电场 章末检测试卷(一)(答案附后面)

合集下载

(浙江专用)2018-2019学年高中物理 第一章 静电场章末检测卷 新人教版选修3-1

(浙江专用)2018-2019学年高中物理 第一章 静电场章末检测卷 新人教版选修3-1

第一章静电场章末检测卷(一)(时间:90分钟分数:100分)一、选择题(共13小题,每题4分,共52分。

在每题列出的四个备选项中只有一项为哪一项切合题目要求的。

)1.(2016·4月浙江选考,7)对于电容器,以下说法正确的选项是( )A.在充电过程中电流恒定B.在放电过程中电容减小C.能储藏电荷,但不可以储藏电能D.两个相互绝缘又凑近的导体可视为电容器分析电容器的充放电曲线可知,充电过程中,电流不会恒定,A错;电容不随充放电过程变化,B错;电容器中的电场拥有能的性质,因此C错;由电容器的定义知D正确。

答案 D2.对于电场强度与电势的关系,下边各样说法中正确的选项是( )A.电场强度大的地方,电势必定高B.电场强度不变,电势也不变C.电场强度为零时,电势必定为零D.电场强度的方向是电势降低最快的方向分析电场强度是描绘静电力的性质的物理量,电势是描绘电场能的性质的物理量,电场强度的大小和电势高低没有必定关系;电场线的方向,即电场强度的方向是电势降低最快的方向,选项A、B、C错误,选项D正确。

答案 D3.电子不计重力,只需给电子一个适合的初速度它就能沿向来线运动,给电子另一个适合的初速度它就能做圆周运动,知足这两个条件的电场为( )A.等量异种点电荷形成的电场B.等量负点电荷形成的电场C.等量正点电荷形成的电场D.以上选项均错分析在正点电荷形成的电场中,若电子初速度的方向与电场线共线,电子就能做直线运动;若电子初速度的方向与电场线垂直,电子就能以正点电荷为圆心做匀速圆周运动,选项C 正确。

答案 C4.点电荷在匀强电场中只受电场力作用做直线运动,则( )A.做匀变速运动.电势能减少C.速度增添.速度可能不变分析在匀强电场中点电荷遇到的电场力恒定,加快度恒定,A正确;若点电荷初速度方向与电场力方向相反,电场力先做负功后做正功,电势能先增后减,速度先减小后增大。

B、C 错误;点电荷在匀强电场中只受电场力作用并做直线运动,速度必定要变化,D错误。

电场章末测试

电场章末测试

电场章末测试一.选择题1.关于静电场,下列结论普遍成立的是( )A .电场中任意两点之间的电势差只与这两点的场强有关B .电场强度大的地方电势高,电场强度小的地方电势低C .将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零D .在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向2. 法拉第首先提出用电场线形象生动地描绘电场.图6-1为点电荷a 、b 所形成电场的电场线分布图,以下几种说法正确的是( )A.a 、b 为异种电行,a 带电量大于b 带电量B.a 、b 为异种电荷,a 带电量小于b 带电量C.a 、b 为同种电行,a 带电量大于b 带电量D.a 、b 为同种电荷,a 带电量小于b 带电量3.两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F.两小球相互接触后将其固定距离变为r 2,则两球间库仑力的大小为 ( )A.112FB.34FC.43F D .12F 4.在点电荷 Q 形成的电场中有一点A ,当一个-q 的检验电荷从电场的无限远处被移到电场中的A 点时,电场力做的功为W ,则检验电荷在A 点的电势能及电场中A 点的电势分别为:( )A .A A W W q εϕ=-=,B .A A W W q εϕ==-,C .A A W W q εϕ==,D .A A Wq W εϕ=-=-, 5.如图所示,在正六边形a 、c 两个顶点各放一带正电的点电荷,电量的大小都是q1,在b 、d 两个顶点上,各放一带负电的点电荷,电量的大小都是q2,q1>q2.已知六边形中心O 点处的场强可用图中的四条有向线段中的一条来表示,它是哪一条? ( )A .E1B .E2C .E3D .E46.图中虚线是用实验方法描绘出的某一静电场中的一簇等势线,若不计重力的带电粒子从a 点射入电场后恰能沿图中的实线运动,b 点是其运动轨迹上的另一点,则下述判断正 确的是 ( )A .b 点的电势一定高于a 点B .a 点的场强一定大于b 点C .带电粒子一定带正电D .带电粒子在b 点的速率一定小于在a 点的速率7.如图所示,在A 板附近有一电子由静止开始向B 板运动,则关于电子到达了B 板时的速率,下列解释正确的是( )A .两板间距越大,加速的时间就越长,则获得的速率越大B .两板间距越小,加速度就越大,则获得的速率越大C .与两板间的距离无关,仅与加速电压U 有关D .以上解释都不正确8.如图1所示,匀强电场E 的区域内,在O 点放置一点电荷+Q.a 、 b 、c 、d 、e 、f 为以O 为球心的球面上的点,aecf 平面与电场平行,bedf 平面与电场垂直,则下列说法中正确的是( )A .b 、d 两点的电场强度相同B .a 点的电势等于f 点的电势C .点电荷+q 在球面上任意两点之间移动时,电场力一定做功D .将点电荷+q 在球面上任意两点之间移动时,从a 点移动到c 点电势能的变化 量一定最大9. 两块大小、形状完全相同的金属平板平行放置,构成一平行板电容器,与它相连接的电路如图6-2所示,接通开关,电源即给电容器充电( )A.保持K 接通,减少两极板间的距离,则两 极板间电场的电场强度减少B.保持K 接通,在两极板间插入一块介质,则极板上的电量增大C.断开K ,减少两极板间的距离,则两极板间的电势差减小D.断开K ,在两极板间插入一块介质,则两极板间的电势差增大10. 如图所示,带正电的粒子以一定的速度v 沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L ,板间距为d ,板间电压为U ,带电粒子的电荷量为q ,粒子通过平行金属板的时间为t ,则( )(不计粒子的重力)A .在前t/2时间内,电场力对粒子做的功为qU/4B. 在后t/2时间内,电场力对粒子做的功为3qU/8C .在粒子下落前d/4和后d/4的过程中。

2024_2025学年高中物理第1章静电场章末综合测评含解析新人教版选修3_1

2024_2025学年高中物理第1章静电场章末综合测评含解析新人教版选修3_1

章末综合测评(一)(时间:90分钟分值:100分)一、选择题(本题共10小题,每小题6分。

在每小题给出的四个选项中第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列说法正确的是( )A.电荷放在电势高的地方,电势能就大B.正电荷在电场中某点的电势能,肯定大于负电荷在该点具有的电势能C.无论是正电荷还是负电荷,克服电场力做功它的电势能都增大D.电场强度为零的点,电势肯定为零C[电势能的大小与电荷的电性有关,正电荷放在电势高的地方,电势能大,而负电荷放在电势高的地方,电势能小,故A错误;正电荷在电场中电势大于零的点,其电势能肯定大于负电荷在该点具有的电势能;而正电荷在电场中电势小于零的点,其电势能肯定小于负电荷在该点具有的电势能,故B错误;只要克服电场力做功,电荷的电势能肯定增大,与电荷的电性无关,故C正确;电场强度与电势无关,可知电场强度为零的点,电势不肯定为零,故D错误。

]2.如图所示,在真空中,把一个绝缘导体向带负电的球P渐渐靠近。

关于绝缘导体两端的电荷,下列说法中不正确的是( )A.两端的感应电荷越来越多B.两端的感应电荷是同种电荷C.两端的感应电荷是异种电荷D.两端的感应电荷的电荷量相等B[由于导体内有大量可以自由移动的电子,当它渐渐靠近带负电的球P时,由于同种电荷相互排斥,导体上靠近P的一端的电子被排斥到远端,靠近P的一端带上了正电荷,远离P的一端带上了等量的负电荷。

导体离球P距离越近,电子被排斥得越多,感应电荷越多。

] 3.如图所示,绝缘志向细线AC、BC系着带电小球a,在D处的带电小球b的库仑引力作用下,两细线AC、BC处于伸直状态,B、C、D在同一条水平线上,a、b两小球均可看作点电荷。

下列选项正确的是( )A .若只增大b 球的带电量,AC 线的拉力增大B .若只增大b 球的带电量,AC 线的拉力减小C .若只将b 球沿直线CD 向左靠近a 球,AC 细线的拉力增大D .若只将b 球沿直线CD 向左靠近a 球,AC 细线的拉力保持不变D [设细线AC 和AB 的夹角为θ,分析小球a 的受力状况,竖直方向上,F AC cos θ=mg ,当只增大a 球或b 球的带电量时,夹角θ不变,AC 的拉力不变,故A 、B 项均错误。

2020学年高中物理第一章电场电流章末综合检测(含解析)新人教版选修1-1(2021-2022学年)

2020学年高中物理第一章电场电流章末综合检测(含解析)新人教版选修1-1(2021-2022学年)

章末综合检测一、单项选择题(本大题共7小题,每小题5分,共35分)1.人站在绝缘板上,手扶着起电机,头发全竖起来并散开,其原因是头发带了同种电荷并相互排斥的结果,则头发带电的方式属于()A.摩擦起电 B.接触起电C.感应起电D.以上方式都不属于解析:题目中强调的是手扶着起电机,从“扶着"一词来看就可以分析出头发带电的方式属于接触起电.答案:B2.如果将用毛皮摩擦过的塑料棒接近细水流,则()A.水流将向远离塑料棒的方向偏转B.水流将向靠近塑料棒的方向偏转C.水流先靠近再远离塑料棒D.水流不偏转解析:毛皮摩擦过的塑料棒带上了电荷,对细水流有吸引作用.答案:B3.如图所示,平行板电容器C和电阻R组成电路,当增大电容器极板间的距离时,则 ( )A.在回路中有从a经R流向b的电流B.在回路中有从b经R流向a的电流C.回路中无电流D.回路中的电流方向无法确定解析:依题图知电容器a板带正电,b板带负电.当d增大时,电容C减小.由于电容器一直接在电源上,故电容器两极板间的电压U不变,所以由公式C=错误!,得Q=UC,电容器所带电量应减小,即将d增大时,电容器应放电.电容器放电时,其电流由正极板流向负极板,即从a板流出经R流向b 板,所以选项A正确.ﻬ答案:A4.电场强度的定义式为E=错误!未定义书签。

,点电荷的电场强度公式为E=k\f(Q,r2)。

关于这两个公式,下列说法正确的是( )A.E=错误!中的电场强度E是电荷q产生的B.E=k Qr2中的电场强度E是电荷Q产生的C.E=错误!中的F是表示单位正电荷的受力D.E=错误!未定义书签。

和E=k错误!都只对点电荷适用解析:E=错误!未定义书签。

是定义式,适用于任何情况,而E=k错误!未定义书签。

只适用于点电荷,其中F为q受到的电场力,不一定是单位正电荷受到的力,q只是试探电荷.答案:B5.已知点电荷A的电荷量是点电荷B的2倍,则A对B作用力的大小跟B对A的作用力大小的比值为( )A.2∶1 B.1∶2C.1∶1D.不一定解析:电荷间的相互作用力遵循牛顿第三定律,A对B的力与B对A的力是作用力与反作用力的关系,它们大小相等、方向相反,故A、B、D项错,C选项正确.答案:C6.如图所示是一种通过检测电容器电容的变化来检测液面高低的仪器原理图,容器中装有导电液体,是电容器的一个电极,中间的芯柱是电容器的另一个电极,芯柱外面套有绝缘管(塑料或橡皮)作为电介质,电容器的两个电极分别用导线接在指示器上,指示器上显示的是电容的大小,从电容的大小就可知容器中液面位置的高低,为此,以下说法中正确的是()A.如果指示器显示出电容增大了,则两电极正对面积增大,液面必升高B.如果指示器显示出电容减小了,则两电极正对面积增大,液面必升高C.如果指示器显示出电容增大了,则两电极正对面积减小,液面必降低D.如果指示器显示出电容减小了,则两电极正对面积增大,液面必降低解析:该仪器类似于平行板电容器,且芯柱进入液体深度h越大,相当于两平行板的正对面积越大,电容越大.答案:A7。

高中物理必修三章末检测卷及答案解析(一)

高中物理必修三章末检测卷及答案解析(一)

高中物理必修三章末检测卷及答案解析(一)一、单项选择题(本题共8小题,每小题4分,共32分)1 .(2020·雅安市期末)下列是某同学对电场中的概念、公式的理解,其中正确的是()A .根据电场强度的定义式E=Fq,电场中某点的电场强度和试探电荷的电荷量成反比B .根据电容的定义式C=QU,电容器的电容与所带电荷量成正比,与两极板间的电压成反比C .根据真空中点电荷电场强度公式E=kQr2,电场中某点电场强度和场源电荷的电荷量成正比D .根据公式U AB=W ABq,带电荷量为1 C的正电荷,从A点移动到B点克服静电力做功为1 J,则A、B两点的电势差为1 V答案 C解析电场强度是电场本身具有的性质,与试探电荷无关,故A错误.电容是电容器本身具有的性质,表示电容器容纳电荷的能力,与两极板间电压和电荷量无关,故B错误.由真空中点电荷场强公式可以得出,点电荷产生电场的场强大小与场源电荷电荷量成正比,故C正确.克服静电力做功,说明此过程静电力做负功,即:W AB=-1 J,根据U AB=W ABq,可得:U AB=-1 V,故D错误.2 .(2020·湖南正源中学高二期末)根据大量科学测试可知,地球本身就是一个电容器.通常大地带有50万库仑左右的负电荷,而地球上空存在一个带正电的电离层,这两者之间便形成一个已充电的电容器,它们之间的电压为300 kV左右.地球的电容约为()A .0.17 F B.1.7 FC .17 F D.170 F答案 B解析根据题意可得Q=5×105 C,U=3×105 V,根据C=QU,可得C=5×105 C3×105 V≈1.7F,B正确.3.(2020·溧阳市光华中学高一月考)某带电粒子仅在静电力作用下由A点运动到B 点.如图1所示,实线为电场线,虚线为粒子运动轨迹,由此可以判定()图1A .粒子在A点的加速度大于它在B点的加速度B .粒子在A点的动能小于它在B点的动能C .电场中A点的电势低于B点的电势D .粒子在A点的电势能小于它在B点的电势能答案 D解析电场线的疏密表示场强大小,由题图知粒子在A点的场强小于在B点的场强,在A点所受的静电力小,故在A点的加速度小于在B点的加速度,故A错误;由题图知带电粒子的运动轨迹向下弯曲,则带电粒子所受的静电力沿电场线切线向下,则知静电力对粒子做负功,动能减小,则粒子在A点的动能大于它在B点的动能,故B错误;因粒子由A到B时,静电力做负功,故电势能增大,则粒子在A点的电势能小于它在B点的电势能,故D正确;粒子所受静电力方向与电场强度相反,则粒子带负电,而电势能E p=qφ,因粒子在A点的电势能小于它在B点的电势能,有(-qφA)<(-qφB),可得φA>φB,故A点的电势高于B点的电势,故C错误.4.(2020·浙江温岭中学高一期中)图2为某个孤立点电荷的两条电场线,a、b、c 是电场线上的三个点,下列说法正确的是()图2A .该点电荷可能带负电B .a点的电势一定比c点的电势高C .电子在a点时的电势能比在b点时大D .将正的试探电荷从c点移到b点,静电力做负功答案 B解析越靠近点电荷的位置电场线越密集,则点电荷位于左侧,根据电场线的方向可判断该点电荷带正电,选项A错误;沿着电场线方向电势降低,则a点的电势一定比b、c点的电势高,选项B正确;a点的电势比b点的电势高,电子带负电,根据E p=qφ可知电子在a点的电势能小于在b点的电势能,选项C错误;点电荷在左侧,带正电,则将正的试探电荷从c点移到b点,静电力做正功,选项D错误.5.(2021·湖南高二期中)如图3所示,空间存在足够大的水平方向的匀强电场,绝缘的曲面轨道处于匀强电场中,曲面上有一带电金属块在力F的作用下沿曲面向上移动 .已知金属块在向上移动的过程中,力F做功40 J,金属块克服静电力做功10 J,金属块克服摩擦力做功20 J,重力势能改变了30 J,则()图3A .电场方向水平向左B .电场方向水平向右C .在此过程中金属块电势能减少20 JD .在此过程中金属块机械能增加10 J答案 D解析因为不知道带电金属块的电性,所以无法判断电场方向,故A、B错误;克服静电力做功为10 J,则电势能增加10 J,故C错误;机械能的改变量等于除重力以外的其他力所做的总功,故应为ΔE=40 J-10 J-20 J=10 J,故D正确.6.如图4所示,三条平行等间距的虚线表示电场中的三个等势面,电势值分别为10 V、20 V、30 V,实线是一带电粒子(仅在静电力作用下)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是()图4A .粒子在三点的电势能大小关系为E p c<E p a<E p bB .粒子在三点所受的静电力不相等C .粒子必先过a,再到b,然后到cD .粒子在三点所具有的动能大小关系为E k c<E k a<E k b答案 A解析因表示电场中三个等势面的三条虚线是平行且等间距的,由此可判断该区域电场是匀强电场,所以带电粒子在电场中各点受到的静电力相等,B错误.由题图可知,电场的方向是向上的,而粒子受力一定是向下的,故粒子带负电,而带负电的粒子无论是依次沿a、b、c运动,还是依次沿c、b、a运动,都会得到如题图所示的轨迹,C错误.粒子在电场中运动时,只有静电力做功,故电势能与动能之和应是恒定不变的,由题图可知,带负电的粒子在b点时的电势能最大,在c点时的电势能最小,则可判断在c点的动能最大,在b点的动能最小,A正确,D错误.7 .如图5所示,匀强电场中三点A、B、C是一个三角形的三个顶点,∠ABC=∠CAB =30°,BC=2 3 m,已知电场线平行于△ABC所在的平面,一个电荷量为q=-2×10-6 C的点电荷由A移到B的过程中,电势能增加了1.2×10-5 J,由B移到C的过程中静电力做功6×10-6 J,下列说法正确的是()图5A .B、C两点的电势差U BC=3 VB .A点的电势低于B点的电势C .负电荷由C点移到A点的过程中,电势能增加D .该电场的场强大小为1 V/m答案 D解析 由B 移到C 的过程中静电力做功6×10-6 J ,根据W =Uq 得B 、C 两点的电势差为U BC =W BC q =-3 V ,故A 错误;点电荷由A 移到B 的过程中,电势能增加1.2×10-5 J ,点电荷由A 移到B 的过程中,静电力做功-1.2×10-5 J ,A 、B 两点的电势差U AB =W AB q =6 V ,所以A 点的电势高于B 点的电势,B 错误;U CA =-U BC-U AB =-3 V ,根据W =Uq 得,负电荷由C 移到A 的过程中,静电力做正功,所以电势能减小,C 错误;U BC =-3 V ,U CA =-3 V ,U AB =6 V ,在AB 连线取中点D ,所以U AD =3 V ,U CA =-3 V ,U AC =3 V ,C 、D 电势相等,所以CD 连线为等势线,而三角形ABC 为等腰三角形,所以电场强度方向沿着AB 方向,由A 指向B .因为BC =2 3 m ,由几何关系得AD =3 m ,由U AD =E ·AD 得,该电场的场强大小为1 V/m ,D 正确 .8 .(2020·浙江7月选考)如图6所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中 .已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )图6A .所用时间为mv 0qEB .速度大小为3v 0C .与P 点的距离为22mv 02qED .速度方向与竖直方向的夹角为30°答案 C解析粒子在电场中只受静电力,F=qE,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x=v0t竖直方向做初速度为0的匀加速直线运动,有y=12at2=12·qEm t2yx=tan 45°联立解得t=2mv0 qE,故A错误.v y=at=qEm·2mv0qE=2v0,则速度大小v=v02+v y2=5v0,tan θ=v0v y=12,则速度方向与竖直方向夹角不为30°,故B、D错误;x=v0t=2mv02qE,与P点的距离s=xcos 45°=22mv02qE,故C正确.二、多项选择题(本题共4小题,每小题4分,共16分)9 .(2021·林州一中高二月考)x轴位于某电场中,x轴正方向上各点电势随x坐标变化的关系如图7所示,0~x2段为曲线,x2~x4段为直线.一带负电粒子只在静电力作用下沿x轴正方向由O点运动至x4位置,则()图7A .x1处电场强度最大B .x2~x4段是匀强电场C .粒子在0~x2段做匀变速运动,x2~x4段做匀速直线运动D .x1处粒子电势能最小,x2~x4段粒子的动能随x均匀减小答案BD解析在φ-x图像中,斜率表示电场强度,故x1处电场强度最小,为零,A错误;x2~x4段斜率不变,场强不变,故是匀强电场,B正确;粒子在0~x2段电场强度变化,受到的静电力变化,故粒子在0~x2段做变速运动,x2~x4段场强不变,受到的静电力不变,故在x2~x4段做匀变速直线运动,C错误;x1处电势最高,粒子带负电,故粒子的电势能最小,x2~x4段粒子受到的静电力恒定,静电力做功W=qEx随x均匀变化,故动能随x均匀减小,D正确.10.如图8所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a点和c点关于MN对称、b点位于MN上,d点位于两电荷的连线上.以下判断正确的是()图8A .b点电场强度大于d点电场强度B .b点电场强度小于d点电场强度C .a、b两点间的电势差等于b、c两点间的电势差D .试探电荷+q在a点的电势能小于在c点的电势能答案BC解析如图所示,两电荷连线的中点位置用O表示,在中垂线MN上,O点电场强度最大,在两电荷之间连线上,O点电场强度最小,即E b<E O,E O<E d,故E b<E d,A错,B对;等量异种电荷的电场中,电场线、等势线均具有对称性,a、c两点关于MN对称,U ab=U bc,C对;试探电荷+q从a移到c,远离正电荷,靠近负电荷,静电力做正功,电势能减小,D错.11.(2020·重庆文理学院附中期中)如图9所示,水平放置的平行板电容器与直流电源连接,下极板接地.一带电质点恰好静止于电容器中的P点.现将平行板电容器的下极板向上移动一小段距离,则()图9A .电容器的电容将增大,极板所带电荷量将增大B .带电质点将沿竖直方向向上运动C .P点的电势将降低D .若将带电质点固定,则其电势能不变答案ABC解析下极板向上移动时,板间距减小,根据C=εr S4πkd可知,电容增大,因U不变,由Q=UC可知,极板所带电荷量将增大,A正确;开始时静电力与重力平衡,质点所受合力为零,下极板上移时,电场强度增大,质点所受静电力增大,将沿竖直方向向上运动,B正确;场强E增大,而P点与上极板间的距离不变,由公式U=Ed分析可知,上极板与P点间电势差将增大,则P点的电势将降低,C正确;静电力向上,故质点一定带负电,P点的电势降低,则带电质点的电势能将增大,D错误.12.如图10所示,在竖直放置、间距为d的平行板电容器中,存在电场强度为E 的匀强电场,质量为m、带电荷量为+q的点电荷从两极板正中间处静止释放,重力加速度为g,则点电荷运动到负极板的过程()图10A .加速度大小为a=qEm+gB .所需的时间为t=dm EqC .下降的高度为y=d 2D .静电力所做的功为W=Eqd 2答案BD解析对点电荷在电场中的受力分析如图所示,点电荷所受的合外力大小为F=Eq2+mg2,所以点电荷的加速度大小为a =Eq2+mg2m,故A错误;由牛顿第二定律得点电荷在水平方向的加速度大小为a 1=Eqm ,由运动学公式d 2=a 1t 22,所以t =dmEq ,故B 正确;点电荷在竖直方向上做自由落体运动,所以下降的高度y =12gt 2=mgd 2Eq ,故C 错误;静电力做的功W =Eqd2,故D 正确 .三、非选择题(本题共5小题,共52分)13 .(10分)(2019·北京卷)电容器作为储能器件,在生产生活中有广泛的应用 .对给定电容值为C 的电容器充电,无论采用何种充电方式,其两极间的电势差u 随电荷量q 的变化图像都相同 .(1)请在图11甲中画出上述u -q 图像 .类比直线运动中由v -t 图像求位移的方法,求两极间电压为U 时电容器所储存的电能E p .(2)在如图乙所示的充电电路中,R 表示电阻,E 表示电源(忽略内阻) .通过改变电路中元件的参数对同一电容器进行两次充电,对应的q -t 曲线如图丙中①②所示 .a .①②两条曲线不同是________(选填“E ”或“R ”)的改变造成的;b .电容器有时需要快速充电,有时需要均匀充电 .依据a 中的结论,说明实现这两种充电方式的途径 .图11(3)设想使用理想的“恒流源”替换(2)中电源对电容器充电,可实现电容器电荷量随时间均匀增加.请思考使用“恒流源”和(2)中电源对电容器的充电过程,填写下表(选填“增大”“减小”或“不变”) .“恒流源”(2)中电源电源两端电压通过电源的电流答案(1)(2分)12(2分)2CU(2)a.R b .减小电阻R,可以实现对电容器更快速充电;增大电阻R,可以实现更均匀充电(2分)(3)(4分)“恒流源”(2)中电源电源两端电压增大不变通过电源的电流不变减小解析(2)a.由题图知,电容器充完电后,①②两次带电荷量相等,由Q=CE知,两次电源电压相等,故①②两条曲线不同不是E的改变造成的,只能是R的改变造成的.b .刚开始充电瞬间,电容器两端的电压为零,电路的瞬时电流为I=ER,故减小电阻R,刚开始充电瞬间电流I大,曲线上该点切线斜率大,即为曲线①.短时间内该曲线与时间轴围成的面积更大(电荷量更多),故可以实现对电容器快速充电;增大电阻R,刚开始充电瞬间电流I小,即为曲线②,该曲线接近线性,可以实现均匀充电.(3)接(2)中电源时,电源两端电压不变.通过电源的电流I=E-UR,随着电容器两端电压不断变大,通过电源的电流减小;“恒流源”是指电源输出的电流恒定不变.接“恒流源”时,随着电容器两端电压的增大,“恒流源”两端电压增大.14 .(9分)(2020·湖南安乡一中高二期末)在如图12所示的匀强电场中,有A、B两点,且A、B两点间的距离为x=0.20 m,已知AB连线与电场线夹角为θ=60°,今把一电荷量q=-2×10-8C的试探电荷放入该匀强电场中,其受到的静电力的大小为F =4.0×10-4 N,方向水平向左 .求:图12(1)电场强度E 的大小和方向;(2)若把该试探电荷从A 点移到B 点,电势能变化了多少; (3)若A 点为零电势点,B 点电势为多少 .答案 (1)2×104 V/m ,方向水平向右 (2)增加了4×10-5 J (3)-2×103 V 解析 (1)E =F |q |=4.0×10-42×10-8 V/m =2×104 V/m(2分) 因为试探电荷带负电,受到水平向左的静电力作用,所以电场方向水平向右 .(1分)(2)试探电荷从A 点移到B 点静电力做的功为 W =Fx cos (π-θ)(1分) 解得W =-4×10-5 J(1分)根据功能关系可知ΔE p =-W =4×10-5 J即电荷从A 点移到B 点电势能增加了4×10-5 J .(1分) (3)若A 点为零电势点,由U AB =Wq , 得U AB =2×103 V(1分) 且U AB =φA -φB =0-φB (1分) 解得φB =-U AB =-2×103 V .(1分)15 .(10分)在真空中存在着竖直向下的匀强电场,场强为E ,如图13所示,一根绝缘细线长为L ,一端固定在图中的O 点,另一端固定有一个质量为m 、电荷量为+q 、可视为点电荷的小球,O 点距离地面的高度为H ,将小球拉至与O 点等高的位置A 处从静止释放 .重力加速度为g ,求:图13(1)小球运动到O点正下方B点时的速度大小;(2)此刻细线对B点处的小球的拉力大小;(3)若小球通过B点时,细线恰好断开,求小球落地点与O点的水平位移x.答案(1)2mg+qE Lm(2)3(mg+qE) (3)2H-L L解析(1)小球从A到B过程,由动能定理得mgL+qEL=12mv2-0(2分)小球到达B点时的速度大小为v=2mg+qE Lm(1分)(2)在B点,对小球由牛顿第二定律得F T-mg-qE=m v2L(2分)解得F T=3(mg+qE) .(1分)(3)对小球在细线断开后的类平抛运动,由牛顿第二定律有qE+mg=ma(1分)竖直方向:H-L=12at2(1分)水平方向:x=vt(1分)联立解得x=2H-L L.(1分)16.(11分)如图14所示,平行板电容器A、B间的电压为U保持不变,两板间的距离为d,一质量为m、电荷量为q的粒子,由两板中央O点以水平速度v0射入,落在C 处,BC =l .若将B 板向下移动d2,此粒子仍从O 点水平射入,初速度v 0不变,则粒子将落在B 板上的C ′点,求BC ′的长度 .(粒子的重力忽略不计)图14答案3l解析 根据牛顿第二定律,带电粒子由O 点到C 点, 有q Ud =ma ,(1分) 所以a =qUdm (1分)带电粒子在水平方向做匀速直线运动,l =v 0t ,(1分) 在竖直方向做匀加速直线运动, 12d =12at 2=12·qU dm t 2.(2分)带电粒子由O 点到C ′点,根据牛顿第二定律得 q U32d=ma ′,(1分) 所以a ′=2qU3dm .(1分)设BC ′的长度为l ′,则l ′=v 0t ′(1分) 12d +12d =12a ′t ′2=12·2qU 3dm ·t ′2.(2分) 联立解得BC ′的长度l ′=3l .(1分)17 .(12分)如图15所示,在竖直平面内放置着绝缘轨道ABC,AB部分是半径R=0.40 m的光滑半圆形轨道,BC部分是粗糙的水平轨道,BC轨道所在的竖直平面内分布着E=1.0×103 V/m的水平向右的有界匀强电场,AB为电场的左侧竖直边界 .现将一质量为m=0.04 kg、电荷量为q=-1×10-4 C的滑块(视为质点)从BC上的某点由静止释放,滑块通过A点时对轨道的压力恰好为零.已知滑块与BC间的动摩擦因数为μ=0.05,不计空气阻力,g 取10 m/s2.求:图15(1)滑块通过A点时速度v A的大小;(2)滑块在BC轨道上的释放点到B点的距离s;(3)滑块离开A点后在空中运动速度v的最小值.答案(1)2 m/s(2)5 m(3)1.94 m/s解析(1)因为滑块通过A点时对轨道的压力恰好为零,所以有mg=mv A2R,解得v A=2 m/s.(2分)(2)根据动能定理可得:|q|Es-μmgs-mg·2R=12mv A2,(2分)解得s=5 m .(1分)(3)滑块离开A点后在水平方向上做匀减速直线运动,故有:v x=v A-|q|Em t=2-2.5t(2分)在竖直方向上做自由落体运动,所以有v y=gt=10t,(2分)v=v x2+v y2=106.25t2-10t+4(2分)故v min=81717 m/s≈1.94 m/s.(1分)。

静电场 章末检测(含答案详解)

静电场  章末检测(含答案详解)

章末检测(时间:90分钟满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分)1.关于电场强度与电势的关系,下面各种说法中正确的是()A.电场强度大的地方,电势一定高B.电场强度不变,电势也不变C.电场强度为零时,电势一定为零D.电场强度的方向是电势降低最快的方向答案 D解析电场强度是描述静电力的性质的物理量,电势是描述电场能的性质的物理量,电场强度的大小和电势高低没有必然关系,电场线的方向,即电场强度的方向是电势降低最快的方向,选项A、B、C错误,选项D正确.图12.如图1所示,空间有一电场,电场中有两个点a和b.下列表述正确的是()A.该电场是匀强电场B.a点的电场强度比b点的大C.a点的电势比b点的高D.正电荷在a、b两点受力方向相同答案 C解析由电场线的分布可以看出,此电场不是匀强电场,选项A错误;b点电场线比a点电场线密,故a点的电场强度比b点的小,B不正确;根据电场线的方向知a点的电势比b点的大,故C正确.正电荷在a、b两点受力方向分别沿a、b两点的切线方向,选项D错误.图23.空中有两个等量的正电荷q1和q2,分别固定于A、B两点,DC为AB连线的中垂线,C 为A、B两点连线的中点,将一正电荷q3由C点沿着中垂线移至无穷远处的过程中,下列结论正确的有()A.电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大 答案 A解析 中垂线CD 段上的电场强度方向处处都是竖直向上,故正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,电场力做正功,电势能减小,A 对,B 错;中垂线上由C 到D ,电场强度先变大后变小,q 3受到的电场力先变大后变小,C 、D 错.图34.如图3所示,a 、b 、c 为电场中同一条水平方向电场线上的三点,c 为ab 的中点,a 、b 电势分别为φa =5 V 、φb =3 V .下列叙述正确的是( ) A .该电场在c 点处的电势一定为4 V B .a 点处的场强E a 一定大于b 点处的场强E b C .一正电荷从c 点运动到b 点电势能一定减少 D .一正电荷运动到c 点时受到的静电力由c 指向a 答案 C解析 因不知该电场是否是匀强电场,所以E =Ud 不一定成立,c 点电势不一定是4 V ,所以A 、B 两项错误.因φa >φb ,电场线方向向右,正电荷从高电势点移到低电势点电场力做正功,电势能减少,受到的电场力指向b ,所以C 项正确、D 项错误.图45.空间存在甲、乙两相邻的金属球,甲球带正电,乙球原来不带电,由于静电感应,两球在空间形成了如图4所示稳定的静电场.实线为其电场线,虚线为其等势线,A 、B 两点与两球球心连线位于同一直线上,C 、D 两点关于直线AB 对称,则( ) A .A 点和B 点的电势相同 B .C 点和D 点的电场强度相同C .正电荷从A 点移至B 点,静电力做正功D .负电荷从C 点沿直线CD 移至D 点,电势能先增大后减小答案 C解析 由题图可知φA >φB ,所以正电荷从A 移至B ,静电力做正功,故A 错误,C 正确.C 、D 两点场强方向不同,故B 错误.负电荷从C 点沿直线CD 移至D 点,电势能先减小后增大,所以D 错误,故选C.图56.如图5所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ).A .k 3q R 2B .k 10q9R 2 C .k Q +q R 2 D .k 9Q +q 9R 2答案 B解析 由于b 点处的场强为零,根据电场叠加原理知,带电圆盘和a 点处点电荷在b 处产生的场强大小相等,方向相反.在d 点处带电圆盘和a 点处点电荷产生的场强方向相同,所以E =k q (3R )2+k q R 2=k 10q 9R 2,所以B 选项正确. 二、多项选择题(本题共4小题,每小题4分,共16分) 7.下列各量中,与检验电荷无关的物理量是( )A .电场力FB .电场强度EC .电势差UD .电场力做的功W答案 BC解析 电场力F =qE ,与检验电荷有关,故A 项错;电场强度E 、电势差U 与检验电荷无关,故B 、C 对;电场力做功W =qU ,与检验电荷有关,故D 项错.8.带电粒子M 只在电场力作用下由P 点运动到Q 点,在此过程中克服电场力做了2.6×10-8J 的功,那么( )A .M 在P 点的电势能一定小于它在Q 点的电势能B .P 点的场强一定小于Q 点的场强C .P 点的电势一定高于Q 点的电势D .M 在P 点的动能一定大于它在Q 点的动能 答案 AD解析因克服电场力做功,电势能增加,动能减小,所以A、D项正确;P、Q两点的场强大小不能确定,B项错;粒子电性未知,所以P、Q两点的电势高低不能判定,C项错.图69.如图6所示的电路中,AB是两金属板构成的平行板电容器.先将电键K闭合,等电路稳定后再将K断开,然后将B板向下平移一小段距离,并且保持两板间的某点P与A板的距离不变.则下列说法正确的是()A.电容器的电容变小B.电容器内部电场强度大小变大C.电容器内部电场强度大小不变D.P点电势升高答案ACD图710.带电粒子在匀强电场中的运动轨迹如图7所示,如果带电粒子只受电场力作用从a到b 运动,下列说法正确的是()A.粒子带正电B.粒子在a和b点的加速度相同C.该粒子在a点的电势能比在b点时大D.该粒子在b点的速度比在a点时大答案BCD解析由于粒子运动轨迹越来越向上弯曲,可判断它受力方向为竖直向上,所以粒子应带负电,故A错;匀强电场中受力恒定,加速度相同,B对;从a到b由于电场力方向速度方向成锐角,电场力做正功,则电势能减小,动能增大,故该粒子在b点的电势能比在a点时小,在b点的速度比在a点时大.故C、D正确.三、填空题(每空2分,共10分)图811.如图8所示,Q 为固定的正点电荷,A 、B 两点在Q 的正上方与Q 相距分别为h 和0.25h ,将另一点电荷从A 点由静止释放,运动到B 点时速度正好又变为零.若此电荷在A 点处的加速度大小为34g ,此电荷在B 点处的加速度大小为________;方向________;A 、B 两点间的电势差(用Q 和h 表示)为________. 答案 3g 方向竖直向上 -3kQh解析 这一电荷必为正电荷,设其电荷量为q ,由牛顿第二定律,在A 点时mg -kQq h 2=m ·34g . 在B 点时kQq(0.25h )2-mg =m ·a B ,解得a B =3g ,方向竖直向上,q =mgh 24kQ.从A 到B 过程,由动能定理mg (h -0.25h )+qU AB =0, 故U AB =-3kQh.图912.如图9所示,在竖直向下、场强为E 的匀强电场中,长为l 的绝缘轻杆可绕固定轴O 在竖直面内无摩擦转动,两个小球A 、B 固定于杆的两端,A 、B 的质量分别为m 1和m 2(m 1<m 2),A 带负电,电荷量为q 1,B 带正电,电荷量为q 2.杆从静止开始由水平位置转到竖直位置,在此过程中静电力做功为____________,在竖直位置处两球的总动能为______________. 答案 (q 1+q 2)El /2 [(m 2-m 1)g +(q 1+q 2)E ]l /2解析 本题考查静电力做功的特点和动能定理,考查学生对功能关系的处理.A 、B 在转动过程中静电力对A 、B 都做正功,即:W =q 1E l 2+q 2E l 2=(q 1+q 2)El /2,根据动能定理:(m 2-m 1)gl 2+(q 1+q 2)El2=E k -0,可求解在竖直位置处两球的总动能为E k =[(m 2-m 1)g +(q 1+q 2)E ]l /2. 四、计算题(本题共4小题,共50分)图1013.(10分)如图10所示,在匀强电场中,将带电荷量q=-6×10-6C的电荷从电场中的A 点移到B点,克服电场力做了2.4×10-5 J的功,再从B点移到C点,电场力做了1.2×10-5 J 的功.求:(1)A、B两点间的电势差U AB和B、C两点间的电势差U BC;(2)如果规定B点的电势为零,则A点和C点的电势分别为多少?(3)作出过B点的一条电场线(只保留作图的痕迹,不写做法).答案(1)4 V-2 V(2)4 V 2 V(3)见解析图解析(1)U AB=W ABq=-2.4×10-5-6×10-6V=4 VU BC=1.2×10-5-6×10-6V=-2 V(2)U AB=φA-φB,U BC=φB-φC又φB=0故φA=4 V,φC=2 V(3)如图所示图1114.(12分)一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图11所示.AB与电场线夹角θ=30°,已知带电粒子的质量m=1.0×10-7 kg,电荷量q=1.0×10-10 C,A、B相距L=20 cm.(取g=10 m/s2,结果保留两位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由.(2)电场强度的大小和方向.(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少.答案 见解析解析 (1)微粒只在重力和电场力作用下沿AB 方向运动,在垂直于AB 方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动. (2)在垂直于AB 方向上,有qE sin θ-mg cos θ=0所以电场强度E =1.7×104 N/C 电场强度的方向水平向左(3)微粒由A 运动到B 时的速度v B =0时,微粒进入电场时的速度最小,由动能定理得,mgL sin θ+qEL cos θ=m v 2A /2,代入数据,解得v A =2.8 m/s图1215.(14分)如图12所示,在E = 103 V /m 的水平向左匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R =0.4 m ,一带正电荷q =10-4 C 的小滑块质量为m = 0.04 kg ,与水平轨道间的动摩擦因数μ=0.2,g 取10 m/s 2,求:(1)要使小滑块能运动到半圆轨道的最高点L ,滑块应在水平轨道上离N 点多远处释放? (2)这样释放的滑块通过P 点时对轨道压力是多大?(P 为半圆轨道中点) 答案 (1)20 m (2)1.5 N解析 (1)滑块刚能通过轨道最高点条件是 mg =m v 2R,v =Rg =2 m/s滑块由释放点到最高点过程由动能定理得: Eqs -μmgs -mg 2R =12m v 2所以s =m ⎝⎛⎭⎫12v 2+2gR Eq -μmg代入数据得:s =20 m(2)滑块过P 点时,由动能定理: -mgR -EqR =12m v 2-12m v 2p所以v 2P =v 2+2(g +Eq m)R 在P 点由牛顿第二定律:N -Eq =m v 2P R所以N =3(mg +Eq ) 代入数据得:N =1.5 N图1316.(14分)如图13所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压. 答案 (1)负电 4m v 20R 3kq (2)3md v 203qL解析 (1)由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度v =v 0cos 30°=233v 0①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足k QqR 2=m v 2R ②由①②得:Q =4m v 20R3kq(2)粒子射出电场时速度方向与水平方向成30° tan 30°=v y v 0③v y =at ④ a =qU md ⑤ t =L v 0⑥ 由③④⑤⑥得:U =md v 20tan 30°qL =3md v 203qL。

高中物理必修三 第一章 章末检测试卷(第一章)

高中物理必修三 第一章 章末检测试卷(第一章)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
实验表明:两电荷之间的相互作用力,随其距离的 __减__小__而增大,随其所带电荷量的__增__大__而增大.此 同学在探究中应用的科学方法是 _控__制__变__量__法__(选填 “累积法”“等效替代法”“控制变量法”或“演绎 法”).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
因BC方向与电子在B点受的电场力方向不垂直, 则将电子从B点沿BC方向射出,电子不可能做匀 速圆周运动,选项D错误.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
三、非选择题(本题共5小题,共54分) 11.(7分)在探究“两电荷间相互作用力的大小与哪些因素有关”的实验中, 一同学猜想可能与两电荷的距离和电荷量有关.他选用带正电的小球A和B, A球放在可移动的绝缘座上,B球用绝缘丝线悬挂于玻璃棒C点,如图所 示.实验时,先保持两球电荷量不变,使A球从远处 逐渐向B球靠近,观察到两球距离越小,B球悬线的 偏角越大;再保持两球的距离不变,改变小球所带 的电荷量,观察到电荷量越大,B球悬线的偏角越大.
A.0
√ 15Q
B.k 4R2
Q C.k4R2
Q D.kR2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
据题可知,b点处的场强为零,说明a点处和d点处的两个点电荷在b点 处产生的场强大小相等、方向相反,则有: kRQ2=kQ2R′2,得 Q′=4Q,电性与 Q 相同. 则 Q 在 c 点处产生的场强大小 E1=k2QR2=k4QR2,方向向右; Q′在 c 点处产生的场强大小 E2=kQR′2 =k4RQ2 ,方向向左; 故 c 点处场强的大小为 E=E2-E1=k145RQ2 ,B 正确.

高中物理-电场单元测试(含答案)

高中物理-电场单元测试(含答案)

高中物理-电场单元测试(含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共100分考试用时60分钟。

第Ⅰ卷(选择题 共48分)一、本题共10小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得6分,选不全的得3分,有选错或不答的得0分.1.下列关于静电场的说法正确的是( )A .在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点B .正电荷只在电场力作用下,一定从高电势向低电势运动C .场强为零处,电势不一定为零;电势为零处,场强不一定为零D .初速为零的正电荷在电场力作用下一定沿电场线运动2.如图所示,a 、b 、c 是一条电场线上的三点,电场线的方向由a 到c ,a 、b 间距离等于b 、c 间距离,用φa 、φb 、φc 和E a 、E b 、E c 分别表示a 、b 、c 三点的电势和场强,可以判定( )A .φa >φb >φcB .E a >E b >E cC .φa –φb =φb –φcD .E a = E b = E c3.两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则相互作用力可能为原来的( )A .74B .73C .79D .7164.如图所示,M 、N 两点分别放置两个等量种异电荷,A 为它们连线的中点,B 为连线上靠近N 的一点,C 为连线的中垂线上处于A 点上方的一点,在A 、B 、C 三点中 ( ) A .场强最小的点是A 点,电势最高的点是B 点 B .场强最小的点是A 点,电势最高的点是C 点 C .场强最小的点是C 点,电势最高的点是B 点D .场强最小的点是C 点,电势最高的点是A 点5.将一正电荷从无穷远处移向电场中M 点,电场力做功为6.0×10-9J ,若将一个等量的负电荷从电场中N 点移向无穷远处,电场力做功为7.0×10-9J ,则M 、N 两点的电势φM 、φN 有如v A v B AB(甲)(乙)43 2 1下关系 ( )A .ϕM <ϕN <0B .ϕN >ϕM >0C .ϕN <ϕM <0D .ϕM >ϕN >06.如图所示的直线是真空中某电场的一条电场线,A 、B 是这条直线上的两点,一带正电粒子以速度v A 经过A 点向B 点运动,经过一段时间后,粒子以速度v B 经过B 点,且v B 与v A 方向相反,不计粒子重力,下面说法正确的是 ( )A .A 点的场强一定大于B 点的场强 B .A 点的电势一定高于B 点的电势C .粒子在A 点的速度一定小于在B 点的速度D .粒子在A 点的电势能一定小于在B 点的电势能7.如图所示,以O点为圆心,以r为半径的绝缘光滑的细圆其环面固定在水平面上,圆环与坐标轴交点分别为a 、b 、c 、d ,空间有一与x 轴正方向相同的匀强电场,场强为E ,在固定环上穿有一个质量为m 、电量为+q 的小球,小球可沿环做圆周运动。

高中物理 章末综合检测(一)静电场及其应用 新人教版必修第三册-新人教版高二第三册物理试题

高中物理 章末综合检测(一)静电场及其应用 新人教版必修第三册-新人教版高二第三册物理试题

章末综合检测〔一〕静电场与其应用A级—学考达标1.将一束塑料扎带一端打结,另一端撕成细条后,用手迅速捋细条,观察到细条散开了,如下列图。

如下关于细条散开现象的分析中,正确的答案是( )A.由于摩擦起电,细条带同种电荷,相互排斥散开B.撕成细条后,所受重力减小,细条自然松散C.撕成细条后,由于空气浮力作用使细条散开D.细条之间相互感应起电,相互排斥散开解析:选A 塑料细条与手摩擦起电;塑料细条上带的是同种电荷,同种电荷相互排斥,所以塑料细条会向四周散开,故B、C、D错误,A正确。

2.如下列图,取一对用绝缘柱支撑的导体A和B,使它们彼此接触,起初它们不带电,分别贴在导体A、B下部的金属箔都是闭合的。

现将带正电的物体C靠近A,如下描述正确的答案是( )A.稳定后只有A下部的金属箔张开B.稳定后只有B下部的金属箔张开C.C移近A后,再把B与A分开,稳定后A、B下部的金属箔都张开D.C移近A后,再把B与A分开,稳定后A、B下部的金属箔都闭合解析:选C 带正电的物体C靠近A附近时,由于静电感应,A端带上负电,B端带上正电,所以金属箔都张开,故A、B错误;把带正电的物体C靠近导体A后,把A和B分开,A带负电,B带正电,金属箔还是张开的,选项C正确,D错误。

3.导体球壳B带有正电荷Q,其中心处放有导体球A,用细金属丝通过B上的小孔与地相连(细金属丝不与球壳B相碰),如下列图。

如此导体球A( )A.不带电B.带正电C.带负电D.可能带正电,也可能带负电解析:选C 球壳B带正电荷后,附近的大地因静电感应将带负电荷,由于导体球A与大地相连,相当于近端,因此,A上也会感应出一定量的负电荷。

4.如下图中画了四个电场的电场线,其中图A和图C中小圆圈表示一个点电荷,图A 中虚线是一个圆,图B中几条直线间距相等且互相平行,如此在图A、B、C、D中M、N两处电场强度一样的是( )解析:选B 电场强度为矢量,M、N两处电场强度一样,如此电场强度方向、大小都要一样。

高中物理 第一章 电荷与电场单元测试(含解析)教科版选修1-1-教科版高中选修1-1物理试题

高中物理 第一章 电荷与电场单元测试(含解析)教科版选修1-1-教科版高中选修1-1物理试题

章末过关检测(一)(时间:90分钟,总分为:100分)一、选择题(此题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得5分,选对但不全的得3分,有选错或不答的得0分)1.关于物体的电荷量,以下说法中不正确的答案是( )A .物体所带的电荷量为任意实数B .物体所带的电荷量只能是某些特定值C .物体带有1.6×10-9 C 正电荷,这是因为该物体失去了1010个电子D .物体所带电荷量的最小值为1.60×10-19 C解析:选A.物体所带最小电荷量为1.6×10-19 C ,称为元电荷,所有带电物体的电荷量为元电荷的整数倍.Q =1.6×10-9 C =Ne ,如此N =1.6×10-91.6×10-19个=1010个,即物体失去了1010个电子.综合上述分析知,选项A 错误.2.关于电场线的以下说法中,正确的答案是( )A .电场线上每一点的切线方向都跟电荷在该点的受力方向一样B .沿电场线的方向,电场强度越来越小C .电场线越密的地方同一试探电荷受到的电场力就越大D .顺着电场线移动电荷,电荷受到的电场力大小一定不变解析:选C.电场线上每一点的切线方向是电场强度的方向,是正电荷在该点受力的方向,与负电荷受力的方向相反,故A 错;沿电场线的方向,场强可能越来越大,也可能越来越小,还可能不变,这与电场线的疏密程度有关,所以顺着电场线移动电荷,电荷所受电场力可能越来越大,可能越来越小,还可能不变,故B 、D 错.在电场线越密的地方,场强越大,如此电荷受到的电场力就越大,C 正确.3.在电场中的某点放一个检验电荷,其电荷量为q ,受到的电场力为F ,如此该点的电场强度为E =F q,如下说法正确的答案是( )A .假设移去检验电荷,如此该点的电场强度为0B .假设检验电荷的电荷量变为4q ,如此该点的场强变为4EC .假设放置到该点的检验电荷变为-2q ,如此场中该点的场强大小不变,但方向相反D .假设放置到该点的检验电荷变为-2q ,如此场中该点的场强大小方向均不变解析:选D.电场中某点的电场强度只取决于电场本身,与检验电荷无关,应当选D选项.4.如图是点电荷Q周围的电场线,以下判断正确的答案是( )A.Q是正电荷,A点的电场强度大于B点的电场强度B.Q是正电荷,A点的电场强度小于B点的电场强度C.Q是负电荷,A点的电场强度大于B点的电场强度D.Q是负电荷,A点的电场强度小于B点的电场强度解析:选A.因电场线方向背离点电荷Q,故Q为正电荷;由于电场线的疏密表示场强的大小,A点电场线密,电场强度就大,应当选项A正确.5.如下列图为两个点电荷在真空中所产生电场的电场线(方向未标出).图中C点为两点电荷连线的中点,MN为两点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN 左右对称.如此如下说法中正确的答案是( )A.这两点电荷一定是等量异种电荷B.这两点电荷一定是等量同种电荷C.D、C两点的电场强度一定相等D.C点的电场强度比D点的电场强度小解析:选A.由电场线分布的特征可知,产生电场的电荷一定是等量异种电荷,应当选项A正确,选项B不正确;D、C两点电场线的密度不同,D、C两点的电场强度不同,选项C不正确;C点电场线的密度大,电场强度大,选项D不正确.6.一带负电荷的质点,在电场力作用下沿曲线abc从a运动到c,质点的速率是递减的.关于b点电场强度E的方向,如下图示中可能正确的答案是(虚线是曲线在b点的切线)( )解析:选D.由题意知带负电荷的质点所受电场力方向与速度夹角大于90°,指向曲线的凹侧,场强方向与负电荷受力方向相反,故D选项正确.7.如图,在水平面上的箱子内,带异种电荷的小球a、b用绝缘细线分别系于上、下两边,处于静止状态.地面受到的压力为N,球b所受细线的拉力为F.剪断连接球b的细线后,在球b上升过程中地面受到的压力( )A.小于N B.等于NC.等于N+F D.大于N+F解析:选D.把箱子以与两小球a、b当做一个整体.静止时地面受到的压力为N等于三个物体的总重力.在球b上升过程中,整体中的一局部具有了向上的加速度,根据整体法,N′-N=m b a,即N′=N+m b a①;在球b静止时,库仑引力F1=m b g+F,在球b向上加速时库仑引力F2=m b g+ma,两球接近,库仑引力增加,有:F2>F1,所以ma>F②,根据①②可得N′>N +F.8.如下列图用三根长度一样的绝缘细线将三个带电小球连接后悬挂在空中.三个带电小球质量相等,A球带正电,平衡时三根绝缘细线都是直的,但拉力都为零.如此( )A.B球和C球都带正电荷B.B球带负电荷,C球带正电荷C.B球和C球所带电量不一定相等D.B球和C球所带电量一定相等解析:选D.以带电小球B为研究对象,带电小球B一定受A的吸引、C的排斥,所以A、B电性相反,B、C电性一样,所以选项A、B错误;带电小球A对B、C的吸引力一定相等,可知B球和C球所带电量一定相等,选项C错误,选项D正确.9. 静电除尘器是目前普遍采用的一种高效除尘器.某除尘器模型的收尘板是很长的条形金属板,图中直线ab 为该收尘板的横截面.工作时收尘板带正电,其左侧的电场线分布如下列图;粉尘带负电,在电场力作用下向收尘板运动,最后落在收尘板上.假设用粗黑曲线表示原来静止于P 点的带电粉尘颗粒的运动轨迹,如下4幅图中可能正确的答案是(忽略重力和空气阻力)( )解析:选A.粉尘受力方向应该是电场线的切线方向,从静止开始运动时,只能是A 图那样,不可能出现B 、C 、D 图的情况.10.如下列图,点电荷+4Q 与+Q 分别固定在A 、B 两点,C 、D 两点将AB 连线三等分.现使一个带负电的检验电荷,从C 点开始以某一初速度向右运动,不计检验电荷的重力.如此关于该电荷在CD 之间的运动,如下说法中可能正确的答案是( )A .一直做减速运动,且加速度逐渐变小B .做先减速后加速的运动C .一直做加速运动,且加速度逐渐变小D .做先加速后减速的运动解析:选AB.由k ·4Q r 2A=kQ r 2B 可得:r A =2r B .对应图示可知,AB 连线上的D 点电场强度为零,因此负电荷在CD 间所受电场力方向水平向左,假设电荷的初速度较大,恰能运动到D 点,如此电荷一直向右减速,加速度也逐渐变小,假设电荷初速度较小,没到达D ;又反向向C 点运动,此过程先减速后反向加速,应当选项A 、B 正确,选项C 、D 错误.二、填空题(此题共2小题,每一小题6分,共12分.把答案填在题中横线上)11.电荷量q =-5×10-9 C 的点电荷,在电场中的A 点受到水平向右的电场力F =3.0×10-6 N ,如此A 点电场强度E =________ N/C ,方向________.假设将此电荷从A 点移出电场,这时A 点电场强度E =________ N/C.解析:E =F q =3.0×10-65×10-9N/C =600 N/C. 方向与所受电场力方向相反,水平向左.移走电荷q ,A 点场强不变.答案:600 水平向左 60012.利用静电除尘器可以消除空气中的粉尘.静电除尘器由金属管A 和悬在管中的金属丝B 组成,A 和B 分别接到高压电源正极和负极,其装置示意图如下列图.A 、B 之间有很强的电场,距B 越近,场强__________(填“越大〞或“越小〞).B 附近的气体分子被电离成为电子和正离子,粉尘吸附电子后被吸附到________(填“A 〞或“B 〞)上,最后在重力作用下落入下面的漏斗中.解析:电极截面如下列图,由电场线可判断越靠近B 场强越大;粉尘吸附电子后带负电,因此向正极A 运动.答案:越大 A三、计算题(此题共4小题,共38分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)13.(9分)真空中有两个点电荷Q 1和Q 2,相距18 cm ,Q 1是正电荷,其电荷量为1.8×10-12C ,它们之间的引力大小为F =1.0×10-12 N ,求Q 2的电荷量与带电性质.解析:真空中的两个点电荷,符合运用库仑定律的条件.根据库仑定律F =k Q 1Q 2r 2得 Q 2=F ·r 2kQ 1=1.0×10-12×〔0.18〕29.0×109×1.8×10-12C =2.0×10-12 C.因为点电荷Q 1和Q 2间表现为引力,可见Q 2是负电荷.答案:2.0×10-12 C 负电荷14.(9分)如下列图,绝缘水平面上静止着两个质量均为m 、电荷量均为+Q 的物体A 和B (A 、B 均可视为质点),它们间的距离为r ,与水平面间的动摩擦因数均为μ.求:(1)A 受的摩擦力的大小.(2)如果将A 的电荷量增至+4Q ,两物体开始运动,当它们的加速度第一次为零时,A 、B 各运动了多远距离?解析:(1)对A 由平衡条件知f =F =k Q 2r2. (2)当a =0时,设A 、B 间距离为r ′,如此k 4Q 2r ′2-μmg =0, 所以r ′=2Q k μmg. 由题意可知:A 、B 运动的距离均为x =r ′-r2, 故x =Q k μmg -r 2. 答案:(1)k Q 2r 2 (2)均为Q k μmg -r 215.(10分)如下列图,空间存在着电场强度为E =2.5×102N/C 、方向竖直向上的匀强电场,一长为L =0.5 m 的绝缘细线,一端固定在O 点,一端拴着质量m =0.5 kg 、 电荷量q =4×10-2C 的小球.现将细线拉直到水平位置,使小球由静止释放,如此小球能运动到最高点.不计阻力.取g =10 m/s 2.求:(1)小球的电性.(2)细线在最高点受到的拉力.解析:(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v ,对该过程由动能定理得,(qE -mg )L =12mv 2 在最高点对小球由牛顿第二定律得T +mg -qE =m v 2L解得T =15 N.答案:见解析16.(10分)如下列图,一根光滑绝缘细杆与水平面成α=30°的角倾斜固定.细杆的一局部处在场强方向水平向右的匀强电场中,场强E =2×104N/C.在细杆上套有一个带电量为q =-1.73×105 C 、质量为m =3×10-2kg 的小球.现使小球从细杆的顶端A 由静止开始沿杆滑下,并从B 点进入电场,小球在电场中滑至最远处的C 点.AB 间距离x 1=0.4 m ,g =10 m/s 2.求:(1) 带电小球在B 点的速度v B .(2) 带电小球进入电场后滑行最大距离x 2;(3) 带电小球从A 点滑至C 点的时间是多少?解析:(1)小球在AB 段滑动过程中,由机械能守恒mg ·x 1sin α=12mv 2B可得v B =2 m/s.(2)小球进入匀强电场后,在电场力和重力的作用下,由牛顿第二定律可得加速度a 2 a 2=mg sin α-qE cos αm=-5 m/s 2 小球进入电场后还能滑行到最远处C 点,BC 的距离为x 2=-v 2B 2a 2=-42×〔-5〕m =0.4 m. (3)小球从A 到B 和从B 到C 的两段位移中的平均速度分别为v -AB =0+v B 2,v -BC =v B +02小球从A到C的平均速度为v B 2x1+x2=v-t=v B2t,可得t=0.8 s.答案:见解析。

第一章 章末检测试卷(一)

第一章 章末检测试卷(一)

章末检测试卷(一)(满分:100分)一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·张家口市高二上期末)如图所示,两平行直导线cd和ef竖直放置,通以方向相反、大小相等的电流,a、b两点位于两导线所在的平面内.下列说法正确的是()A.a点的磁感应强度一定为零B.b点的磁感应强度一定为零C.ef导线受到的安培力方向向右D.cd导线在a点产生的磁场方向垂直纸面向外答案 C解析根据安培定则可知,通电导线cd在a点产生的磁场方向垂直纸面向里,通电导线ef 在a点产生的磁场方向垂直纸面向外,cd、ef中通有方向相反、大小相等的电流,但a点离cd较近,故a点的磁场方向垂直纸面向里,故a点的磁感应强度一定不为零,故A、D错误;根据安培定则可知,通电导线ef和cd在b点产生的磁场方向相同,均为垂直纸面向外,所以b点的磁场方向垂直纸面向外,故b点的磁感应强度一定不为零,故B错误;cd、ef中通的电流方向相反,ef导线受到的安培力方向向右,故C正确.2.如图所示,用绝缘细线悬挂一个导线框,导线框是由两个同心半圆弧导线和直导线ab、cd(ab、cd在同一条水平直线上)连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态.在半圆弧导线的圆心处沿垂直于导线框平面的方向固定放置一根长直导线P.当P 中通以方向垂直于导线框向外的电流时()A .导线框将向左摆动B .导线框将向右摆动C .从上往下看,导线框将顺时针转动D .从上往下看,导线框将逆时针转动 答案 D解析 当长直导线P 中通以方向垂直于导线框向外的电流时,由安培定则可判断出长直导线P 产生的磁场方向为逆时针方向,磁感线是以P 为圆心的同心圆,则两半圆弧导线不受安培力,由左手定则可判断出直导线ab 所受的安培力方向垂直纸面向外,cd 所受的安培力方向垂直纸面向里,从上往下看,导线框将逆时针转动,故D 正确.3.如图所示,MN 为区域Ⅰ、Ⅱ的分界线,在区域Ⅰ和区域Ⅱ内分别存在着与纸面垂直的匀强磁场,一带电粒子沿着弧线apb 由区域Ⅰ运动到区域Ⅱ.已知圆弧ap 与圆弧pb 的弧长之比为2∶1,不计粒子重力,下列说法正确的是( )A .粒子在区域Ⅰ和区域Ⅱ中的速率之比为2∶1B .粒子通过圆弧ap 、pb 的时间之比为1∶2C .圆弧ap 与圆弧pb 对应的圆心角之比为2∶1D .区域Ⅰ和区域Ⅱ的磁场方向相反 答案 D解析 由于洛伦兹力不做功,所以粒子在两个磁场中的运动速度大小不变,即粒子在区域Ⅰ和区域Ⅱ中的速率之比为1∶1,A 错误;根据t =lv ,v 相同,则时间之比等于经过的弧长之比,即粒子通过圆弧ap 、pb 的时间之比为2∶1,B 错误;圆心角θ=lr ,r =m v qB ,由于磁场的磁感应强度之比不知,故半径之比无法确定,则转过的圆心角之比无法确定,故C 错误;根据曲线运动的条件,可知洛伦兹力的方向与运动方向的关系,再由左手定则可知,两个磁场的磁感应强度方向相反,故D 正确.4.(2021·重庆缙云教育联盟高二上期末)图中a 、b 、c 、d 为四根与纸面垂直的长直导线,它们的横截面分别位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带负电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右答案 A解析 由安培定则可知b 与d 导线中电流在O 点产生的磁场相互抵消,而a 与c 导线中的电流在O 点产生的磁场均水平向左相互叠加,合磁场方向水平向左.当一带负电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,根据左手定则可知,它所受洛伦兹力的方向向上,故选A.5.(2022·汾阳中学高二下月考)如图所示,半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,质量为m 、电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射出时速度方向改变了θ角.则磁场的磁感应强度大小为( )A.m v qR tanθ2B.m v tanθ2qRC.m v qR sinθ2D.m v qR cosθ2答案 B解析 画出电荷运动的轨迹如图所示,设电荷运动的轨道半径为r ,由几何关系可得tan θ2=Rr ;洛伦兹力提供电荷在磁场中做匀速圆周运动的向心力,可得q v B =m v 2r ,联立可得B =m v tanθ2qR,故选B.6.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比为( )A .11B .12C .121D .144 答案 D解析 设质子的质量和电荷量分别为m 1、q 1,该一价正离子的质量和电荷量分别为m 2、q 2.对于任意粒子,在加速电场中,由动能定理得 qU =12m v 2-0,得v =2qUm① 在磁场中,由洛伦兹力提供向心力有 q v B =m v 2r②由①②式联立得m =B 2r 2q2U ,由题意知,两种粒子在磁场中做匀速圆周运动的半径相同,加速电压U 不变,其中B 2=12B 1,q 1=q 2,可得m 2m 1=B 22B 12=144,故选项D 正确.7.(2021·池州市高二上期末)如图所示,空间中有方向垂直桌面向下的匀强磁场B (图中未画出),两根平行通电金属直导线M 和N 恰好静止在光滑绝缘的水平桌面上,图中为垂直导线的截面图,M 和N 中电流大小分别为I M 、I N .则下列判断可能正确的是( )A .电流方向相同,I M =I NB .电流方向相同,I M ≠I NC .电流方向相反,I M =I ND .电流方向相反,I M ≠I N 答案 C解析 对M 和N 进行受力分析可知,在水平方向各自所受合外力为零,若电流方向相同,则M 、N 所受匀强磁场产生的安培力方向相同,而两通电直导线相互产生的安培力方向相反,合外力不可能都为零,A 、B 错误;若电流方向相反,则M 、N 所受匀强磁场产生的安培力方向相反,又因为两通电直导线之间的安培力为排斥力,方向相反,大小相等,根据安培力公式F =BIL 可知,只有M 和N 中电流大小相等时,所受匀强磁场的安培力大小才相等,每根导线受到的合力可能为零,C 正确,D 错误.8.在直角坐标系xOy 的第一象限内,存在一垂直于xOy 平面、磁感应强度大小为2 T 的匀强磁场(未画出),如图所示,一带电粒子(重力不计)在x 轴上的A 点沿着y 轴正方向以大小为 2 m/s 的速度射入第一象限,并从y 轴上的B 点穿出.已知A 、B 两点的坐标分别为(8 m,0),(0,4 m),则该粒子的比荷为( )A .0.1 C/kgB .0.2 C/kgC .0.3 C/kgD .0.4 C/kg答案 B解析 粒子的运动轨迹如图所示,由几何知识得r 2-OB 2+r =OA ,解得r =5 m ,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得q v 0B =m v 02r ,解得q m =v 0Br =22×5C/kg =0.2 C/kg ,故B 正确.二、多项选择题(本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)9.如图所示,由两种比荷不同的离子组成的离子束,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,离子的重力不计,下列说法正确的是()A.组成A束和B束的离子都带正电B.组成A束和B束的离子质量一定相同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向里答案ACD解析A、B离子进入磁场后都向左偏,根据左手定则可知A、B两束离子都带正电,故A正确;能通过速度选择器的离子所受静电力和洛伦兹力平衡,则q v B=qE,即不发生偏转的离;进入另一个匀强磁场分裂为A、B两束,轨道半径不等,子具有相同的速度,大小为v=EB可知,半径大的比荷小,所以A束离子的比荷大于B束离子的比荷,但不能判断根据r=m vqB两离子的质量关系,故B错误,C正确;在速度选择器中,电场方向水平向右,A、B离子所受电场力方向向右,所以洛伦兹力方向向左,根据左手定则可知,速度选择器中的磁场方向垂直于纸面向里,故D正确.10.(2019·海南卷)如图,虚线MN的右侧有方向垂直于纸面向里的匀强磁场,两电荷量相同的粒子P、Q从磁场边界的M点先后射入磁场,在纸面内运动.射入磁场时,P的速度v P垂直于磁场边界,Q的速度v Q与磁场边界的夹角为45°.已知两粒子均从N点射出磁场,且在磁场中运动的时间相同,则()A.P和Q的质量之比为1∶2B.P和Q的质量之比为2∶1C.P和Q速度大小之比为2∶1D.P和Q速度大小之比为2∶1答案 AC解析 设MN =2R ,则粒子P 的运动半径为R ,有R =m P v PBq,粒子Q 的运动半径为2R ,有2R =m Q v Q Bq ;又两粒子的运动时间相同,则t P =12T P =πm P Bq ,t Q =14T Q =πm Q 2Bq ,即πm P Bq =πm Q 2Bq ,联立解得m Q =2m P ,v P =2v Q ,故A 、C 正确,B 、D 错误.11.如图为回旋加速器的示意图,两个靠得很近的D 形金属盒处在与盒面垂直的匀强磁场中,磁场的磁感应强度为B .一质子从加速器的A 处开始加速.已知D 形盒的半径为R ,高频交变电源的电压为U 、频率为f ,质子质量为m ,电荷量为q .已知质子在磁场中运动的周期等于交变电源的周期,下列说法正确的是( )A .质子的最大速度不超过2πRfB .质子的最大动能为q 2B 2R 24mC .质子的最大动能与U 无关D .若增大电压U ,质子的最大动能增大 答案 AC解析 质子出回旋加速器的速度最大的半径为R ,则v =2πRT =2πRf ,所以最大速度不超过2πRf ,A 正确.由Bq v =m v 2R 得v =BqR m ,质子的最大动能E k =12m v 2=q 2B 2R 22m ,与电压无关,B 、D 错误,C 正确.12.(2021·绵阳市江油中学高二月考)如图所示,虚线EF 的下方存在着正交的匀强电场和匀强磁场(未画出),电场强度为E ,磁感应强度为B .一带电微粒自离EF 为h 的高处由静止下落,从B 点进入场区,做了一段匀速圆周运动,从D 点射出,下列说法正确的是(重力加速度为g )( )A .微粒做圆周运动的半径为EB2h gB.从B点运动到D点的过程中微粒的重力势能与动能之和在C点最小C.从B点运动到D点的过程中微粒的电势能先减小后增大D.从B点运动到D点的过程中微粒的电势能和重力势能之和在最低点C最小答案AB解析由题可知,带电微粒进入正交的匀强电场和匀强磁场中做匀速圆周运动,静电力与重力必定平衡,则微粒受到的静电力的方向一定竖直向上,有mg=qE,由洛伦兹力提供向心力,有q v B=m v2r ,由运动学公式v2=2gh,联立可得微粒做圆周运动的半径r=EB2hg,故A正确;从B点运动到D点的过程中动能没有发生改变,在C点的高度最低,重力势能最小,所以从B点运动到D点的过程中微粒的重力势能与动能之和在C点最小,故B正确;从B 点运动到D点的过程中静电力先做负功后做正功,所以微粒的电势能先增大后减小,故C错误;根据能量守恒定律可知,微粒在运动过程中,电势能、动能、重力势能之和一定,动能不变,则电势能和重力势能之和不变,故D错误.三、非选择题(本题共4小题,共52分)13.(10分)(2022·广东茂名一中高二下月考)如图所示,将长为50 cm,质量为10 g的均匀金属棒ab的两端用两根相同的弹簧悬挂成水平状态,置于垂直于纸面向里的匀强磁场中.当金属棒中通以0.4 A的电流时,弹簧恰好不伸长.g=10 m/s2.(1)求匀强磁场的磁感应强度的大小;(2)当金属棒中通过大小为0.2 A、方向由a到b的电流时,弹簧伸长1 cm;如果电流方向由b到a,而电流大小不变,则弹簧伸长又是多少?答案(1)0.5 T(2)3 cm解析(1)弹簧恰好不伸长时,ab棒受到向上的安培力BIL和向下的重力mg且二者大小相等即BIL=mg(2分)解得B=mgIL=0.5 T(2分)(2)当大小为0.2 A的电流由a流向b时,ab棒受到两根弹簧向上的拉力2kx1,及向上的安培力BI 1L 和向下的重力mg 作用,处于平衡状态. 根据平衡条件有2kx 1+BI 1L =mg (2分)当电流反向后,ab 棒在两根弹簧向上的拉力2kx 2及向下的安培力BI 1L 和重力mg 作用下处于平衡状态.根据平衡条件有2kx 2=mg +BI 1L (2分) 联立解得x 2=mg +BI 1L mg -BI 1Lx 1=3 cm.(2分)14.(12分)(2021·潍坊市高二期末)如图所示,一半径为R 的圆形区域,圆心位于平面直角坐标系的原点O ,其内充满垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 0;在第四象限x ≥R 空间充满沿y 轴正方向的匀强电场.位于x 轴上的离子源以恒定速度射出电荷量为q 、质量为m 的正离子,离子沿x 轴正方向进入磁场,经坐标点(4R,0)离开电场.已知离子离开磁场时速度方向与x 轴正方向的夹角θ=60°.忽略离子间的相互作用,不计重力.求:(1)离子在圆形区域中运动时的速度的大小; (2)电场强度的大小.答案 (1)3B 0Rq m (2)23B 02Rq 3m解析 (1)离子离开磁场时速度方向与x 轴正方向的夹角θ=60°,由几何关系可知tan 30°=Rr(2分)洛伦兹力提供向心力,得q v B 0=m v 2r (2分)联立可得v =3B 0Rqm.(2分) (2)由题意知,离子射入电场时的纵坐标为-3R ,离子射入电场后沿x 轴方向3R =v cos 60°t(2分)沿y 方向3R =-v sin 60°t +12·qEm t 2(2分)解得t =6Rv E =23B 02Rq 3m.(2分)15.(14分)回旋加速器在科学研究中得到了广泛应用,其原理如图甲所示:D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,两个D 形盒接在如图乙所示的电压为U 、周期为T 的交流电源上,D 形盒两直径之间的区域只有电场,交流电源用来提供加速电场.位于D 1的圆心处的质子源A 在t =0时产生的质子(初速度可以忽略)在两盒之间被电压为U 的电场加速,第一次加速后进入D 形盒D 2,在D 形盒的磁场中运动,运动半周时交流电源电压刚好改变方向对质子继续进行加速,已知质子质量为m 、带电荷量为q .半圆形D 形盒所在空间只有磁场,磁场的磁感应强度为B ,D 形盒的半径为R ,当质子被加速到最大速度后,沿D 形盒边缘运动半周再将它们引出,质子的重力不计,求:(1)质子第一次被电场加速后进入磁场的轨道半径; (2)质子在磁场中运动的时间. 答案 (1)1B2mU q (2)πBR 22U解析 (1)质子在加速电场中第一次被加速,根据动能定理,有 qU =12m v 12(2分)在磁场中洛伦兹力提供向心力,根据牛顿第二定律,有 q v 1B =m v 12r (2分)解得r =1B2mUq(2分) (2)设质子被加速n 次后达到最大速度,由动能定理,有 nqU =12m v 2(2分)洛伦兹力提供质子做圆周运动的向心力,有q v B =m v 2R (2分) 周期T =2πR v (1分)则质子在磁场中运动的时间t =n T 2(1分) 解得t =πBR 22U(2分) 16.(16分)(2021·衡阳一中月考)如图所示,直角三角形OAC (α=30°)区域内有B =0.5 T 的匀强磁场,方向如图所示.两平行极板M 、N 接在电压为U 的直流电源上,M 板为高电势.一带正电的粒子从靠近M 板由静止开始加速,从N 板的小孔射出电场后,从P 点以垂直OA的方向进入磁场中,带电粒子的比荷为q m=1.0×104 C/kg ,O 、P 间距离为l =1.2 m .全过程不计粒子所受的重力,求:(1)粒子从OA 边离开磁场时,粒子在磁场中运动的时间;(2)粒子从OC 边离开磁场时,粒子在磁场中运动的最长时间;(3)若加速电压U =220 V ,通过计算说明粒子从三角形OAC 的哪一边离开磁场.答案 (1)2π×10-4 s (2)4π3×10-4 s (3)OC 边 解析 (1)带电粒子在磁场中做圆周运动,由Bq v =m v 2r及T =2πr v 可得周期为: T =2πm qB =2π0.5×10-4 s =4π×10-4 s(2分) 当粒子从OA 边离开磁场时,粒子在磁场中恰好运动了半个周期,时间为t 1=T 2=2π×10-4 s ; (2分)(2)如图甲所示,当带电粒子的轨迹与OC 边相切时为临界状态,时间即为从OC 边射出的最大值,由几何关系可知,粒子在磁场中运动的圆心角为120°,所以粒子在磁场中运动的最长时间为t 2=T 3=4π3×10-4 s ;(4分)甲 乙(3)粒子在加速电场被加速,则有qU =12m v 2(2分) 粒子在磁场中做匀速圆周运动,则有q v B =m v 2r(2分) 因U =220 V ,解得r =0.4 1.1 m(1分) 如图乙所示,当带电粒子的轨迹与OC 边相切时为临界状态,设此时粒子在磁场中做匀速圆周运动的半径为R ,由几何关系得R +R sin α=l (1分) 解得R =0.4 m(1分)由于粒子在磁场中运动的半径r =0.4 1.1 m>0.4 m ,所以粒子从OC 边射出.(1分)。

2024_2025学年高中物理第1章静电场章末测评含解析教科版选修3_1

2024_2025学年高中物理第1章静电场章末测评含解析教科版选修3_1

章末综合测评(一) 静电场(时间:90分钟 分值:100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12 题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下面是某同学对电场中的一些概念及公式的理解,其中正确的是( )A .依据电场强度的定义式E =Fq可知,电场中某点的电场强度与摸索电荷所带的电荷量成反比B .依据电容的定义式C =Q U可知,电容器的电容与其所带电荷量成正比,与两极板间的电压成反比C .依据真空中点电荷的电场强度公式E =k Q r2可知,电场中某点的电场强度与场源电荷所带的电荷量无关D .依据电势差的定义式U AB =W ABq可知,带电荷量为1 C 的正电荷,从A 点移动到B 点克服电场力做功为1 J ,则A 、B 两点间的电势差为-1 VD [电场强度E 与F 、q 无关,由电场本身确定,A 错误;电容C 与Q 、U 无关,由电容器本身确定,B 错误;E =k Q r2是电场强度的确定式,故C 错误;在电场中,克服电场力做功,电场力做负功,由U AB =W ABq可知D 正确.] 2.真空中保持肯定距离的两个点电荷,若其中一个点电荷增加了原来的12,但仍旧保持它们之间的相互作用力不变,则另一点电荷的电量肯定削减了原来的( )A .12B .13C .14D .124B [设原来的电荷量分别为Q 1、Q 2,则F =k Q 1Q 2r 2,由题意知k Q 1Q 2r 2=k 32Q 1Q 2′r 2,解得Q 2′=23Q 2,所以电荷量削减了原来的13,故B 正确.] 3.如图所示,等边三角形ABC 处在匀强电场中,电场方向与三角形所在平面平行,其中φA =φB =0,φC =φ>0,保持该电场的电场强度大小和方向不变,让等边三角形绕A 点在三角形所在平面内顺时针转过30°,则此时B 点的电势为( )A.33φ B.φ2C.-33φD.-φ2C[因φA=φB=0,所以AB是一等势线,电场方向垂直AB向左,设等边三角形边长为L,因φC=φ,所以电场强度为E=φL cos 30°,当等边三角形绕A点在三角形所在平面内顺时针转过30°时,B点到原来AB的距离d=L sin 30°,B点电势为φB=-Ed=-φtan 30°=-33φ,C正确.]4.已知表面电荷匀称分布的带电球壳,其内部电场强度到处为零.现有表面电荷匀称分布的带电半球壳,如图所示,CD为通过半球顶点C与球心O的轴线.P、Q为CD轴上关于O 点对称的两点.则( )A.P点的电场强度与Q点的电场强度大小相等,方向相同B.P点的电场强度与Q点的电场强度大小相等,方向相反C.P点的电场强度比Q点的电场强度强D.P点的电场强度比Q点的电场强度弱A[将该半球壳补全成为整个带电球壳,如图所示:由题意知P、Q两点场强大小为零,由对称性可知左右两个半球壳在P点和在Q点产生的场强均大小相等方向相反,所以左侧半球壳在两点产生的场强大小相等,方向相同,故A项正确.]5.两个固定的等量异号点电荷所产生的电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最终离开电场,粒子只受电场力作用.则粒子在电场中( )A .做直线运动,电势能先变小后变大B .做直线运动,电势能先变大后变小C .做曲线运动,电势能先变小后变大D .做曲线运动,电势能先变大后变小C [由题图等势面可知,两固定的等量异号点电荷的电场分布如图所示.带负电的粒子在等量异号点电荷所产生的电场中的偏转运动轨迹如图所示,则粒子在电场中做曲线运动.电场力对带负电的粒子先做正功后做负功,电势能先变小后变大,故选项C 正确.]6.如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个边长为10 cm 的正六边形的六个顶点,A 、C 、D 三点电势分别为1.0 V 、2.0 V 、3.0 V ,正六边形所在平面与电场线平行,则( )A .E 点的电势与C 点的电势相等B .U EF 与U BC 相同C .电场强度的大小为2033 V/mD .电场强度的大小为20 3 V/mC [A 、D 两点电势分别为1.0 V 和3.0 V ,则AD 中点O 的电势为2.0 V ,C 点与O 点等势,C 与E 不等势,A 错误;U EF 和U BC 大小相同,但正负不同,B 错误;电场强度E =U DCDC ·cos 30°=2033V/m ,C 正确,D 错误.] 7.一平行板电容器充电后与电源断开,正极板接地.两板间有一个负摸索电荷固定在P 点,如图所示,以C 表示电容器的电容、E 表示两板间的场强、φ表示P 点的电势,E p 表示负电荷在P 点的电势能,若正极板保持不动,将负极板缓慢向右平移一小段距离x 0的过程中,各物理量与负极板移动距离x 的关系图像中正确的是( )D[当负极板右移时,d减小,由C=εr S4πk d-x可知,C与x的关系图像不是一次函数图像,故A错误;由U=QC可知,U=4πkdεr SQ,则E=Ud=4πkQεr S,故E与d无关,故B错误;因正极板接地,设P点原来距正极板l,则P点的电势φ=-El不变,故C错误;电势能E p =-φq=Eql,故D正确.]8.某静电场中的一条电场线与x轴重合,其电势的变更规律如图所示.在O点由静止释放一个负点电荷,该负点电荷仅受电场力的作用,则在-x0~x0区间内( )A.该静电场是匀强电场B.该静电场是非匀强电场C.负点电荷将沿x轴正方向运动,加速度不变D.负点电荷将沿x轴负方向运动,加速度渐渐减小AC[φ­x图线的斜率大小等于电场中电场强度的大小,故该条电场线上各点电场强度一样,该静电场为匀强电场,A正确,B错误;由沿着电场线的方向电势降低,可知电场方向沿x轴负方向,故负点电荷沿x轴正方向运动,其受到的电场力为恒力,由牛顿其次定律可知其加速度不变,C正确,D错误.]9.三个质量相同,带电荷量分别为+q、-q和0的小液滴a、b、c,从竖直放置的两板中间上方由静止释放,最终从两板间穿过,轨迹如图所示,则在穿过极板的过程中( )A .电场力对液滴a 、b 做的功相同B .三者动能的增量相同C .液滴a 电势能的增加量等于液滴b 电势能的减小量D .重力对三者做的功相同AD [因a 、b 带电荷量相等,所以穿过两板时电场力做功相同,电势能增加量相同,A 对,C 错;c 不带电,不受电场力作用,由动能定理知,三者动能增量不同,B 错;a 、b 、c 三者穿出电场时,由W G =mgh 知,重力对三者做功相同,D 对.]10.在两块平行金属板A 、B 间加如图所示变更的电压,此电压的值不变,但每过T2变更一次极性.t =0时,A 板电势为正,若在此时由B 板自由释放一电子,那么( )A .电子会始终向A 板运动B .电子在A 、B 两板间来回运动C .在t =T 时,电子回到动身点D .在t =T2时电子具有最大速度AD [依据电子的受力状况和牛顿其次定律知,在0~T2时间内,电子向A 板做匀加速直线运动,在T 2时刻速度达到最大值;在T2到T 时间内,电子向A 板做匀减速直线运动,在T 时刻速度减为零;随后重复刚才的运动,故A 、D 正确.]11.粗糙绝缘的水平地面上,有两块竖直平行相对而立的金属板A 、B ,板间地面上静止着带正电的物块,如图甲所示,当两金属板如图乙所示的交变电压时,设直到t 1时刻物块才起先运动(最大静摩擦力与滑动摩擦力可认为相等),则 ( )A .在0~t 1时间内,物块受到渐渐增大的摩擦力,方向水平向左B .在t 1~t 3时间内,物块受到的摩擦力先渐渐增大,后渐渐减小C .t 3时刻物块的速度最大D .t 4时刻物块的速度最大AC [在0~t 1时间内,电场力小于最大静摩擦力,物块静止,静摩擦力等于电场力,即f =qE =q Ud,电压增大,摩擦力增大,又正电荷所受电场力与电场同向向右,所以摩擦力方向水平向左,选项A 对.在t 1~t 3时间内,电场力大于最大静摩擦力,物块始终加速运动,摩擦力为滑动摩擦力,由于正压力即重力不变,所以摩擦力不变,选项B 错.t 3~t 4阶段,电场力小于摩擦力,物块仍在运动,但为减速运动,所以t 3时刻速度最大,选项C 对,D 错.]12.如图所示,长为L =0.5 m 、倾角为θ=37°的光滑绝缘斜面处于水平向右的匀强电场中,一带电荷量为+q ,质量为m 的小球(可视为质点),以初速度v 0=2 m/s 恰能沿斜面匀速上滑,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,则下列说法中正确的是 ( )A .小球在B 点的电势能大于在A 点的电势能 B .水平匀强电场的电场强度为3mg 4qC .若电场强度加倍,小球运动的加速度大小为3 m/s 2D .若电场强度减半,小球运动到B 点时速度为初速度v 0的一半BD [在小球由A 到B 的过程中,重力做负功,电场力做正功,小球电势能削减,A 错;由动能定理知qEL cos θ-mgL sin θ=0,所以水平匀强电场的电场强度为3mg4q ,B 对;电场强度加倍后,则有q ·2E cos θ-mg sin θ=ma ,所以a =0.6g =6 m/s2,C 错;电场强度减半后,则有mg sin θ-q E2cos θ=ma 1,a 1=0.3g =3 m/s 2,由v 20-v 2=2a 1L 代入数值得v =1 m/s ,D 对.]二、非选择题(本题共4小题,共52分,按题目要求作答)13.(12分)如图所示平行金属板A 、B 之间有匀强电场,A 、B 间电压为600 V ,A 板带正电并接地,A 、B 两板间距为12 cm ,C 点离A 板4 cm.求:(1)C 点的电势;(2)若将一电子从场外移到C 点,电场力做多少功?做正功还是做负功? 解析:(1)板间场强为E =U d =6000.12V/m =5×103 V/m 已知A 板与C 点间的距离为d ′=0.04 m 则U AC =Ed ′=5×103×0.04 V=200 V.因为A 板接地,φA =0,且沿电场方向电势降低,所以可得φC =-200 V. (2)“场外”可理解为离电场无穷远,此处电势也为零.由W =qU 可得将电子从场外移到C 点,电场力做的功为W =e (0-φC )=-1.6×10-19×200J =-200 eV.负号说明电场力做的是负功.答案:(1)-200 V (2)-200 eV 做负功14.(12分)如图所示,已知AC ⊥BC ,∠ABC =60°,BC =20 cm ,A 、B 、C 三点都在匀强电场中,且A 、B 、C 所在平面与电场线平行,把一个电荷量q =10-5C 的正电荷从A 移到B ,电场力做功为零;从B 移到C ,电场力做功为-3×10-3J.(1)求A 、C 间的电势差;(2)若规定B 点电势为零,求C 点的电势; (3)求匀强电场的场强大小及方向. 解析:依据W AB =U AB q 得,U AB =0,即φA =φBU BC =W BCq=-3×102 V.(1)U AC =φA -φC =φB -φC =U BC =-3×102V.(2)φB =0,U BC =φB -φC ,所以φC =φB -U BC =3×102V. (3)AB 为等势线,场强方向垂直AB 连线指向右下方,故E =|U BC |BC sin 60°=1 000 V/m.答案:(1)-3×102V(2)3×102V(3)1 000 V/m 方向与水平方向夹角为30°指向右下方15.(14分)如图所示,空间存在着电场强度E =2.5×102N/C 、方向竖直向上的匀强电场,在电场内一长为L =0.5 m 的绝缘细线一端固定于O 点,另一端拴着质量为m =0.5 kg 、电荷量为q =4×10-2C 的小球.现将细线拉至水平位置,将小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂,取g =10 m/s 2.求:(1)小球运动到圆周最高点的速度大小; (2)细线能承受的最大拉力值;(3)当细线断后,小球接着运动到与O 点水平方向的距离为L 时,小球距离O 点的高度. 解析:(1)(2)由小球运动到最高点细线被拉断,则说明电场力竖直向上,再由电场线竖直向上,则可判定小球带正电,设小球运动到最高点时速度为v ,对该过程由动能定理有:(qE -mg )L =12mv2①在最高点对小球由牛顿其次定律得T +mg -qE =m v 2L②由①②式解得T =15 N ,v =10m/s.(3)小球在细线断裂后,在竖直方向的加速度设为a , 则a =qE -mgm③设小球在水平方向运动L 的过程中,历时t , 则L =vt④设竖直方向上的位移为y ,则y =12at 2⑤由①③④⑤解得y =0.125 m得小球距O 点高度为h =y +L =0.625 m. 答案:(1)10m/s (2)15 N (3)0.625 m16.(14分)如图所示,CD 左侧存在场强大小为E =mg q、方向水平向左的匀强电场,一个质量为m 、电荷量为q 的光滑绝缘小球,从底边BC 长L ,倾角α=53°的直角三角形斜面顶端A 点由静止起先下滑,运动到斜面底端C 点后进入一细圆管内(C 处为一小段长度可忽视的圆弧,圆管内径略大于小球直径),恰能到达D 点,随后从D 点离开后落回到斜面P 点,重力加速度为g .(sin 53°=0.8,cos 53°=0.6)求:(1)DA 两点间的电势差U DA ; (2)圆管半径r ;(3)小球从D 点运动到P 点的时间t . 解析:(1)由U DA =EL 得U DA =mgL q.(2)由恰好过D 点,推断v D =0 依据动能定理,从A 到D 过程mgL tan 53°-EqL -mg 2r =0解得r =L6.(3)由于mg =Eq ,小球进入电场与水平方向成45°角斜向下做匀加速直线运动(如图所示).设到达P 处水平位移为x ,竖直位移为y ,则有x =yx tan 53°+y =2r解得x =L 7,y =L7竖直方向做自由落体运动有y =12gt 2解得t =2L 7g.mgL q (2)L6(3)2L7g答案:(1)。

电场章末检测 Word版

电场章末检测 Word版

章末检测(满分:100分,时间:45分钟)一、选择题(共8小题,每小题6分,共48分.1~5题只有一个选项正确,6~8题有多个选项正确)1.法拉第是19世纪最伟大的实验物理学家之一,他在电磁学研究方面的卓越贡献如同伽利略、牛顿在力学方面的贡献一样,具有划时代的意义,他提出了电场的概念.关于静电场场强的概念,下列说法正确的是()A.由E=Fq可知,某电场的场强E与q成反比,与F成正比B.正、负检验电荷在电场中同一点受到的电场力方向相反,所以某一点场强方向与放入检验电荷的正负有关C.电场中某一点的场强与放入该点的检验电荷的正负无关D.电场中某点不放检验电荷时,该点场强等于零2.静电喷涂时,喷枪带负电,被喷工件带正电,喷枪喷出的涂料微粒带负电.假设微粒被喷出后只受静电力作用,最后吸附在工件表面.微粒在向工件靠近的过程中()A. 一定沿着电场线运动B.所受电场力先减小后增大C.克服电场力做功D.电势能逐渐增大3.平行板电容器充电后断开电源,现将其中一块金属极板沿远离另一板方向平移一小段距离.此过程中电容器的电容C、两极板带电荷量Q、两板间电场强度E、两板间电压U随两板间距离d变化的关系,表示正确的是()4.如图,M、N、P、O是真空中一平面内的四点,OM=ON<OP,O点处固定有一个点电荷q.一个带负电的试探电荷仅在q的电场力作用下沿曲线从N点运动到P点,则()A.q为正电荷,M点的电势高于P点的电势B.q为负电荷,M点的场强大小比P点的小C.试探电荷在N点处受到的电场力大小比在P点的小D.若将试探电荷从N点移到M点,电场力做功为零5.如图所示,真空中存在一个水平向左的匀强电场,场强大小为E.一根不可伸长的绝缘细线长为L,细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点,把小球拉到使细线水平的位置A,由静止释放,小球沿弧线运动到细线与水平方向成θ=60°角的位置B时速度为零.以下说法中正确的是() A.小球在位置B时处于平衡状态B.小球受到的重力与电场力的关系是mg=3qEC.A点电势能小于B点的电势能D.小球从A运动到B过程中,电场力对其做的功为mgL6.一带负电的粒子在电场中做直线运动的v t图象如图所示,在第2 s末和第8 s末分别经过M、N两点,已知运动过程中粒子仅受电场力的作用,则以下判断正确的是()A.该电场一定是匀强电场B.M点的电势低于N点的电势C.从M点到N点的过程中,粒子的电势能逐渐增大D.带电粒子在M点所受电场力大于在N点所受电场力7.(2018·山东潍坊高三月考)如图所示,一重力不计的带电粒子以某一速度进入负点电荷形成的电场中,且只在电场力作用下依次通过M、N、P三点,其中N点是轨迹上距离负点电荷最近的点.若粒子在M点和P点的速率相等,则()A.粒子一定带正电且做匀速圆周运动B.U MN=-U NPC.粒子在N点时的加速度最大、电势能最小D.粒子在M、P两点时的加速度相同8.如图所示,水平向右的匀强电场中有一绝缘斜面,一带电金属块以一定初速度冲上斜面,已知在金属块上滑的过程中动能减小了15 J,金属块克服摩擦力做功10 J,克服重力做功25 J,则有()A.金属块带负电B.金属块的电势能减小了20 JC.金属块的机械能增加10 JD.金属块的重力势能增加了20 J二、非选择题(共4小题,52分)9.(12分)反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.已知静电场的方向平行于x轴,其电势φ随x的分布如图所示.一质量m=1.0×10-20 kg、电荷量q=1.0×10-9 C的带负电的粒子从(-1,0)点由静止开始,仅在电场力作用下在x轴上做往返运动.忽略粒子的重力等因素,求:(1)x轴左侧电场强度E1和右侧电场强度E2的大小之比E1E2;(2)该粒子运动的最大动能E km;(3)该粒子运动的周期T.10.(12分)(2018·山东泰安模拟)如图所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,坐标系内有A、B两点,其中A点坐标为(6 cm,0),B点坐标为(0,3 cm),坐标原点O处的电势为0,点A处的电势为8V,点B处的电势为4 V.现有一带电粒子从坐标原点O处沿电势为0的等势线方向以速度v=4×105 m/s射入电场,粒子运动时恰好通过B点,不计粒子所受重力,求:(1)图中C处(3 cm,0)的电势;(2)匀强电场的场强大小;(3)带电粒子的比荷q m.11.(12分)如图所示,在真空中,沿水平方向和竖直方向建立直角坐标系xOy,在x轴上方有一沿x轴正方向的匀强电场E(电场强度E的大小未知).有一质量为m、带电荷量为+q的小球,从坐标原点O由静止开始自由下落,当小球运动到P(0,-h)点时,在x轴下方突然加一竖直向上的匀强电场,其电场强度与x轴上方的电场强度大小相等,且小球从P返回到O点与从O点下落到P点所用的时间相等.重力加速度为g.试求:(1)小球返回O点时速度的大小;(2)匀强电场的电场强度E的大小;(3)小球运动到最高点时的位置坐标.12.(16分)(2018·湖北八校联考)如图所示,竖直放置的半圆形光滑绝缘轨道半径为R=0.2 m,圆心为O,下端与绝缘水平轨道在B点相切并平滑连接.一带正电q=5.0×10-3C、质量为m=3.0 kg的物块(可视为质点),置于水平轨道上的A点.已知A、B 两点间的距离为L=1.0 m,物块与水平轨道间的动摩擦因数为μ=0.2,重力加速度g取10 m/s2.(1)若物块在A点以初速度v0向左运动,恰好能到达轨道的最高点D,则物块的初速度v0应为多大?(2)若整个装置处于方向水平向左、场强大小为E=2.0×103 N/C的匀强电场中(图中未画出),现将物块从A点由静止释放,试确定物块在以后运动过程中速度最大时的位置(结果可用反三角函数表示).(3)在(2)问的情景中,试求物块在水平面上运动的总路程.。

21-22版:章末检测试卷(一)(步步高)

21-22版:章末检测试卷(一)(步步高)

点场强的强弱.如图4甲是等量异号点电荷形成电场的电场线,图乙是场
中的一些点;O是两电荷连线的中点,E、F是连线的中垂线上相对O对
称的两点,B、C和A、D也相对O对称.则
√A.A、D两点场强相同
B.E、O、F三点比较,O点电势最高
C.E、O、F三点比较,O点场强最弱
D.B、O、C三点比较,O点场强最强
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
6.(2021·南宁三中高二上月考)一带电粒子在电 场中仅在电场力作用下,从A点运动到B点,速 度大小随时间变化的图象如图5所示,tA、tB分 别是带电粒子在A、B两点对应的时刻,则下列 说法中正确的有
图5 A.A处的场强一定大于B处的场强 B.A处的电势一定高于B处的电势 C.带电粒子在A处的电势能一定小于在B处的电势能
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
7.如图6,真空中a、b、c、d四点共线且等距.先在a点固定一点电荷+Q,
测得b点场强大小为E.若再将另一等量异种点电荷-Q放在d点,则
A.b点场强大小为
3 4E
√B.c点场强大小为
5 4E
C.b点场强方向向左
D.将正电荷从M点移动到N点,电场力所做的总功为负
图11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
图2
B.带电粒子在P点时的电势能比在Q点时的电势能大
C.带电粒子在R点时的动能与电势能之和比在Q点时的小,比在P点时的大
D.带电粒子在R点的加速度小于在Q点的加速度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

教科版高中物理必修第三册章末综合测评1静电场含答案

教科版高中物理必修第三册章末综合测评1静电场含答案

章末综合测评(一)静电场1.人们行走时鞋子和地板由于摩擦产生静电,带电的离子会在地板表面对空气中的灰尘产生吸引,对电脑机房、电子厂房等单位会造成一定的影响。

防静电地板又叫作耗散静电地板,当它接地时,能够使电荷耗散。

地板在施工时,地板下面要铺设铝箔,铝箔要连接到地下预埋导体。

下列关于防静电地板的说法,正确的是()A.地板下面铺设铝箔的作用是防潮B.地板必须是绝缘体材料C.地板必须是导电的,如地板中含有导电纤维D.只要地板下面铺设铝箔,地板材料是绝缘的或导电的均可C[地板在施工时,地板下面要铺设铝箔,铝箔要连接到地下预埋导体,即要将地板上的静电导走,所以防静电地板必须是导电的,如地板中含有导电纤维,故选项C正确。

]2.如图所示,光滑绝缘水平面上有三个带电小球a、b、c(可视为点电荷),三球沿一条直线摆放,仅在它们之间的静电力作用下静止,则以下判断正确的是()A.a对b的静电力可能是斥力B.a对c的静电力一定是斥力C.a的电荷量可能比b少D.a的电荷量一定比c多B[根据电场力方向来确定各自电性,从而得出“两同夹一异”,因此a对b的静电力一定是引力,a对c的静电力一定是斥力,故A错误,B正确;同时根据库仑定律来确定静电力的大小,并由平衡条件来确定各自电荷量的大小,因此在大小上一定为“两大夹一小”,则a的电荷量一定比b多,而a的电荷量与c的电荷量无法确定,故C、D错误。

]3.如图为真空中两点电荷A、B形成的电场中的一簇电场线,已知该电场线关于虚线对称,O点为A、B电荷连线的中点,a、b为其连线的中垂线上对称的两点,则下列说法正确的是()A.A、B可能是带等量异号的正、负电荷B.A、B可能是带不等量的正电荷C.a、b两点处无电场线,故其电场强度可能为零D.同一试探电荷在a、b两点处所受电场力大小相等,方向一定相反D[根据电场线的特点,从正电荷出发到负电荷或无限远终止可以判断,A、B是两个等量同种电荷,A、B选项错误;电场线只是形象描述电场的假想曲线,a、b两点处无电场线,其电场强度也不为零,C选项错误;在a、b两点处场强大小相等、方向相反,同一试探电荷在a、b两点所受电场力大小相等,方向一定相反,D选项正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末检测试卷(一)(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~7题为单选题,8~12题为多选题,全部选对的得4分,有选对但不全的得2分,有选错的得0分)1.下面是某同学对电场中的一些概念及公式和电容器的相关公式的理解,其中正确的是( )A .根据电场强度的定义式E =Fq 可知,电场中某点的电场强度与检验电荷所带的电荷量成反比B .根据电容的定义式C =QU 可知,电容器的电容与其所带电荷量成正比,与两极板间的电压成反比C .根据真空中点电荷的电场强度公式E =k Qr 2可知,电场中某点的电场强度与场源电荷所带的电荷量无关D .根据电势差U AB =W ABq 可知,带电荷量为1 C 的正电荷,从A 点移动到B 点克服电场力做功为1 J ,则A 、B 两点间的电势差为-1 V2.两个完全相同的金属球A 和B (可视为点电荷)带电荷量之比为1∶7,相距为r .两者接触一下放回原来的位置,若两电荷原来带异种电荷,则后来两小球之间的库仑力大小与原来之比是( ) A .3∶7 B .4∶7 C .9∶7D .16∶73.如图1所示,在粗糙的绝缘水平面上固定一个点电荷Q ,在M 点无初速度释放一个带有恒定电荷量的小物块,小物块在Q 的电场中沿水平面运动到N 点停止,则从M 到N 的过程中 ,下列说法错误的是( ) A .小物块所受的电场力逐渐减小 B .小物块具有的电势能逐渐减小 C .M 点的电势一定高于N 点的电势D .小物块电势能的减少量一定等于克服摩擦力做的功4.如图2所示是由电源E 、灵敏电流计G 、滑动变阻器R 和平行板电容器C 组成的电路,开关S 闭合.在下列四个过程中,灵敏电流计中有方向由a 到b 电流的是( )A .在平行板电容器中插入电介质B .减小平行板电容器两极板间的距离C .减小平行板电容器两极板的正对面积D .增大平行板电容器两极板的正对面积5.如图3所示,一圆心为O 、半径为R 的圆中有两条互相垂直的直径AC 和BD ,电荷量分别为+Q 、-Q 的点电荷放在圆周上,它们的位置关系关于AC 对称,+Q 与O 点的连线和OC 间夹角为60°.两个点电荷的连线与AC 的交点为P ,取无穷远电势为零,则下列说法正确的是( )A .P 点的场强为0,电势也为0B .A 点电势低于C 点电势C .点电荷+q 沿直线从A 到C 的过程中电势能先减小后增大D .点电荷-q 在B 点具有的电势能小于在D 点具有的电势能6.如图4所示,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为( )A.3kq3l 2B.3kq l 2C.3kq l 2D.23kq l27.在匀强电场中平行于电场方向建立一直角坐标系,如图5所示.从坐标原点沿+y 轴前进0.2 m 到A 点,电势降低了10 2 V ,从坐标原点沿+x 轴前进0.2 m 到B 点,电势升高了10 2 V ,则匀强电场的场强大小和方向为( ) A .50 V/m ,方向B →A B .50 V/m ,方向A →B C .100 V/m ,方向B →AD .100 V/m ,方向垂直AB 斜向下8.如图6所示,a 、b 是两个带有同种电荷的小球(可视为点电荷),用绝缘细线悬挂于同一点,两球静止时,它们距水平面的高度相等,线与竖直方向的夹角分别为α、β,且β>α.若同时剪断两根细线,空气阻力不计,两球带电荷量不变,则()A.a球的质量比b球的大B.a、b两球同时落地C.a球的电荷量比b球的大D.a、b两球飞行的水平距离相等9.如图7所示,a、b是x轴上关于O点对称的两点,c、d是y轴上关于O点对称的两点,c、d两点分别固定一等量异种点电荷,带负电的检验电荷仅在电场力作用下从a点沿曲线运动到b点,E为第一象限内轨迹上的一点,以下说法正确的是()A.c点的电荷带正电B.a点电势高于E点电势C.E点场强方向沿轨迹在该点的切线方向D.检验电荷从a到b过程中,电势能先增加后减少10.如图8所示,光滑绝缘直角斜面ABC固定在水平面上,并处在方向与AB面平行的匀强电场中,一带正电的物体在电场力的作用下从斜面的底端运动到顶端,它的动能增加ΔE k,重力势能增加ΔE p,则下列说法正确的是()A.电场力所做的功等于ΔE kB.物体克服重力做功等于ΔE pC.合外力对物体做的功等于ΔE kD.电场力所做的功等于ΔE k+ΔE p11.图9甲中直线PQ表示电场中的一条电场线,质量为m、电荷量为q的带负电粒子仅在电场力作用下沿电场线向右运动,经过P点时速度为v0,到达Q点时速度减为零,粒子从P 到Q运动的v-t图像如图乙所示.下列判断正确的是()A.P点电势高于Q点电势B.P点场强大于Q点场强C.P、Q两点间的电势差为m v20 2qD.带负电的粒子在P点的电势能大于在Q点的电势能12.如图10甲所示,两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处.(不计重力作用)下列说法中正确的是()图10A .从t =0时刻释放电子,电子将始终向右运动,直到打到右极板上B .从t =0时刻释放电子,电子可能在两板间振动C .从t =T4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D .从t =3T8时刻释放电子,电子必将打到左极板上二、非选择题(本题共4小题,共52分)13.(12分)如图11所示,两平行金属板A 、B 间为一匀强电场,A 、B 相距6 cm ,C 、D 为电场中的两点(其中C 点在金属板上),且CD =4 cm ,CD 连线和场强方向成60°角.已知电子从D 点移到C 点电场力做功为3.2×10-17J ,电子电荷量e =1.6×10-19C ,求:(1)匀强电场的场强大小; (2)A 、B 两板间的电势差; (3)若A 板接地,D 点电势为多少?14.(12分)如图12所示,带电荷量为Q 的正点电荷固定在倾角为30°的光滑绝缘斜面底部的C 点,斜面上有A 、B 两点,且A 、B 和C 在同一直线上,A 和C 相距为L ,B 为AC 的中点.现将一带电小球(可视为点电荷)从A 点由静止释放,当带电小球运动到B 点时速度正好又为零,已知带电小球在A 点处的加速度大小为g4,静电力常量为k ,求:(1)小球运动到B 点时的加速度;(2)B 和A 两点间的电势差(用k 、Q 和L 表示).15.(14分)如图13所示,在E = 103 V /m 的水平向左的匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R =0.4 m ,一带正电荷q =10-4 C 的小滑块(可视为质点)质量为m = 0.04 kg ,与水平轨道间的动摩擦因数μ=0.2,g 取10 m/s 2.(1)要使小滑块刚好能运动到半圆轨道的最高点L ,滑块应在水平轨道上离N 点多远处静止释放?(2)在(1)的条件下释放的滑块通过P 点时对轨道的压力是多大?(P 为半圆轨道中点)16.(14分)如图14所示的装置放置在真空中,炽热的金属丝可以发射电子,金属丝和竖直金属板之间加一电压U1=2 500 V,发射出的电子被加速后,从金属板上的小孔S射出.装置右侧有两个相同的平行金属极板水平正对放置,板长l=6 cm,相距d=2 cm,两极板间加以电压U2=200 V的偏转电场.从小孔S射出的电子恰能沿平行于板面的方向由极板左端中间位置射入偏转电场.已知电子的电荷量e=1.6×10-19 C,设电子刚离开金属丝时的速度为零,忽略金属极板边缘对电场的影响,不计电子受到的重力.求:(1)电子射入偏转电场时的动能E k;(2)电子射出偏转电场时在竖直方向上的侧移量y;(3)电子在偏转电场运动的过程中电场力对它所做的功W.章末检测试卷(一)(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~7题为单选题,8~12题为多选题,全部选对的得4分,有选对但不全的得2分,有选错的得0分)1.下面是某同学对电场中的一些概念及公式和电容器的相关公式的理解,其中正确的是( )A .根据电场强度的定义式E =Fq 可知,电场中某点的电场强度与检验电荷所带的电荷量成反比B .根据电容的定义式C =QU 可知,电容器的电容与其所带电荷量成正比,与两极板间的电压成反比C .根据真空中点电荷的电场强度公式E =k Qr 2可知,电场中某点的电场强度与场源电荷所带的电荷量无关D .根据电势差U AB =W ABq 可知,带电荷量为1 C 的正电荷,从A 点移动到B 点克服电场力做功为1 J ,则A 、B 两点间的电势差为-1 V 答案 D解析 电场强度E 与F 、q 无关,由电场本身决定,A 错误;电容C 与Q 、U 无关,由电容器本身决定,B 错误;E =k Qr2是决定式,C 错误;故选D.2.两个完全相同的金属球A 和B (可视为点电荷)带电荷量之比为1∶7,相距为r .两者接触一下放回原来的位置,若两电荷原来带异种电荷,则后来两小球之间的库仑力大小与原来之比是( ) A .3∶7 B .4∶7 C .9∶7 D .16∶7答案 C解析 接触前,两小球之间的库仑力为F =k q ·7q r 2=7k q 2r 2,接触后两者所带电荷量为q ′=7q -q 2=3q ,两小球之间的库仑力为F ′=k 3q ·3q r 2=9k q 2r2,故F ′∶F =9∶7,C 正确.3.如图1所示,在粗糙的绝缘水平面上固定一个点电荷Q ,在M 点无初速度释放一个带有恒定电荷量的小物块,小物块在Q 的电场中沿水平面运动到N 点停止,则从M 到N 的过程中 ,下列说法错误的是( )图1A .小物块所受的电场力逐渐减小B .小物块具有的电势能逐渐减小C .M 点的电势一定高于N 点的电势D .小物块电势能的减少量一定等于克服摩擦力做的功 答案 C解析 小物块在从M 运动到N 的过程中,一定受到向右的摩擦力,所以电场力一定向左.由M 运动到N ,离电荷Q 距离越来越大,所以小物块受到的电场力一定减小,A 正确;由动能定理可得μmgx -W MN =0,即W MN =μmgx ,电场力做正功,小物块具有的电势能减小,其减少量等于克服滑动摩擦力做的功,B 、D 正确;因点电荷Q 的电性未知,不能判断M 、N 两点电势的高低,C 错误.4.如图2所示是由电源E 、灵敏电流计G 、滑动变阻器R 和平行板电容器C 组成的电路,开关S 闭合.在下列四个过程中,灵敏电流计中有方向由a 到b 电流的是( )图2A .在平行板电容器中插入电介质B .减小平行板电容器两极板间的距离C .减小平行板电容器两极板的正对面积D .增大平行板电容器两极板的正对面积 答案 C解析 电容器保持和电源连接,电压U 一定,在平行板电容器中插入电介质,由C =εr S4πkd 知电容增大,由C =QU 知带电荷量增加,电容器充电,电路中有b 到a 方向的电流通过电流计,故A 错误.减小平行板电容器两极板间的距离,由C =εr S 4πkd 知电容增大,由C =QU知带电荷量增加,电容器充电,电路中有b 到a 方向的电流通过电流计,故B 错误.减小平行板电容器两极板的正对面积,由C =εr S 4πkd 知电容减小,由C =QU 知带电荷量减小,电容器放电,电路中有a 到b 方向的电流通过电流计,故C 正确.同理D 错误.5.如图3所示,一圆心为O 、半径为R 的圆中有两条互相垂直的直径AC 和BD ,电荷量分别为+Q 、-Q 的点电荷放在圆周上,它们的位置关系关于AC 对称,+Q 与O 点的连线和OC 间夹角为60°.两个点电荷的连线与AC 的交点为P ,取无穷远电势为零,则下列说法正确的是( )图3A .P 点的场强为0,电势也为0B .A 点电势低于C 点电势C .点电荷+q 沿直线从A 到C 的过程中电势能先减小后增大D .点电荷-q 在B 点具有的电势能小于在D 点具有的电势能 答案 D解析 +Q 在P 点产生的场强方向向右,-Q 在P 点产生的场强方向也向右,根据叠加原理可知P 点的场强不为0,故A 错误.AC 连线是等量异种点电荷电场中一条等势线,故A 、C 两点的电势相等,故B 错误.AC 连线是等量异种点电荷电场中一条等势线,点电荷+q 沿直线从A 到C 的过程中电势能不变,故C 错误.根据顺着电场线方向电势降低,结合电场线的分布情况可知,B 点的电势高于D 点电势,由电势能公式E p =qφ分析可知:点电荷-q 在B 点具有的电势能小于在D 点具有的电势能,故D 正确.6.如图4所示,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为( )图4A.3kq 3l 2B.3kq l 2C.3kq l 2D.23kq l2答案 B解析 因为a 、b 小球对c 的电场力的合力方向垂直于a 、b 连线由c 指向ab 一侧,又因c 带负电,所以匀强电场的场强方向为垂直于a 、b 连线由c 指向ab 一侧. a 受力情况如图所示利用正交分解法: F 2cos 60°=F 1=k q 2l 2F 2sin 60°=F 3=qE 解得E =3kql 2. 7.在匀强电场中平行于电场方向建立一直角坐标系,如图5所示.从坐标原点沿+y 轴前进0.2 m 到A 点,电势降低了10 2 V ,从坐标原点沿+x 轴前进0.2 m 到B 点,电势升高了10 2 V ,则匀强电场的场强大小和方向为( )图5A .50 V/m ,方向B →A B .50 V/m ,方向A →BC .100 V/m ,方向B →AD .100 V/m ,方向垂直AB 斜向下 答案 C解析 连接AB ,由题意可知,AB 中点C 点电势应与坐标原点O 相等,连线OC 即为等势线,与等势线OC 垂直的方向为电场的方向,故电场方向由B →A ,其大小E =U d =102+1022×0.2V /m =100 V/m ,选项C 正确.8.如图6所示,a、b是两个带有同种电荷的小球(可视为点电荷),用绝缘细线悬挂于同一点,两球静止时,它们距水平面的高度相等,线与竖直方向的夹角分别为α、β,且β>α.若同时剪断两根细线,空气阻力不计,两球带电荷量不变,则()图6A.a球的质量比b球的大B.a、b两球同时落地C.a球的电荷量比b球的大D.a、b两球飞行的水平距离相等答案AB解析对a、b小球受力分析,根据平衡条件有:m a g=F库tan α,m b g=F库tan β,由于β>α,所以m a>m b,故A正确.m a>m b,因此水平方向上每一时刻a的加速度小于b的加速度.竖直方向上做自由落体运动,根据运动的独立性可知,两球同时落地,故B正确.a球的电荷量和b球的电荷量大小无法判断,故C错误.由于水平方向上每一时刻a的加速度小于b的加速度,因此a球水平飞行的距离比b球小,故D错误.9.如图7所示,a、b是x轴上关于O点对称的两点,c、d是y轴上关于O点对称的两点,c、d两点分别固定一等量异种点电荷,带负电的检验电荷仅在电场力作用下从a点沿曲线运动到b点,E为第一象限内轨迹上的一点,以下说法正确的是()图7A.c点的电荷带正电B.a点电势高于E点电势C.E点场强方向沿轨迹在该点的切线方向D.检验电荷从a到b过程中,电势能先增加后减少答案BD解析带负电的检验电荷仅在电场力的作用下从a点沿曲线运动到b点,合力指向曲线的凹侧,故上面的电荷带同种电荷,即c点的电荷带负电,故A错误;从E点到b点电场力做正功,电势能减小,由于是负电荷,故从E到b电势要升高,即b点的电势高于E点的电势,又因为等量异号点电荷的连线的中垂线是等势线,故a、b两点的电势相等,所以a点电势高于E点电势,故B正确;E点的切线方向为速度方向,E点的场强方向应与电场力方向在同一直线上,而曲线运动的受力与速度方向不可能在同一直线上,即E点场强方向不可能是该点的切线方向,故C错误;检验电荷从a到b过程中,电场力先做负功后做正功,故电势能先增加后减少,故D正确.故选B、D.10.如图8所示,光滑绝缘直角斜面ABC固定在水平面上,并处在方向与AB面平行的匀强电场中,一带正电的物体在电场力的作用下从斜面的底端运动到顶端,它的动能增加ΔE k,重力势能增加ΔE p,则下列说法正确的是()图8A.电场力所做的功等于ΔE kB.物体克服重力做功等于ΔE pC.合外力对物体做的功等于ΔE kD.电场力所做的功等于ΔE k+ΔE p答案BCD解析物体在电场力的作用下从斜面的底端运动到顶端,由功能关系知,电场力做的功等于机械能的增加量,即W电=ΔE k+ΔE p,故A错误,D正确;物体克服重力做的功等于重力势能的增加量,即为ΔE p,故B正确;根据动能定理,合外力对物体做的功等于动能的增加量,即ΔE k,故C正确.11.图9甲中直线PQ表示电场中的一条电场线,质量为m、电荷量为q的带负电粒子仅在电场力作用下沿电场线向右运动,经过P点时速度为v0,到达Q点时速度减为零,粒子从P到Q 运动的v -t 图像如图乙所示.下列判断正确的是( )图9A .P 点电势高于Q 点电势B .P 点场强大于Q 点场强C .P 、Q 两点间的电势差为m v 202qD .带负电的粒子在P 点的电势能大于在Q 点的电势能 答案 ABC解析 由题图乙知带电粒子的速度减小,受到向左的电场力,故电场线方向向右,P 点电势一定高于Q 点电势,故A 正确;由题图乙可知,P 处的加速度大于Q 处的加速度,故P 处的场强大于Q 处的场强,故B 正确;由动能定理知-qU =0-12m v 02,可求出PQ 两点的电势差为m v 202q,故C 正确;负电荷在电势低的地方电势能大,故带负电的粒子在P 点的电势能一定小于在Q 点的电势能,故D 错误.12.如图10甲所示,两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处.(不计重力作用)下列说法中正确的是( )图10A .从t =0时刻释放电子,电子将始终向右运动,直到打到右极板上B .从t =0时刻释放电子,电子可能在两板间振动C .从t =T4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D .从t =3T8时刻释放电子,电子必将打到左极板上答案 AC解析 从t =0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T 2,接着匀减速T2,速度减小到零后,又开始向右匀加速T 2,接着匀减速T2……直到打在右极板上,电子不可能向左运动;如果两板间距离不够大,电子也始终向右运动,直到打到右极板上.从t =T4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T 4,接着匀减速T4,速度减小到零后,改为向左再匀加速T 4,接着匀减速T4,即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上.从t =3T8时刻释放电子,如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在向左运动过程中打在左极板上.选A 、C. 二、非选择题(本题共4小题,共52分)13.(12分)如图11所示,两平行金属板A 、B 间为一匀强电场,A 、B 相距6 cm ,C 、D 为电场中的两点(其中C 点在金属板上),且CD =4 cm ,CD 连线和场强方向成60°角.已知电子从D 点移到C 点电场力做功为3.2×10-17J ,电子电荷量e =1.6×10-19C ,求:图11(1)匀强电场的场强大小; (2)A 、B 两板间的电势差; (3)若A 板接地,D 点电势为多少? 答案 (1)1×104 N/C (2)600 V (3)-200 V 解析 (1)电子由D 到C 电场力做正功 W =eEL CD cos 60° E =1×104 N/C.(2)由题知,电子受到的电场力方向向上,电子带负电,则场强方向为A →B .A 、B 间电势差为U AB =Ed AB =1×104×6×10-2 V =600 V.(3)A 、D 间电势差为U AD =Ed AD =EL CD cos 60°=1×104×4×10-2×0.5 V =200 V φA -φD =200 V ,φA =0 解得φD =-200 V.14.(12分)如图12所示,带电荷量为Q 的正点电荷固定在倾角为30°的光滑绝缘斜面底部的C 点,斜面上有A 、B 两点,且A 、B 和C 在同一直线上,A 和C 相距为L ,B 为AC 的中点.现将一带电小球(可视为点电荷)从A 点由静止释放,当带电小球运动到B 点时速度正好又为零,已知带电小球在A 点处的加速度大小为g4,静电力常量为k ,求:图12(1)小球运动到B 点时的加速度;(2)B 和A 两点间的电势差(用k 、Q 和L 表示). 答案 (1)g 2,方向沿斜面向上 (2)kQL解析 (1)带电小球在A 点时由牛顿第二定律得: mg sin 30°-k QqL2=ma A ①带电小球在B 点时由牛顿第二定律得: k Qq (L 2)2-mg sin 30°=ma B ② 联立①②式解得:a B =g2,方向沿斜面向上.(2)由A 点到B 点对小球运用动能定理得 mg sin 30°·L2-qU BA =0③联立①③式解得U BA =kQL.15.(14分)如图13所示,在E = 103 V /m 的水平向左的匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R =0.4 m ,一带正电荷q =10-4 C 的小滑块(可视为质点)质量为m = 0.04 kg ,与水平轨道间的动摩擦因数μ=0.2,g 取10 m/s 2.图13(1)要使小滑块刚好能运动到半圆轨道的最高点L ,滑块应在水平轨道上离N 点多远处静止释放?(2)在(1)的条件下释放的滑块通过P 点时对轨道的压力是多大?(P 为半圆轨道中点) 答案 (1)20 m (2)1.5 N解析 (1)滑块刚好能通过轨道最高点的条件是 mg =m v 2R,v =gR =2 m/s滑块由释放点到最高点过程,由动能定理得: qEx -μmgx -2mgR =12m v 2代入数据得:x =20 m.(2)滑块过P 点时,由动能定理: -mgR -qER =12m v 2-12m v P 2在P 点由牛顿第二定律:N -qE =m v 2P R代入数据得:N =1.5 N.由牛顿第三定律得,滑块通过P 点时对轨道的压力是1.5 N.16.(14分)如图14所示的装置放置在真空中,炽热的金属丝可以发射电子,金属丝和竖直金属板之间加一电压U 1=2 500 V ,发射出的电子被加速后,从金属板上的小孔S 射出.装置右侧有两个相同的平行金属极板水平正对放置,板长l =6 cm ,相距d =2 cm ,两极板间加以电压U 2=200 V 的偏转电场.从小孔S 射出的电子恰能沿平行于板面的方向由极板左端中间位置射入偏转电场.已知电子的电荷量e =1.6×10-19C ,设电子刚离开金属丝时的速度为零,忽略金属极板边缘对电场的影响,不计电子受到的重力.求:图14(1)电子射入偏转电场时的动能E k ;(2)电子射出偏转电场时在竖直方向上的侧移量y ; (3)电子在偏转电场运动的过程中电场力对它所做的功W . 答案 (1)4.0×10-16J (2)0.36 cm (3)5.76×10-18J解析 (1)电子在加速电场中,根据动能定理有eU 1=E k 解得E k =4.0×10-16 J.(2)设电子在偏转电场中运动的时间为t ,电子在水平方向做匀速直线运动,由l =v 1t ,eU 1=12m v 12 解得t =lv 1=lm 2eU 1电子在竖直方向受电场力F =e ·U 2d电子在竖直方向做匀加速直线运动,设其加速度为a ,根据牛顿第二定律有 e ·U 2d =ma 解得a =eU 2md电子射出偏转电场时在竖直方向上的侧移量 y =12at 2=U 2l 24dU 1 解得y =0.36 cm.(3)电子射出偏转电场的位置与射入偏转电场位置的电势差U =U 2d ·y电场力所做的功W =eU 解得W =5.76×10-18 J.。

相关文档
最新文档