优秀参赛课件 《正态分布》教案及说明

合集下载

正态分布优质课课件

正态分布优质课课件
创设情景,引入新课
你见过高尔顿板吗 ? 图2. 4 1 所示的就是一块高尔顿 板示意 图.在一块木板上钉上若干 排相 互平行但相互错开的圆柱 形小 木块,小木块之间留有适当的空 隙作为通道, 前面挡有一块玻璃. 图2.4 1 让一个小球从高尔顿板 上方的 通道口落下,小球在下落过 程中 . 与层层小木块碰撞, 最后掉入高尔顿板下方的某一球槽内
正态曲线下的面积规律
X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
m
正态曲线下的面积规律
对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
m
x2 x1
5、特殊区间的概率:
若X~N
( m , s 2 ),则对于任何实数a>0,概率
m + a
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
a
b
2、正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
P(a X b) m ,s ( x)dx
a
b
则称为X 的正态分布. 正态分布由参数μ、σ唯一确定. 正态分布记作N( μ,σ2).其图象称为正态曲线.
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)

正态分布示范教案

正态分布示范教案

正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。

1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。

1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。

1.4 练习:让学生通过图表或计算器观察正态分布的特性。

第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。

2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。

2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。

2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。

第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。

3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。

3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。

3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。

第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。

4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。

4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。

4.4 练习:让学生通过实例,运用正态分布解决实际问题。

第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。

5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。

5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。

《正态分布》教案及说明

《正态分布》教案及说明
1 f (x) e 2 ( x ) 2 2 2
, x (,)

这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正 态曲线。 在函数解析式中有两个参数μ 、σ :μ 表示总体的平均数;σ (σ >0)表示总 体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢? 1、μ 表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是 反映总体分布的?---平均水平) , (回头看频率分布直方图)大家思考一下,这个 总体分布的平均数在什么位置呢?最高点那个位置, 为什么呢?因为规定的尺寸为 25.40mm,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图 像才会呈现“中间高,两头低”的特征。下面大家看一下 flash (改变μ 的值,肯 定学生的回答,得出 1、2、3 条性质) 用《几何画板》画出三条正态曲线:即①μ =-1,σ =0.5;②μ =0,σ =1;③μ =1,σ =2,其图象如下图所示:
教学难点:1.抽象函数Φ (x0)=p(x<x0)的理解。
x F( x ) 2.正确理解与应用等式
教学过程: 【一】 导入新课
ቤተ መጻሕፍቲ ባይዱ
1、 问题引入:在 2007 年的高考中,某省全体考生的高考平均成绩是 490 分, 标准差是 80, 计划本科录取率为 0.4 , 则本科录取分数线可能划在多少分? 2、回顾样本的频率分布与总体分布之间的关系. 前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布 列来描述总体的统计规律; 而许多随机现象中出现的一些变量,如上节课研究的 某产品的尺寸, 它的取值是可以充满整个区间或者区域的,总体分布通常不易知 道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直 方图)去估计总体分布. 回头看上一节得出的 100 个产品尺寸的频率分布直方图,发现:横坐标是产 品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直 方图的面积。设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率 直方图无限接近于一条光滑的曲线-----总体密度曲线。它能够很好的反映了总 体在各个范围内取值的概率。由概率的性质可以知道(1)整条曲线与 x 轴所夹 的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内 面积 下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征? “中间高,两头低,左右对称”的特征。像具有这种特征的总体密度曲线一 般就是或者近似的是以下函数的图像。 (板书函数、标题) : 【二】正态分布 (1)正态总体的函数解析式、正态分布与正态曲线 产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总 体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)

高中高三数学《正态分布》教案、教学设计

高中高三数学《正态分布》教案、教学设计
5.写作任务:要求学生撰写一篇关于正态分布在实际生活中的应用的小论文,字数在500字左右。这样可以锻炼学生的书面表达能力,同时加深他们对正态分布的理解。
6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。

36862_《正态分布》教案1

36862_《正态分布》教案1

2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用。

过程与方法:结合正态曲线,加深对正态密度函数的理理。

情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。

教学重点:正态分布曲线的性质、标准正态曲线N(0,1)。

教学难点:通过正态分布的图形特征,归纳正态曲线的性质。

教具准备:多媒体、实物投影仪。

教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。

内容分析:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:22()2(),(,)xf x xμσ--=∈-∞+∞,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过)()(σμ-Φ=xxF转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为22121)(xexF-=π,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程:学生探究过程:复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称X 的分布为正态分布(normaldistribution).正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在1733年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即)()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.52.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ.3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1.若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=?(1.2)-?(-2.32)=?(1.2)-[1-?(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-?(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率 解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布巩固练习:书本第74页1,2,3 课后作业:书本第75页习题2.4 A 组1,2B 组1,2教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:22()2(),(,)x f x x μσ--=∈-∞+∞,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。

正态分布ppt课件

正态分布ppt课件

1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2

正态分布示范教案

正态分布示范教案

正态分布示范教案第一章:正态分布的基本概念1.1 引入:通过引入日常生活中的例子,如考试成绩、身高、体重等,引导学生理解数据的分布规律。

1.2 定义:介绍正态分布的定义,解释均值、标准差等基本术语。

1.3 图形表示:教授如何绘制正态分布曲线,并解释曲线特点。

1.4 实例分析:分析一些实际数据集,让学生通过计算和绘图验证它们是否符合正态分布。

第二章:正态分布的性质2.1 引入:通过讲解正态分布的性质,使学生理解正态分布的重要性和广泛应用。

2.2 均值、中位数和众数:解释正态分布中均值、中位数和众数的关系,并通过实例进行说明。

2.3 概率密度函数:教授正态分布的概率密度函数公式,并解释其意义。

2.4 标准正态分布:介绍标准正态分布的概念,并解释其与普通正态分布的关系。

第三章:正态分布的应用3.1 引入:通过实际案例,让学生了解正态分布在实际问题中的应用。

3.2 假设检验:讲解如何使用正态分布进行假设检验,包括Z检验和t检验。

3.3 置信区间:教授如何计算正态分布数据的置信区间,并解释其含义。

3.4 数据分析:通过实际数据集,让学生运用正态分布进行数据分析,解决实际问题。

第四章:正态分布在实际领域的应用4.1 引入:通过讲解正态分布在不同领域的应用,让学生了解其广泛性。

4.2 医学领域:介绍正态分布在医学领域的应用,如疾病风险评估、药物剂量确定等。

4.3 工程领域:解释正态分布在工程领域的应用,如产品质量控制、可靠性分析等。

4.4 金融领域:讲解正态分布在金融领域的应用,如投资组合优化、风险管理等。

第五章:正态分布的扩展5.1 引入:引导学生思考正态分布的局限性,引出正态分布的扩展。

5.2 非正态分布:介绍一些常见的非正态分布,如泊松分布、二项分布等,并解释其特点。

5.3 转换方法:教授如何将非正态分布数据转换为正态分布,以及如何将正态分布数据转换为其他分布。

5.4 应用案例:通过实际案例,让学生了解在实际问题中如何灵活运用正态分布及其扩展。

《正态分布》教案

《正态分布》教案

112341.510.50.511.5x=u2.4正态分布一、学习目标:1. 了解正态分布密度曲线、正态分布的概念;了解正态曲线的解析式及函数图像。

2. 通过图像熟悉正态曲线的特点; 能在实际中体会3σ原则的应用。

二、学习重难点学习重点:1.正态分布曲线的特点;2.正态分布在实际生活中的应用. 学习难点:1.利用正态分布的性质求概率;2.正态分布在实际中的应用。

三、学习过程: (一)知识提炼: 1.正态曲线:函数φμ,σ(x)= x ∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线. 2.正态曲线的性质:①曲线位于x 轴_____,与x 轴不相交. ②曲线是单峰的,它关于直线_____对称. ③曲线在x=μ处达到峰值______. ④曲线与x 轴之间的面积为__.⑤当σ一定时,曲线的位置由μ确定,曲线随着___的变化而沿x 轴平移. ⑥当μ一定时,曲线的形状由σ确定.σ越小,曲线越“_____”,表示总体的分布越_____;σ越大,曲线越“_____”,表示总体的分布越_____. 如右图所示。

3.正态变量在三个特殊区间内取值的概率 ①P(μ-σ<X ≤μ+σ)=_______; ②P(μ-2σ<X ≤μ+2σ)=_______; ③P(μ-3σ<X ≤μ+3σ)=_______. (二)典型例题:类型一、正态曲线的解析式 例1.如图是一个正态曲线.试根据该图像写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.总结方法: 【变式训练1】1.关于正态曲线,下列说法正确的是_______.①函数 曲线上任一点M(x 0,y 0)的纵坐标y 0表示X=x 0的概率;②正态曲线在x 轴上方且与x 轴一定不相交;③如果随机变量X ˜N(μ, ),且F(x)=P(X<x),那么F(x)是R 上的增函数; ④μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中.()()22x 2x 2-μ-σϕπσ2σx<4-a)= .【变式训练2】设X ~N(1,22),试求P(-1<X ≤3)的值.P(X ≥5)的值 .类型三.正态曲线的实际应用例3.在某次数学考试中,考生的成绩X 服从正态分布X ~N(90,225). (1)求考试成绩X 位于区间(75,120)上的概率是多少?(2)若此次考试共有2000名考生,试估计考试成绩在120分以上的考生大约有多少人?总结方法:(四)课堂小结:。

《正态分布》教学课件(32张PPT)

《正态分布》教学课件(32张PPT)
x (,) 标准正态曲线 10
正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5

高中数学人教A版选修2-3第二章《正态分布》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教A版选修2-3第二章《正态分布》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教A版选修2-3第二章《正态分布》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1.知识与技能
(1)通过高尔顿板试验,了解正态分布密度曲线的来源
(2)通过事例借助几何直观,理解正态分布的概念及其曲线特点,掌握利用原则解决一些简单的与正态分布有关的概率计算问题
2.过程与方法
(1)通过试验、频率分布直方图、折线图认识正态曲线,体验从有限到无限的思想方法
(2) 通过观察正态曲线研究正态曲线的性质,体会数形结合的方法,增强观察、分析和归纳的能力
3、情感、态度与价值观
(1) 通过经历直观动态的高尔顿试验,提高学习数学的兴趣
(2)通过原则的学习,充分感受数学的对称美
2学情分析
在必修三的学习中,学生已经掌握了统计等知识,这为学生理解利用频率分布直方图来研究小球的分布规律奠定了基础。

但正态分布的密度函数表达式较为复杂抽象,学生理解比较困难。

3重点难点
重点:1、正态分布密度曲线的特点.
2、正态分布密度曲线所表示的意义.
难点:1、在现实生活中什么样的随机变量服从正态分布
2、正态分布密度曲线所表示的意义
4教学过程。

正态分布专题教育课件

正态分布专题教育课件
图一:
图二: 图三:
图四:
✓ 当有一随机变量X服从正态分布N(μ,σ2),若要求某
一区间(x1,x2)旳曲线与横轴围成旳面积时,不必利 用积分学知识求从x1移到x2所相应区域旳面积大小来得 到这一区间所相应旳面积。此时,我们能够经过变量 变换,把X转变成u,即把一般旳正态分布变换为原则 正态分布,经过求原则正态分布区间(u1,u2)所相应旳面 积来间接求得一般正态分布区间(x1,x2)所相应旳面 积。
✓ 函数方程中μ为位置参数,σ为形状参数。
✓ 在σ不变旳情况下,函数曲线形状不变,若μ变大 时,曲线位置向右移;若μ变小时,曲线位置向左 移。
✓ 在μ不变旳情况下,函数曲线位置不变,若σ变大 时,曲线形状变旳越来越“胖”和“矮”;若σ变 小时,曲线形状变旳越来越“瘦”和“高”。
✓ 若某一随机变量X,其总体均数μ=0,总体原则差σ=1, 即X~N(0,1),则称变量X服从原则正态分布。习惯 把服从原则正态分布旳变量用字母U或Z表达,此时,
进行标准化变换:
U x
求服从标准正态分布 N (0,1)的随机变量 U 在区间(u1,u2)所对 应的面积。
通过查标准正态分布 面积分布表,分别求 Ф(u2) 、Ф(u1)的 大 小。
Ф(u2) -Ф(u1)即 为 该随机变量 U 在区间 ( u1,u2 ) 所 对 应的 面 积。
Ф(u2) -Ф(u1)即 为 该随机变量 U 在区间 ( u1,u2 ) 所 对 应的 面 积。
例题参见教科书。
百分位数法: 适用于资料服从偏态分布时。 公式:
双侧 1-α参考值范围: P100 2 ~P1001 2
单侧 1-α参考值范围:>P100 或<P1001
例题参见教科书。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念和特点。

2. 让学生掌握正态分布的图形绘制和参数计算。

3. 让学生能够应用正态分布解决实际问题。

二、教学内容1. 正态分布的定义和性质2. 正态分布的概率密度函数和累积分布函数3. 正态分布的参数估计和假设检验4. 正态分布的应用实例三、教学方法1. 采用讲授法讲解正态分布的基本概念和性质。

2. 采用案例分析法分析正态分布的实际应用。

3. 采用互动讨论法引导学生探讨正态分布的问题解决方法。

四、教学准备1. 正态分布的教学PPT2. 正态分布的案例资料3. 正态分布的计算软件或工具五、教学过程1. 导入:通过一个与生活相关的正态分布实例,如身高、体重等,引出正态分布的概念。

2. 讲解:讲解正态分布的定义、性质、概率密度函数和累积分布函数。

3. 案例分析:分析正态分布的实际应用,如医学、工程等领域。

4. 实践操作:引导学生使用计算软件或工具,绘制正态分布图形,计算相关参数。

5. 互动讨论:引导学生探讨正态分布的问题解决方法,如参数估计、假设检验等。

6. 总结:对本节课的主要内容进行总结,强调正态分布的重要性和应用价值。

7. 作业布置:布置相关的练习题,巩固所学内容。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对正态分布概念的理解程度。

2. 练习题:布置针对性的练习题,检查学生对正态分布知识的掌握情况。

3. 小组讨论:评估学生在小组讨论中的表现,了解他们能否将正态分布应用于实际问题。

七、教学拓展1. 对比其他概率分布:介绍与正态分布相关的其他概率分布,如二项分布、Poisson分布等,让学生了解它们的异同。

2. 正态分布的近似:讲解正态分布的近似方法,如68-95-99.7规则,让学生了解如何快速判断正态分布的数据范围。

八、教学难点与解决策略1. 正态分布的图形绘制和参数计算:通过示例和软件工具,让学生直观地理解正态分布的图形和参数。

2. 正态分布的假设检验:通过实际案例,讲解正态分布的假设检验方法,让学生掌握如何应用。

《正态分布》教案

《正态分布》教案

《正态分布》教案一、教学目标1. 让学生理解正态分布的概念,掌握正态分布曲线的特点及应用。

2. 培养学生运用正态分布解决实际问题的能力。

3. 引导学生运用数形结合的思想方法,分析正态分布的概率性质。

二、教学内容1. 正态分布的概念2. 正态分布曲线的特点3. 正态分布的应用4. 标准正态分布5. 正态分布的概率计算三、教学重点与难点1. 教学重点:正态分布的概念、正态分布曲线的特点及应用。

2. 教学难点:正态分布的概率计算,标准正态分布表的使用。

四、教学方法1. 采用讲授法、案例分析法、讨论法、数形结合法等。

2. 利用多媒体课件辅助教学,增强直观性。

五、教学过程1. 导入:通过实际例子(如考试成绩分布)引出正态分布的概念。

2. 讲解:详细讲解正态分布的定义、特点及应用,引导学生掌握正态分布的基本知识。

3. 案例分析:分析实际问题,让学生运用正态分布解决具体问题。

4. 数形结合:利用图形(如正态分布曲线)帮助学生理解正态分布的概率性质。

5. 巩固练习:布置练习题,让学生巩固所学知识。

7. 布置作业:布置课后作业,巩固所学知识。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合。

2. 评价内容:(1) 正态分布的概念、特点及应用的理解程度。

(2) 正态分布的概率计算能力。

(3) 数形结合思想的运用。

3. 评价方法:(1) 课堂问答、讨论。

(2) 课后练习及作业。

(3) 实际问题解决能力的展示。

七、教学资源1. 教材:《概率论与数理统计》。

2. 多媒体课件:正态分布的图形、案例分析等。

3. 标准正态分布表:供学生查询使用。

4. 实际案例资料:用于分析讨论。

八、教学进度安排1. 课时:2课时。

2. 教学计划:(1) 第一课时:正态分布的概念、特点及应用。

(2) 第二课时:正态分布的概率计算,案例分析。

九、教学反思1. 反思内容:(1) 学生对正态分布的理解程度。

(2) 教学方法的有效性。

(3) 学生实际问题解决能力的提升。

《正态分布》ppt讲课教案

《正态分布》ppt讲课教案
x= μ
产品
尺寸
(mm)
x3
x4
x1
平均x数2
的意义
总体平均数反映总体随机变量的 平均水平 总体标准差反映总体随机变量的
集中与分散的程度
1
平均数
2
产品 尺寸
(mm)
正态总体的函数表示式
f (x)
1
e
2
(x)2 22
x(,)
当μ= 0,σ=1时
y μ=0
标准正态总体的函数表示式
σ=1
f (x)
x2
1
e2
2
-3 -2 -1 0 1 2 3 x
x(,)
标准正态曲线
正态总体的函数表示式
f (x)
1
2
e
(x)2 22
x(,)
(1)当x= μ 时,函数值为最大.
(2)f (x) 的值域为
(0,
1]
2
y
μ=0 σ=1
(3) f (x) 的图象关于 x=μ 对称. -3 -2 -1 0 1 2 3 x
y
1 2
5 10 15 20 25 30 35 x
3、正态曲线的性质
(x)
(x)2
1 e 22
2
,x(,)
y
y
y
μ= -1
μ=1
σ=0.5
μ=0
σ=1
σ=2
x x -3 -2 -1 0 1 2
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 4 x
具有两头低、中间高、左右对称的基本特征
(3)曲线在x=μ处达到峰值(最高点) σ
1 2π
(4)曲线与x轴之间的面积为1

《数学正态分布》PPT课件

《数学正态分布》PPT课件

A.f (x)
1
( x )2
e 22
2
C.f (x)
1
( x 1)2
e4
2 2
B.f (x)
2
e
x2 2
2
D.f (x)
1
x2
e2
2
2.设随机变量 ~ N (2,2),则 D( 1 )的值为( C ).
2
A. 1 B. 2 C. 1 D. 4 2
2。正态分布的图像
当时 0, 1,正态总体称为标准正态总体,相应的函数
F( 2 ) F( 2 ) (2) (2) 0.954 正态总体 N(, 2 )在( 3 , 3 )内取值的概率是
F( 3 ) F( 3 ) (3) (3) 0.997
上述计算结果可用下表来表示:
区间
取值概率
( , )
( 2 , 2 )

( 3 , 3 )
解:(Ⅰ)设此次参加竞赛得人数为N,竞赛成绩为x, 则x服从N(70,100)

z
x70 10
,则z服从标准正态分布N(0,1)
∴P(x≥90)=1-P(x<90)191 0700=1-Φ(2)
查正态分布表知Φ(2)=
∴P(x≥90)=
12 ∴N=526 N
(Ⅱ)设设奖的分数线约为a分
p(xa)1p(xa)1 (a1 70)0
5 52 0 60.095 1a1 7000.9049
查正态分布表知Φ
a17001.31
∴a=
∴设奖的分数线约为分
4。标准正态分布 ~ N(0,1) 在标准正态分布表中相应于x0的值 ( x0 )是
指总体取值小于x0的概率,即 ( x0 ) P( x x0 )

正态分布说课课件

正态分布说课课件

四、教学方法分析
教学 问题1
如何引导学生理解正态分布?
教学 如何引导学生了解正态分布的特征? 问题2 启发引导法:引导学生观察正态曲线和动图展示,了解σ和μ的实际意义
如何引导学生建立正态分布模型解决问题? 教学 问题3
五、教学过程分析
提创出问设题情境 引入新课
高斯:正态分布
提问出问题题探究 新课讲解
设计意图:通过数学史的介绍,提升学生对本节课的兴趣
复第二习环旧节知:问题探究、新课讲解
前面学习了离散型随机变量,那么,对于连续型随机变量我们该如何研究呢?
问题1:(1) 如何描述这100个样本误差数据的分布?
(2) 如何构建适当的概率模型刻画误差X的分布?
追问:随着样本数据量增大,分组 越来越多,组距越来越小,得到的 图形有什么特征?
设计意图:通过对动画的展示,让学生感悟参数μ和σ对正态曲线的影 响,以及结合离散型随机变量的研究,了解μ和σ的实际意义
问题4:观察正态分布曲线我们可以知道,是一个对称图形,那么下面 我们来看一下特殊区间内的概率
若X ~ N (, 2 ),则
3 原则
P( X ) 0.6827;
P( 2 X 2 ) 0.9545;
问题2 观察正态曲线及相应的密度函数,你能发现正态曲线的哪些特点?
追问 正态分布曲线是如何刻画随机变量的概率分布的呢?
设计意图:通过问题2和追问,让学生发现并总结正态曲线的性质,提升学生 逻辑推理和数学直观想象核心素养
第三环节:问题思考,性质探究
问题3 一个正态分布由参数μ和σ完全确定,这两个参数对正态曲线的形 状有何影响? 它们反映正态分布的哪些特征?μ和σ的意义是什么?
7.5 正态分布
CONTENTS

《正态分布》PPT课件(安徽省市级优课)

《正态分布》PPT课件(安徽省市级优课)
其中实数和(>0)为参数
备注:当=0, =1时的正态曲线,叫做标准正态曲线
2、正态曲线的图象特征
正态分布几何画板.gsp
y
正态曲线
O
x
x=
2、正态曲线的图象特征
y μ= -1
σ=0.5
y
μ= 0 σ=1
y μ=1 σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4x
(2)已知随机变量X服从正态分布N(2,σ2), 且P(X<4)=0.84则P(X<0) = 0.16 ,
21
练习:
1.设随机变量X服从正态分布N(2,9),若P(X>c+1) =P(X<c-1),则c= ___2__.
2.设随机变量X服从正态分布N (0,1),则P(1 X 2) 0_._1_3_5_9
一:创设情境 引入新课 高尔顿板试验
二:正态曲线的探究 正态分布密度曲线 简称正态曲线
o
“中间高,两头低, 左右对称”
1、正态曲线的定义 y 正态曲线
这条曲线就是(或近似 是)下列函数的图象
( x)
1
e
(
x )2 2 2
, x (, )
2
O
x
我们称,(x)的图象为正态分布密度曲线,简称正态曲线
三:正态分布的探究 正态分布的定义
b
P(a X b) a , ( x)dx
1、正态分布的定义 0
ab
一般地,如果对于任何实数a,b(a<b),随机变量X满足:
b
P (a X b) a , ( x)dx
则称随机变量X服从正态分布. 正态分布常记作 N(μ,σ2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布教学目的:1.了解正态分布的意义。

2.能借助正态曲线的图象理解正态曲线的性质。

3.了解正态总体N(μ,σ2)转化为标准正态总体N(0,1)的等式⎪⎭⎫⎝⎛σμ-Φ=x)x(F及其应用。

教学重点:1.正态分布曲线的性质、标准正态曲线N(0,1)。

2.正态总体N(μ,σ2)转化为标准正态总体N(0,1)的等式⎪⎭⎫⎝⎛σμ-Φ=x)x(F及其应用。

教学难点:1.抽象函数Φ(x0)=p(x<x0)的理解。

2.正确理解与应用等式⎪⎭⎫⎝⎛σμ-Φ=x)x(F教学过程:【一】导入新课1、问题引入:在2007年的高考中,某省全体考生的高考平均成绩是490分,标准差是80,计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?2、回顾样本的频率分布与总体分布之间的关系.前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布列来描述总体的统计规律;而许多随机现象中出现的一些变量,如上节课研究的某产品的尺寸,它的取值是可以充满整个区间或者区域的,总体分布通常不易知道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直方图)去估计总体分布.回头看上一节得出的100个产品尺寸的频率分布直方图,发现:横坐标是产品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直方图的面积。

设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率直方图无限接近于一条光滑的曲线-----总体密度曲线。

它能够很好的反映了总体在各个范围内取值的概率。

由概率的性质可以知道(1)整条曲线与x轴所夹的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内面积下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征?“中间高,两头低,左右对称”的特征。

像具有这种特征的总体密度曲线一般就是或者近似的是以下函数的图像。

(板书函数、标题):【二】正态分布(1)正态总体的函数解析式、正态分布与正态曲线产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)),(x ,e 21)x (f 222)x (+∞-∞∈σπ=σμ-- ①这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正态曲线。

在函数解析式中有两个参数μ、σ:μ表示总体的平均数;σ(σ>0)表示总体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢?1、μ表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是反映总体分布的?---平均水平),(回头看频率分布直方图)大家思考一下,这个总体分布的平均数在什么位置呢?最高点那个位置,为什么呢?因为规定的尺寸为25.40mm ,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图像才会呈现“中间高,两头低”的特征。

下面大家看一下flash (改变μ的值,肯定学生的回答,得出1、2、3条性质)用《几何画板》画出三条正态曲线:即①μ=-1,σ=0.5;②μ=0,σ=1;③μ=1,σ=2,其图象如下图所示:得出正态曲线的前四条性质:①曲线在x 轴的上方,与x 轴不相交。

②曲线关于直线x=μ对称,且在x=μ时位于最高点。

③当x<μ时,曲线上升;当x>μ时,曲线下降。

并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。

以上便是参数μ对正态曲线的影响2、下面我们再分析若 μ是定值,即对称轴一定,σ决定着曲线的什么?σ(σ>0)是总体的标准差(总体标准差是衡量总体波动大小的特征数,反映了总体分布的集中与离散程度)(再用《几何画板》改变的σ值,让学生总结规律,得出正态曲线的第五条性质)σ越小,曲线越“瘦高”,表示总体的分布越集中,那集中在什么位置?----平均数μ附近,同理: 若σ越大,曲线越“矮胖”,表示总体的分布越分散,越远离平均数;④当μ一定时,曲线的形状由改变μ的值确定。

σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。

结论:正态分布由μ、σ唯一确定,因此记为:N (μ,σ2)(利用图像、性质解题)【例1】 (2007全国2理14)在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 。

解.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。

(5)当μ=0,σ=1时,相应的函数解析式大大的简化了:R x ,e 21)x (f 2x 2∈π=-。

其图像也简单了,关于y 轴对称,我们把这样的正态总体称为标准正态总体,相应的曲线称为标准正态曲线。

由于标准正态总体N(0,1)在正态总体研究中有非常重要的作用,人们专门制定了《标准正态分布表》以供查用(P —65)(在课件上,调出标准正态分布表,教学生查阅)1、在这个表中,相应于 x 0 的值Φ(x 0)是指总体取值小于x 0 的概率即Φ(x 0)=p(x<x 0))(0x x P ≤=。

(如图)2、利用标准正态曲线的对称性说明等式Φ(x 0)=1-Φ(-x 0)3、 标准正态总体在任一区间(x 1,x 2)内取值概率p )(21x x x <<=Φ(x 0)-Φ(x 1)的几何意义。

【例2】 求标准正态总体在(-1,2)内取值的概率。

解:利用等式p=Φ(x 0)-Φ(x 1)有p=Φ(2)-Φ(-1)= Φ(2)-[1-Φ(1)]【三】 课堂练习1(2007湖南卷)设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( C )A .0.025B .0.050C .0.950D .0.975【分析】ξ服从标准正态分布(01)N ,,(|| 1.96)( 1.96 1.96)P P ξξ⇒<=-<<= (1.96)( 1.96)12( 1.96)120.0ΦΦΦ--=--=-⨯= 【五】新的问题,激发兴趣我们通过标准正态曲线的对称性以及标准正态分布表,可以求出标准正态总体N(0,1)在任一区间(x 1,x 2)内取值的概率P )(21x x x <<=Φ(x 0)-Φ(x 1)我们知道任何一对不同的μ,σ就有一个不同的正态总体,对于一般的正态总体N(μ,σ2),在任一区间(a,b)内的取值概率如何进行计算呢?可否也通过查标准正态分布表来求出它呢?-回答是肯定的,否则制定了标准正态分布表就失去了它的意义。

2.正态总体N(μ,σ2)在任一区间取值的概率计算(点拨思路,计算应用)。

一般的正态总体N(μ,σ2)均可以化成标准正态总体N(0,1)进行研究.可以证明,对任一正态总体N(μ,σ2),取值小于x 的概率F(0x )=P(x<0x )转化公式为: ⎪⎪⎭⎫ ⎝⎛-Φ=σμ00)(x x F向学生指出,等式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F 的严格证明要用到积分变换的知识,它有待在今后的学习中解决。

最后,可向学生展示公式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F 的应用。

【例3】 已知正态总体N(1,4),.求F(|x|<3)。

(4)学习正态分布有什么意义?服从正态分布的总体特征一般地,当一随机变量是大量微小的独立随机因素共同作用的结果,而每一种因素都不能起到压倒其他因素的作用时,这个随机变量就被认为服从正态分布.像产品尺寸这一类典型总体,它的特征是:生产条件正常稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素.所以它服从正态分布下面,大家一起来找找实际生活中那些现象都服从或近似服从正态分布?生产中,在正常生产条件下各种产品的质量指标、测量的误差(如电子管的使用寿命、零件的尺寸等)在生物学中,同一群体的某种特征(如08年广西区高考考生体检的身高、体重、肺活量),在一定条件下生长某农作物的产量等,在气象中,梧州今年五月份的平均气温、平均降雨量等,两江的水位等在生活中,某一时间段的车流量、人流量,同学的考试成绩,喝的饮料等总之:正态分布广泛存在于各个领域当中,在概率和统计中都占有重要地位【五】课堂小结1.本节课我们主要学习了正态分布的若干性质,服从正态分布的总体的特征,如何使用《标准正态分布表》,要求同学们能知道正态曲线的大致形状以及从图象上直观得到正态分布的性质,并能利用《标准正态分布表》及相关等式进行计算。

2.本节课介绍了如何利用标准正态分布表计算一般正态分布在任一区间取值的概率的方法。

这种方法体现了化归的思想方法。

对公式⎪⎭⎫ ⎝⎛σμ-Φ=x )x (F ,应在理解的基础上加以运用。

【三】 课堂练习1、设随即变量ξ服从正态分布)4,2(N , 求)42(<<ξP 。

(参考数据:;8413.0)1(=φ 9772.0)2(=φ,6915.0)5.0(=φ )2、 在2007年的高考中,某省全体考生的考试成绩服从正态分布N (490,80)2,若该省计划本科录取率为0.4 ,则本科录取分数线可能划在多少分? (参考数据:6.0)25.0(=φ)A .500分B .505分C .510分D .515分【六】布置作业: 1、(2007浙江卷5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A ) A .0.16 B .0.32 C .0.68 D ,0.842.(2006年湖北卷)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表()()00x x P x <=φ16. 点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

解:(Ⅰ)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知,P(ξ≥90)=1-P (ξ<90)=1-F(90)=1-Φ)107090(-=1-Φ(2)=1-0.9772=0.228. 这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此, 参赛总人数约为0228.012≈526(人)。

相关文档
最新文档