用不得超过7370元,那么甲灌装生产线每天至少工作多少小时?4.据统计资料,甲、乙两种作物的单位面积产值的比是1:2,现要把一块长AB 为200m、宽AD为100m的长方形土地,分为两块土地,分别种植这两种作物,使甲、乙两种作物的总产量的比是3:4.(1)如图1,若甲、乙两种作物的种植区分别为长方形ABFE和EFCD,此时设AE=xm,ED=ym,列方程组去x,y的值并写出种植甲、乙两种作物的面积;(2)若按如图2划分出一块三角形土地AEF种植一块作物,其余土地种植另一种作物,三角形土地AEF适合种哪种作物?为什么?AF应该取多长?(3)若按如图3划分出一块正方形土地AEGF种植一种作物,其余土地种植另一种作物,正方形AEGF适合种哪种作物?AF应该取多长?(结果用根号表示)(4)若按如图4划分出一块圆形土地种植一种作物,其余土地种植另一种作物,圆形土地是否适合种植其中某种作物,若适合,请说明适合种植哪种作物,并确定圆的半径,若不适合,请说明理由(π取3.142)5.为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B若购买A型公交车A型公交车2辆,B型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你设计一个方案,使得购车总费用最少.解:(1)由题意得:,解这个方程组得:.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车x辆,购买B型公交车(10﹣x)辆,由题意得:,解得:6≤x≤8,有三种购车方案:①购买A型公交车6辆,购买B型公交车4辆;②购买A型公交车7辆,购买B型公交车3辆;③购买A型公交车8辆,购买B型公交车2辆.故购买A型公交车越多越省钱,所以购车总费用最少的是购买A型公交车8辆,购买B型公交车2辆.6.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2015年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?解析(1)由题意,得②-①,得5(b+0.8)=25,解得b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,解得a=2.2.∴a=2.2,b=4.2.(2)当月用水量为30吨时,水费为17×3+13×5=116(元).又9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨.设小王家6月份用水量为x吨,由题意,得17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤184-116,解得x≤40.∴小王家6月份最多能用水40吨.7.某乳制品厂,现有鲜牛奶 10 吨.若直接销售,每吨可获利 500 元;若制成酸奶销售,每吨可获利 1200 元;若制成奶粉销售,每吨可获利 2000 元.本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶 3 吨;若制成奶粉,每天可加工鲜牛奶 1 吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在 4 天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4 天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好 4 天完成.你认为哪种方案获利多,请通过计算说明.8.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?9.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:,解得:,答:甲种节能灯有80只,则乙种节能灯有40只;(2)根据题意得:80×(30﹣25)+40×(60﹣45)=1000(元),答:全部售完120只节能灯后,该商场获利润1000元.10.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动,已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费16875元,若两校联合组团只需花费16575元.(1)两所学校报名参加旅游的学生共有多少人?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)设两校人数之和为a,由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)设甲学校人数为x人,乙学校人数为y人,根据题意若两校分别组团共需花费16875元,列方程组,求解即可.【解答】解:(1)设两校人数之和为a,若a>200,则a=16575÷75=221(人),若100<a≤200,则a=16575÷85=195(人).答:两所学校报名参加旅游的学生共有221人或195人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,,解得:.,解得:(不合题意,舍去);②当x>200时,或,解得:.答:甲学校报名201人,乙学校报名20人或甲学校报名135人,乙学校报名60人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据花费方式分情况讨论,设出未知数再列出方程组,注意舍去不合题意的结论.11为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.12.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.13.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2019年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?【分析】(1)本题需根据题意设A型花和B型花每枝的成本分别是x元和y 元,根据题意列出方程组,即可求出A型花和B型花每枝的成本.(2)本题需先根据题意设按甲方案绿化的道路总长度为a米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案.【解答】解:(1)设A型花和B型花每枝的成本分别是x元和y元,根据题意得:解得:所以A型花和B型花每枝的成本分别是5元和4元.(2)设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.【点评】本题主要考查了一元一次不等式的应用,在解题时要注意根据题目中的数量关系列出不等式是解题的关键.14.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?【分析】(1)设x人加工G型装置,y人加工H型装置,利用每个工人每天能加工6个G型装置或3个H型装置得出等式求出答案;(2)利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】(1)解:设x人加工G型装置,y人加工H型装置,由题意可得:解得:,6×32÷4=48(套),答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2) 由题意可知:3(6x+4m)=3(80﹣x)×4,解得:.×4=240(个),6x+4m≥2406×+4m≥240.解得:m≥30.答:至少需要补充30名新工人才能在规定期内完成总任务.【点评】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,根据题意正确得出等量关系是解题关键.。
七年级下数学一元一次不等式组应用题及练习含答案

七年级下数学一元一次不等式组的典型应用题列不等式(组)解应用题类型一例1. (桂林)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500 乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题1.为预防新冠肺炎病毒,市面上95KN等防护型口罩出现热销.已知3个A型口罩和2个B型口罩共需31元;6个A型口罩和5个B型口罩共需70元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.2.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品,两种奖品的单价.共需120元,购买5个A奖品和4个B奖品共需210元.求A B3.某文具店销售甲、乙两种钢笔,甲钢笔每支进价6元,乙钢笔每支进价14元,该文具店同时进购甲、乙两种钢笔共50支,恰好用去540元.求该文具店购进了甲、乙两种钢笔各多少支?4.某商店订购了A,B两种商品,A商品18元/千克,B商品20元/千克,若B商品的数量比A商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.5.甲类票480元/张,乙类票280元/张,某球迷协会组织50名球迷去现场为辽宁男篮加油助威,买门票共花20000元,请问该协会甲、乙两类门票各买了多少张?6.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A种饮料每瓶需加该添加剂2克,B种饮料每瓶需加该添加剂3克,已知生产共100瓶的A,B两种饮料恰好添加了270克该添加剂,则生产A、B两种饮料各多少瓶?7.小亮家装修,需购进甲、乙两种地砖共100块,共花费5600元,已知甲种地砖单价是80元/块,乙种地砖的单价是40元/块,问甲、乙两种地砖各购进了多少块?8.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?9.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?10.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?11.已知用3辆A型车和2辆B型车一次可运货19吨;用2辆A型车和3辆B型车一次可运货21吨.(每辆车每次都满载货物)(1)求1辆A型车和1辆B型车载满货物一次分别可以运多少吨?(2)某货物中心现有49吨货物,计划同时租用A型车和B型车若干辆,一次运完,且恰好每辆车都载满货物,请问有哪几种不同的租车方法.12.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A 型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.13.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.14.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?15.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.16.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?17.疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B 两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?18.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.19.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A B、两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?、两种型号的货车各几辆?请(2)按计划完成本次货物运送,储运公司要同时租用A B求出所有的租车方案.20.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.。
方案问题七年级数学应用题

1.小明去超市购买了一些商品,他给了收银员100元,收银员找给他12元。
请问小明总共支付了多少钱?答案:小明总共支付了88元。
因为小明给了收银员100元,收银员找给他12元,所以小明实际支付的钱数是100元 - 12元 = 88元。
2.小华和小明一起打篮球,小华投篮得分2分,小明投篮得分3分。
请问他们两个人总共得了多少分?答案:小华和小明总共得了5分。
因为小华得分是2分,小明得分是3分,所以他们两个人总共得分的和是2+3=5分。
3.小红有4本故事书,小丽有3本故事书,她们决定把所有的书都放在一个书架上。
请问书架上总共有多少本书?答案:书架上总共有7本书。
因为小红有4本书,小丽有3本书,所以书架上总共有的书的数量是4+3=7本。
4.小刚和小强都喜欢吃糖果,小刚吃了4颗糖果,小强吃了6颗糖果。
请问他们两个总共吃了多少颗糖果?答案:小刚和小强总共吃了10颗糖果。
因为小刚吃了4颗糖果,小强吃了6颗糖果,所以他们两个总共吃的糖果数量是4+6=10颗。
5.小莉买了2支铅笔,每支2元;又买了3本练习本,每本3元。
请问小莉总共花了多少钱?答案:小莉总共花了11元。
因为小莉买了2支铅笔和3本练习本,而每支铅笔2元,每本练习本3元,所以她总共花费是2×2+3×3=11元。
6.小张去市场买菜,他买了3斤猪肉,每斤10元;又买了2斤牛肉,每斤15元。
请问小张总共花了多少钱?答案:小张总共花了75元。
因为小张买了3斤猪肉和2斤牛肉,猪肉每斤10元,牛肉每斤15元,所以他的总花费是3×10+2×15=75元。
7.学校要举办一场运动会,需要学生购买统一的运动服。
运动服的价格是每套50元。
如果一个班级需要购买30套运动服,请问这个班级需要支付多少钱?答案:这个班级需要支付1500元。
因为每套运动服的价格是50元,班级需要购买30套运动服,所以总价是50×30=1500元。
8.一个农场有10头牛和5只羊,每头牛每天需要吃3千克的饲料,每只羊每天需要吃2千克的饲料。
七年级下册数学应用题分类精选30道

七年级下册数学应用题分类精选30道追及问题:1、姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐出发去追妹妹。
问:多少分钟后能追上?2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。
小王的速度是3.7千米/小时,那么小张的速度是多少?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。
甲乙两车分别用10分钟、6分钟追上骑车人。
已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。
为了回到队尾,在追上营长的地方等待了18分钟。
如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。
快车经过8小时到达乙地,慢车经过10小时到达甲地。
(1)相遇时,乙车行了360千米。
求两地距离。
(2)相遇时,乙离目的地还有360千米。
求两地距离。
(3)相遇时,乙比甲多行360千米。
求两地距离。
(4)两车在离中点处360千米相遇,求两地距离。
(5)5分钟后两车又相距360千米。
求两地距离。
6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。
15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。
问:(1) 哥哥在离家多远处追上弟弟?(2) 哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?环行跑道问题:1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。
小王每分跑180米。
①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。
人教版 七年级数学下册 第九章一元一次不等式应用题 培优练习包含答案

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200x≤0<200<x≤400 bx>400 0.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm 进价(元/双)﹣20160双) 240售价(元/(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售20001000每吨获利(元)已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段B种型号 A种型号元台台 4 1200 3 第一周1900元台 5 第二周台 6 =销售收入﹣进货成本)(进价、售价均保持不变,利润 A)求.B 两种型号的电风扇的销售单价;1(种型号的电风扇最多能A台,求50元的金额再采购这两种型号的电风扇共7500)若商场准备用不多于2(.采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b 台) a 价格(万元/180月)处理污水量(吨/ 240(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获2次的.利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:方案甲车乙车运费① 2 6 2×4000+6×3600=296007.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。
七年级下册数学一元一次不等式组应用题专项练习附答案

七年级下册数学一元一次不等式组应用题专项练习附答案七年级下册数学一元一次不等式组应用题专项练习附答案一、综合题(共11题;共108分)1.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.4.某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?5.某校组织夏令营活动,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租一辆,而且还有一辆没有坐满,但超过30人,问:(1)该校有多少人参加夏令营活动?(2)已知36座客车每辆租金400元,42座客车每辆租金440元,请你帮该校设计一种最省钱得租车方案。
人教版七年级下册数学第八章二元一次方程组应用题训练

人教版七年级下册数学第八章二元一次方程组应用题训练1.2022年北京东奥会服装外观设计灵感来源于中国传统山水画与北京冬奥会核心图形的雪山图景。
某品牌制衣厂现有240名制作服装的工人,每天都制作冬奥会特许商品国旗款运动服装t恤和短裤,每人每天可制作这种t恤3件或短裤5条.(1)若该厂要求每天制作的t恤和短裤数量相等,则应各安排多少人制作t恤和短裤?(2)已知制作一件t恤可获得利润25元,制作一条短裤可获得利润18元,若该厂要求每天获得利润18900元,则需要安排多少名工人制作t恤?2.打折前,买50件A商品和20件B商品用了1300元,买30件A商品和10件B商品用了750元.打折后,买100件A商品和100件B商品用了2800元,问比不打折少花了多少钱?3.有大小两种货车,2辆大货车与3辆小货车一次可以运货12吨,5辆大货车与6辆小货车一次可以运货27吨.(1)3辆大货车和5辆小货车一次可以运货多少吨?(2)现有17吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满,请列出所有的运输方案.4.云南风景名胜众多,为了激发学生个人潜能和团队精神,某学校组织学生去景区开展为期一天的素质拓展活动,已知景区成人票每张30元,学生票按成人票五折优惠,某班教师与学生一共去了50人,门票共需810元.求这个班参与活动的教师与学生各有多少人?(应用二元一次方程组解决)5.某学校储备“抗疫物资”,用33000元购进甲、乙两种医用口罩共计1000盒,甲、乙两种口罩的售价分别是30元/盒、35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒、25个/盒,按照市教育局要求学校必须储备足够使用10天的口罩,该校师生共计1000人,每人每天2个口罩,购买的口罩数量是否能满足市教局的要求?6.某小区购买两种包装的消毒液,其中5大箱、4小箱共装148瓶;2大箱、5小箱共装100瓶.大箱与小箱每箱各装多少瓶?7.冬季来临,某电器店开始销售A 、B 两种型号的取暖器,A 型取暖器每台200元,B 型取暖器每台300元.若两周内共销售30台,销售收入7300元,A 、B 两种型号的取暖器分别销售了多少台?8.甲、乙两人沿400米的环形跑道同时同地出发跑步.如果同向而行,那么经过200秒两人相遇;如果背向而行,那么经过50秒两人相遇.求甲、乙两人的跑步速度.9.在数据收集时发现,从教室到食堂需要先走楼梯下楼,再走一段平地.假定人在平路上行走速度始终是60米/分,下楼梯的时候速度始终是20米/分,上楼梯的时候速度始终是10米/分.则从教室到食堂需要4分钟,从食堂回来教室需要6分钟.请问楼梯有多少米,平地有多少米?10.某农业科学研究院对A 、B 两种玉米进行实验种植,已知去年两种玉米分别种植10亩,B 种玉米的平均亩产量比A 种玉米的平均亩产量高100kg ,且在两种玉米的市场销售价格均为2.4元/kg 的情况下,全部售出这两种玉米后总收入为21600元.(1)求A ,B 两种玉米去年的平均亩产量;(2)在保持种植面积不变的情况下,预计今年A ,B 两种玉米的平均亩产量将比去年平均亩产量分别增加%a 和2%a ,且总产量将比去年总产量增加280千克,求a 的值.11.为满足防疫需要,学校要储备抗疫物资,购进甲、乙两款医用口罩共250盒,甲、乙两款医用口罩分别是20元/盒、30元/盒,共花了6500元.(1)甲、乙两款医用口罩各购进多少盒?(2)已知甲、乙两款医用口罩每盒的口罩数量分别是50个/盒、100个/盒,按照防疫要求,学校必须储备足够使用10天的口罩,学校师生共900人,按每人每天储备2个口罩计算,问购买的口罩数量是否满足防疫要求?12.一种商品有大小盒两种包装,3大盒、4小盒共装108瓶,2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)已知这种商品一大盒的价格为40元,一小盒的价格为24元,小明购买这种商品共花费200元,试确定小明可能有哪些购买方案.13.目前,新型冠状病毒在我国虽可控可防,但不可松懈.为防范疫情,重庆实验外国语学校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和1瓶乙免洗手消毒液需要84元,购买2瓶甲和3瓶乙免洗手消毒液需要126元.(1)求甲、乙两种免洗手消毒液的价格为多少元/每瓶?(2)若初一年级师生共2000人,平均每人每天都需使用10ml的免洗手消毒液,若初一年级采购甲、乙两种免洗手消毒液共花费7200元,则这批消毒液可使用多少天?14.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人.15.长春一家超市中,杏的售价为11元/kg,桃的售价为10元/kg,小菲在这家超市买了杏和桃共3kg,共花费32元,求小菲这次买的杏、桃各多少千克?16.某货运公司有A,B两种型号的汽车,用2辆A型车和3辆B型车装满货物一次可运货13吨;用3辆A型车和5辆B型车装满货物一次可运货21吨.某物流公司现有25吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请你帮该物流公司设计可行的租车方案,直接写出所有方案.17.通道县政府为把双江镇建设成国家级文明县城,现有一段长为180 m的街道需要整治,甲、乙两个工程队先后接力完成:甲工程队每天整治12 m,乙工程队每天整治8 m,共用时20天.问甲、乙两工程队分别整治了多少米?18.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用18900元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,23元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计1000人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?(3)如果学校再用2000元钱去购买甲、乙两种口罩(两种口罩都要有)若干盒;你认为有哪几种购买方案?19.某商场上周购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融两种毛绒玩具共100个,共花去12000元.这两种吉祥物毛绒玩具的进价、售价如下表:则冰墩墩和雪容融各购进多少个?20.某药店出售A、B两种N95的口罩,已知该店进货4个A种N95口罩和2个B种N95口罩共需22元,进货8个A种N95口罩所需费用比进货4个B种N95口罩所需费用多4元.(1)请分别求出A、B两种N95口罩的进价是多少元?(2)已知药店将A种N95口罩每个提价1元出售,B种N95口罩每个提价20%出售,小雅在该药店购买A、B两种N95口罩(两种口罩均要购买),共花费40元,小雅有哪几种购买方案?。
七年级下册数学二元一次方程应用题

七年级下册数学二元一次方程应用题
1. 现在小华和小明一起去买鸡蛋,两个人一共买了12个鸡蛋。
已知小华买的鸡蛋是小明买的鸡蛋的一半,求小明买了几个鸡蛋,小华买了几个鸡蛋。
设小明买的鸡蛋数量为x,则小华买的鸡蛋数量为x/2。
根据题目条件,有:x + x/2 = 12。
将方程中的分数转为整数,得到:
2x + x = 24。
合并同类项,得到:
3x = 24。
解方程,得到:
x = 8。
所以,小明买了8个鸡蛋,小华买了4个鸡蛋。
2. 某商场举行打折促销活动,原价为x元的商品打8折后,实际售价为120元,求原价是多少元。
设原价为x元,根据题目条件,有:0.8x = 120。
解方程,得到:
x = 120 / 0.8 = 150。
所以,原价是150元。
3. 甲、乙两个人一起在甲的菜园里挖豆子。
甲每天挖的豆子是乙每天挖的2倍,挖了3天后,总共挖了180颗豆子,求甲和
乙各自每天挖多少颗豆子。
设乙每天挖的豆子数量为x颗,则甲每天挖的豆子数量为2x 颗。
根据题目条件,有:2x * 3 + x * 3 = 180。
解方程,得到:
6x = 180。
x = 180 / 6 = 30。
所以,乙每天挖30颗豆子,甲每天挖60颗豆子。
七年级下学期数学二元一次方程组应用题[所有分类]
![七年级下学期数学二元一次方程组应用题[所有分类]](https://img.taocdn.com/s3/m/5a7706abdaef5ef7ba0d3cb9.png)
二元一次方程组应用题题型一:数字问题1.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.题型二:销售和利润问题2.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚80元,•后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损60元,则该商场每件羊绒衫的进价为_____,标价为_______.3.某种彩电原价是2018元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.4.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为().A.10 B.12 C.14 D.175.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股100元的价格买入上海股票1 000股,当该股票涨到120元时全部卖出,•该投资者的实际赢利为().A.2 0000元 B.1 9250元 C.18350元 D.19100元6.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35•元,•利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、•乙两种商品各购进多少件?7.一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?题型三:利率、利税问题8.某公司存入银行甲、乙两种不同性质的存款共80万元,甲、•乙两种存款的年利率分别为1.4%和3.7%,该公司一年共得利息(不计利息税)26000•元,•则甲种存款______,乙种存款______.9.某人以两种形式一共存入银行8 0000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为8%,一年共得利息8600元,若设甲种存入x元,乙种存入y元,根据题意列方程组,得_________.10.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,•甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少.•若设甲、乙两种贷款的数额分别为x万元和y万元,则().A.x=15,y=20 B.x=12,y=23 C.x=20,y=15 D.x=23,y=12◆开放探索创新11.某商场计划拨款180万元从厂家购进1000台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共1000台,用去180万元,•请你研究一下商场的进货方案.题型四:行程问题12.甲、乙两人相距60km,甲的速度是30km/h,乙的速度为20km/h,两人同时出发,(1)若同向而行,甲追上乙需_______h;(2)若相向而行,甲、乙需______h相遇;(3)若同向而行,乙先走1h,甲再追乙,经过______h甲可追上乙.13.两人在900m的圆形跑道上练习赛跑,方向相反时每60s相遇一次,•方向相同时每3min 相遇一次,若设两人速度分别为x(m/s)和y(m/s)(x>y),•则由题意列出方程组为_________.14.A,B两地相距80km,甲从A地,乙从B地同时出发相向而行,经过8h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别为________.15.一只船在一条河上的顺流速度是逆流速度的5倍,则这只船在静水中的速度与水流速度之比为:_________.16.已知某铁路桥长1600m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90s,整列火车完全在桥上的时间是70s,求火车的速度和长度.题型五:配套问题17.张阿姨要把若干个苹果分给小朋友们吃,若每人8个,则多1个;若每人9个,•则缺2个,苹果有_______个,小朋友有_______个.18.两台拖拉机共运水泥58t,其中一台比另一台多运8t,•则这两台拖拉机分别运送了水泥_______t和_________t.19.如图所示,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,•则每个小长方形的面积为().A.30 B.20 C.10 D.1420.现用380张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?21.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?◆规律方法应用22.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有126张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?23.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次现租用该公司6辆甲种货车及8辆乙种货车一次刚好运完这批货,•如果按每吨付运费100元计算,则货主应付运费多少元?◆中考真题实战24.(长沙)某工厂第一季度生产甲、乙两种机器共500台,改进生产技术后,计划第二季度生产这两种机器共580台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?题型六:货运问题25.某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?题型七:工程问题26.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?例1分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14. 例2分析:设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元. 例3分析:因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩.故应安排20人生产螺栓,100人生产螺母. 例4【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.例5分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.例6分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩.。
七年级数学下册应用题32道

七年级,数学,下册,应用题,道,二元,一次,二元一次方程组应用题1.甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱?假设甲乙二人各有钱x、y,若乙给甲10元,则甲乙二人此时各有钱x+10、y-10,甲所有的钱为乙的三倍,是x+10=3(y-10)同理,若甲给乙10元,则甲乙二人此时各有钱x-10、y+10甲所有的钱为乙的2倍多十元,是x-10=2(y+10)+10联立方程组,得出甲乙的钱数 200和802.一块矩形草坪的长比宽的2倍多10米,它的周长是132米,则宽和长分别是多少?设长为x,宽为yx=2y+102(x+y)=132 解得:x=56\3 y=142\33.某班学生有x人,准备分成y个组开展活动,若每个组7人,则余3人;若每个组8人,则差5人.求全班的人数和所分组数。
由题,所分组数=(5+3)÷(8-7)=8组学生人数=8×7+3=59人所以,一共有59个学生,分了8组4.三年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人?设某年级有女生x人,男生y人x+y=2462x-3=y接方程组得x=83y=1635.甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米?设甲乙两绳各长x,y米x+y=17x(1-1/5)=y+1即:x+y=17①4x-5y=5②①*5+②得9x=90x=10将x=10代入①解得y=7答:甲绳长10米,乙绳长7米.6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,求黄河、长江各长多少千米?假设长江长a千米黄河长b千米得出a-b=836……16b-5a=1284……2将1式×6得6a-6b=5016……32式+3式得a=6300所以b=5464所以长江长6300千米黄河长5464千米7.甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台?设甲店洗衣机台数为x,乙店洗衣机台数为y,那么x-12=y+12 ①x+12=3(y-12)+2②由①得y=x-24代入②得x+12=3(x-24-12)+2x=59y=358.有甲、乙两条绳子,其中甲绳长的3/8与乙绳长的1/3叠合后,全长238厘米,求甲乙两绳长各是多少厘米?设甲为X;乙为Y甲的3/8能与乙的1/3叠合故:3/8X=1/3Y;同时X+2/3Y=238求方程组得X= 136 Y=1539.小明春节原有压岁钱若干元,先用去一部分,剩余的钱为用去的2倍,后来又用掉600元,最后剩下的钱为原有的三分之一,问小明原来有压岁钱多少元?设:第一次用去X元,共有Y元2X=Y-X3(Y-X-600)=2X得:X=450 Y=135010.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色的人数是涂红色人数的3,则晚会5上男、女生各有几人?解:设晚会上男生有x人,女生有y人,根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12,把x=12代入④,得y=21,所以答:晚会上男生12人,女生21人。
人教版七年级下册数学第八章二元一次方程组应用题——方案问题训练

人教版七年级下册数学第八章二元一次方程组应用题——方案问题训练1.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?2.某村老杨家有耕地和林地共24公顷,今年每公顷耕地纯收入为5500元,每公顷林地纯收入为6000元,耕地与林地的纯收入共137000元,为保护生态环境,增加收入,老杨计划将部分耕地改为林地(改后每公顷耕地,林地纯收入不变),要使改后的纯收入为140000元.问:(1)老杨家原有耕地,林地各多少公顷?(2)老杨应将多少公顷耕地改为林地?3.为了在即将到来的体育中考中取得好的成绩,某校准备在体育中考前将学校九年级的690名学生送到体育馆进行一次模拟考试,经学校和客车公司联系了解到,2辆大型客车和1辆中型客车可载客130人,1辆大型客车和3辆中型客车可载客140人,若要将这些学生--次性全部送到体育馆,且恰好装满.根据以上信息,回答下面问题:(1)每辆大型客车和中型客车各载多少人?(2)该校共有多少种租车方案?.(3)若每辆大型客车需租金1000元,每辆中型客车需租金800元,请你给该校提供一个最省钱的租车建议,并求出最少租车费用是多少?4.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?5.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?6.某校订购了A、B两种笔记本,A种笔记本单价为28元,B种单价为24元,若B种笔记本的订购数量比A种笔记本的2倍少20个,并且订购两种笔记本共用了2560元问该校分别订购了A、B两种笔记本各多少个?7.某校美术组要购买铅笔和橡皮,按照商店规定,若同时购买60支铅笔和30块橡皮,则需按零售价购买,共需支付30元;若同时购买90支铅笔和60块橡皮,则可按批发价购买,共需支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.求每支铅笔和每块橡皮的批发价各是多少元?8.某中学七年级有350名师生需要租车去野外进行拓展训练,现有A、B两种类型号的车可供选择,已知1辆A型车和2辆B型车可载110人,2辆A型车和1辆B型车可载100人.(1)A、B型车每辆可分别载多少人?(2)要始每辆车都恰好坐满且正好运完这些师生,请问你有哪几种设计租车方案,请一一列举出来.9.某商场计划拨款9万元从厂家购进50台电视机,已知该厂生产三种不同型号的电视机,出厂价分别为甲种每台1500元, 乙种每台2100元, 丙种每台2500元, 若商场同时购进其中两种不同型号的电视机共50台,用去9万元.请你通过计算,说明商场有哪些进货方案.10.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?11.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?12.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?13.某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?14.某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?15.春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.16.学校为了创建示范教育标准校,计划购进一批台式电脑和笔记本电脑,经过市场调研得知,购买1台台式电脑和2台笔记本电脑共需3.5万元,购买2台台式电脑和3台笔记本电脑共需5.5万元.每台台式电脑、笔记本电脑各需多少万元?17.某商场计划购进A、B两种新型节能台灯共100盏,已知A型台灯的进价是30(元/盏),B型台灯每台进价比A型台灯贵20元,若商场预计进货款为3500元,则这两种台灯各购进多少盏?18.某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.、型车每辆可分别载学生多少人?(1)A B(2)若租一辆A型车需要1000元,一辆8型车需1200元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.19.张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元2角,B型号的信封每个比A型号的信封便宜2分.两种型号的信封的单价各是多少?20.五经富服装厂接受一批生产校服的任务,按计划的天数生产,若平均每天生产20件,到时将比订货任务少100件;若平均每天生产23件,则可提前1天完成.问:这批校服的订货任务是多少?原计划几天完成?。
七年级数学下一元一次方程应用题专题行程问题学生版

学习好资料欢迎下载9.甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从岀发到相遇一 共用了多少时间?二、行程(追击)问题A.基础训练 1.姐姐步行速度是75米/分,妹妹步行速度是 45米/分。
在妹妹岀发20分钟后,姐姐岀发去追 妹妹。
问:多少分钟后能追上?3. 王强和赵文从相距 2280米的两地出发相向而行,王强每分行 60米,赵文每分行80米,王强岀发3分钟后赵文岀发,几分钟后两人相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了 16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙岀发后,几小时能追上甲?4. 两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行 60千米,1小时后乙车岀发,每小时行40千米,乙车岀发几小时两车相遇?3.一列慢车从A 地出发,每小时行 60千米,慢车开出1小时后,快车也从 A 地出发,每小时 速度为90千米,快车经过几小时可追上慢车?5. 两村相距35千米,甲乙二人从两村出发, 相向而行,甲每小时行5千米,乙每小时行4千米, 甲先出发1小时后,乙才出发,当他们相距 9千米时,乙行了多长时间?4.敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以 8千米/时的速度追击,并 在相距一千米处发生战斗,问战斗是在开始追击几小时发生的?6. 甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行 1千米,5小时后二人相遇,求两人的速度。
5.AB 两站相距448千米,一列慢车从A 站出发,每小时行驶60千米,一列快车也从 A 站出发, 每小时行驶80千米,要使两车同时到达 B 站,慢车应先岀发几小时?7. 甲乙二人从相距100千米的两地出发相向而行,甲先出发 1小时,他们在乙出发 4小时后相遇,已知甲比乙每小时多行 2千米,求两人的速度。
人教版七年级下册数学实际问题与二元一次方程组(方案问题)应用题训练

人教版七年级下册数学8.3 实际问题与二元一次方程组(方案问题)应用题训练1.某货运公司有A,B两种型号的汽车,用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请帮该物流公司设计可行的租车方案.2.“五一”国际劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲,乙两队联合起来购买服装,那么比各自购买服装最多可以节省多少元?并说明理由.(2)甲、乙两队各有多少名学生?3.为奖励期中考试成绩优秀的学生,某校准备购买一批笔记本和圆珠笔作为奖品,已知购买1个笔记本和2支圆珠笔需21元,购买2本笔记本和3支圆珠笔需39元.(1)求笔记本和圆珠笔的单价.(2)学校准备购买笔记本20个,圆珠笔若干,文具店给出两种优惠方案:方案一:购买一个笔记本送1支圆珠笔.方案二:购买圆珠笔10支以上时,其中有10支按原价付款,超出10支的部分按原价的八折优惠,笔记本不打折.若学校购买圆珠笔100支,则选择哪种方案更合算?请说明理由.4.某校初中七年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元.(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5.为庆祝中国共产党成立100周年,七年级学生开展“好读书,读好书”向党献礼活动,学校图书馆准备采购党史和文学名著两类图书,每类图书单价相同.如果购买8本党史书,10本文学名著需花费310元;如果购买15本党史书,20本文学名著需花费600元.(1)求党史书和文学名著的单价.(2)该校预计购买200本党史书和180本文学名著共需花费多少元钱?6.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m的值.7.某生态柑橘园现有柑橘21吨,计划租用A、B两种型号的货车将柑橘运往外地销售.已知满载时,用3辆A型车和2辆B型车一次可运柑橘13吨;用4辆A型车和3辆B型车一次可运柑橘18吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用,A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载请帮柑橘园设计租车方案;8.为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受古都洛阳的悠久历史,某中学组织七年级师生共390人开展研学活动,学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车2辆,B型车5辆,则刚好坐满;若租用A型车5辆,B型车3辆,则空余15个座位.(1)求A、B两种车型各有多少个座位?(2)若租用同一种车,且A型车租金为1600元/辆,B型车租金为1850元/辆,要使每位师生都有座位,怎样租车更合算?9.某中学七年级一班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,七年级二班同学在同一商场购买了A品牌足球3个、B品牌足球1个,共花费230元.(1)求A,B两种品牌足球的价格各为多少元?(2)为响应“足球进校园”的号召,学校使用专项经费1500元全部用来购买A,B两种品牌的足球供学生使用(要求两种足球都必须购买,专项经费必须用完),那么学校有多少种不同的购买方案?请分别求出每种方案购买A,B两种品牌足球的个数.10.某工厂现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A、B两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,3辆A型货车和1辆B型货车一次共运货13吨;2辆A型货车和3辆B型货车一次共运货18吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?(2)为了按计划完成本次货物运送,该工厂要同时租用A、B两种型号的货车各几辆?请列出所有的租车方案.11.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车,2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?12.人间四月天,正是枇杷成熟时,果农现欲将一批枇杷运往外地销售,若用2辆A 型车和1辆B型车载满枇杷一次可运走10吨;用1辆A型车和2辆B型车载满枇杷一次可运走11吨.现有枇杷22吨,计划同时租用A型车和B型车,一次运完,且恰好每辆车满载.(1)1辆A型车和1辆B型车满载枇杷一次可分别运送多少吨?(2)若1辆A型车需租金100元/次,1辆B型车需租金120元/次,请选出费用最少的租车方案.13.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.14.某地筹集了重要物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运能力和运费如下表所示:(假设每辆车均满载)(1)全部物资可用甲型车8辆,乙型车5辆,丙型车________辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,该地打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?15.在疫情防控期间,某中学为保障广大师生生命健康安全,欲从商场购进一批免洗手消毒液和84消毒液.如果购买30瓶免洗手消毒液和80瓶84消毒液,共需花费1280元,如果购买40瓶免洗手消毒液和110瓶84消毒液,共需花费1740元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液80瓶,84消毒液70瓶,请问学校选用哪种方案更节约钱?16.河南灵宝苹果为中华苹果之翘楚,被誉为“中华名果”,某水果超市计划从灵宝购进“红富士”与“新红星”两个品种的苹果.已知2箱红富士苹果的进价与3箱新红星苹果的进价的和为282元,且每箱红富士苹果的进价比每箱新红星苹果的进价贵6元.(1)求每箱红富士苹果的进价与每箱新红星苹果的进价分别是多少元?(2)若超市准备购买红富士和新红星两种苹果共50箱,且红富士的数量不少于新红星的13,请设计出最省钱的购买方案,并说明理由.17.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)市场调用了甲、乙、丙三种车型共16辆参与运送(每种车型至少1辆),问:有几种车辆分配方案?哪种方案运费最省?18.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用180万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.19.某景点的门票价格规定如表某校八年级(1)(2)两班共102人去游览该景点,其中(1)班以每人12元购票,(2)班以每人10元购票,一共付款1118元.(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票最节省?可节省多少钱?20.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满,请你设计出所有的租车方案.参考答案:1.(1)一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨;(2)该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.2.(1)甲、乙两队联合起来购买服装比各自购买服装最多可以节省350元;(2)甲队有40名学生,乙队有35名学生.3.(1)笔记本每本为15元,圆珠笔每支为3元;(2)方案一更合算,理由见解析4.(1)一班有48人,二班有56人;(2)304元;(3)集体购票合算5.(1)党史书的单价为20元,文学名著的单价为15元;(2)6700元6.(1)购买足球4个,购买排球8个;(2)87.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.8.(1)每辆A型车有45个座位,每辆B型车有60个座位;(2)选择方案二,只租用B型车时最划算,总费用为12950元.9.(1)A种品牌足球的价格50元,B种品牌足球的价格80元;(2)学校有3种购买足球的方案,方案一:购买A品牌足球22个、B品牌足球5个;方案二:购买A品牌足球14个、B品牌足球10个;方案三:购买A品牌足球6个、B品牌足球15个.10.(1)一辆A型车能满载货物3吨,一辆B型车能满载货物4吨;(2)见解析11.(1)每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车;(2)40名12.(1)1辆A型车载满枇杷一次可运送3吨,1辆B型车载满枇杷一次可运送4吨;(2)租用2辆A型车,4辆B型车,最少租车费为680元13.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.14.(1)4;(2)分别需要甲、乙两种车型为8辆和10辆;(3)甲车2辆,乙车5辆,丙车7辆,需运费7500元15.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是16元、10元;(2)方案二更节约钱16.(1)每箱红富士苹果的进价为60元,每箱新红星苹果的进价为54元;(2)购买红富士13箱,新红星37箱时费用最少,见解析.17.(1)需要甲种车型8辆,乙种车型10辆;(2)有两种分配方案,调用甲种车型4辆.乙种车型10辆、丙种车型2辆参与运送,运费最省.18.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)共3种购买方案,方案一:购进A型车6辆,B型车3辆;方案二:购进A型车4辆,B型车8辆;方案三:购进A型车2辆,B型车13辆.19.(1)一班学生49名,二班学生53名;(2)两班联合起来购票最节省,可节省302元20.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;。
七年级下数学应用题

二元一次方程组与一元一次不等式经典应用题注意:通过例题你应该懂得怎么去思考、怎么去列方程、不等式,还要注意书写格式。
1、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ xx 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元; 方案三所需运费 216042404300=⨯+⨯元. 所以王灿应选择方案一运费最少,最少运费是2040元.2、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案. 解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆; 第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.3、某商店准备购进甲、乙两种商品。
七年级下册数学列二元一次方程组解应用题专项训练

第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了;”请问老师、学生今年多大年龄了呢2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1若分班购票,则共应付1240元,求两班各有多少名学生2请您计算一下,若两班合起来购票,能节省多少元钱3若两班人数均等,您认为是分班购票合算还是集体购票合算5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满;已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元;1初一年级人数是多少原计划租用45座汽车多少辆2若租用同一种车,要使每个学生都有座位,怎样租用更合算6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生;1求平均每分钟一道正门和一道侧门各可以通过多少名学生2检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定请说明理由;8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度;10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度;11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分;比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几注:公民应交利息所得税=利息金额×20%;17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折按售价的70%销售和九折按售价的90%销售,共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件20、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等;求该电器每台的进价、定价各是多少元21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价;在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元22、某工厂去年的利润总产值——总支出为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量每小时通过观测点的汽车车辆数,三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少25、初三2班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格;27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元;1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗若两家都可以选择,在哪一家购买更省钱28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%. 1设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组解得 2在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.3设非搬迁户申请加入建房并被政府批准的有z 户,政府将收取的土地使用费投入后,还需投资p 万元.①用含z 的代数式表示p ;②当p 不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a , , x =y =元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:1 求a、b的值;2 初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.不需写出计算过程30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车;熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k 月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k 倍k =2,3,4,……,12,假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为参考答案:12.解:21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得;⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200 答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x 解得⎩⎨⎧==.50,100y x 1001+15%=115万元,501+10%=55万元.答:A,B 两个超市今年“五一节” 期间的销售额分别为115万元,27. 解:1解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x-+=解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元; 解法二:设书包的单价为x元,随身听的单价为y元根据题意,得x yy x+==-⎧⎨⎩45248解这个方程组,得xy==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A购买;在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=元因为362400<,所以也可以选择在超市B购买; ……4分因为3623616>.,所以在超市A购买更省钱; ……5分30.解: 设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y 元;依题意得解得:4.175.0 20t 1521===y x t ,,=,就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资: M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件;故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组与一元一次不等式经典应用题
注意:通过例题你应该懂得怎么去思考、怎么去列方程、不等式,还要注意书写格式。
1、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得
⎩
⎨
⎧≥-+≥-+12)8(220
)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆
(2)方案一所需运费 204062402300=⨯+⨯元;
方案二所需运费 210052043300=⨯+⨯元; 方案三所需运费 216042404300=⨯+⨯元. 所以王灿应选择方案一运费最少,最少运费是
2040元.
2、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案. 解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆
由题意得:4030(8)2901020(8)100
x x x x +-⎧⎨+-⎩≥≥
解得:56x ≤≤
即共有2种租车方案:
第一种是租用甲种汽车5辆,乙种汽车3辆; 第二种是租用甲种汽车6辆,乙种汽车2辆.
(2)第一种租车方案的费用为
520003180015400⨯+⨯=元;
第二种租车方案的费用为
620002180015600⨯+⨯=元
∴第一种租车方案更省费用.
3、某商店准备购进甲、乙两种商品。
已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?
(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少? (利润 = 售价 - 进价) 解:(1)设购进甲种商品x 件,购进乙种商品y 件,
根据题意⎩⎨⎧=+=+.27003515,100y x y x 解这个方程组得,⎩
⎨⎧==.60,
40y x
答:商店购进甲种商品40件,则购进乙种商品60件。
(2)设商店购进甲种商品x 件,则购进乙种商品(x -100)件,根据题意,得 ()()⎩⎨
⎧≥-+≤-+.
890100105,
31001003515x x x x 解之得20≤x ≤22
方案一,甲种商品20件,乙种商品80件 方案二,甲种商品21件,乙种商品79件 方案三,甲种商品22件,乙种商品78件
方案一所得利润9008010205=⨯+⨯元; 方案二所得利润8957910215=⨯+⨯元 方案三所得利润8907810225=⨯+⨯元. 所以应选择方案一利润最大为2040元。
4、在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题?
(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?
5、某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家类别 电视机
冰 箱
洗衣机
进价(元/台) 2000
2400 1600 售价(元/台)
2100 2500 1700
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数
解:(1)设小李答对了x 道题. 依题意得 5x ﹣3(20﹣x )=60.解得x=15. 答:小李答对了16道题. (2)设小王答对了y 道题,依题意得: ,解得:≤y ≤,即 ∵y 是正整数, ∴y=17或18, 答:小王答对了17道题或18道题.
量的一半,商场有哪几种进货方案?
(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元? 设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台 依题意得:
⎪⎩⎪⎨
⎧
≤-++≤-32400
)215(16002400200021215x x x x
x 解这个不等式组,得6≤x ≤7 ∵x 为正整数,∴x =6或7 方案1:购进电视机和冰箱各6台,洗衣机3台;
方案2:购进电视机和冰箱各7台,洗衣机1台 (2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元); 方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元); ∴国家的财政收入最多需补贴农民4407元.
6、同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
解:设购买一个足球需要x 元,购买一个篮球需要y 元, 根据题意得
,解得
,
∴购买一个足球需要50元,购买一个篮球需要80元.
解:设购买n 个足球,则购买(96﹣n )个篮球. 50n+80(96﹣n )≤5720,解得n ≥65
∵n 为整数,∴n 最少是66 96﹣66=30个. ∴这所学校最多可以购买30个篮球.
7、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表: 租金(单位:元/台•时) 挖掘土石方量(单位:m 3/台•时) 甲型挖掘机 100 60 乙型挖掘机 120 80
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案? 解:(1)设甲、乙两种型号的挖掘机各需x 台、y 台.
依题意得:
,解得
.
答:甲、乙两种型号的挖掘机各需5台、3台;
(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机. 依题意得:60m+80n=540,化简得:3m+4n=27. ∴m=9﹣n ,∴方程的解为
,
.
当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额; 当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求. 答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机.
8、某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元. (1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案? (3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱? 解:(1)设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,
由题意得:x=3y+30004x+5y=80000⎧⎨⎩,解得:x=15000
y=4000⎧⎨⎩。
答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元。
(2)设购买购买电子白板a 块,则购买笔记本电脑(396﹣a )台,由题意得:
()396a 3a
270000015000a+4000396a -≤⎧⎪≤⎨
-⎪⎩
,解得:599a 10111≤≤。
∵a 为整数,∴a =99,100,101,则电脑依次买:297,296,295。
∴该校有三种购买方案
方案一:购买笔记本电脑295台,则购买电子白板101块; 方案二:购买笔记本电脑296台,则购买电子白板100块; 方案三:购买笔记本电脑297台,则购买电子白板99块。