2019届辽宁省沈阳市郊联体高三第一次模拟考试数学(文)试题(解析版)

合集下载

2019年最新辽宁省高考数学一模试卷(文科)及答案解析

2019年最新辽宁省高考数学一模试卷(文科)及答案解析

辽宁省高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设U=R,集合M={﹣1,1,2},N={x|﹣1<x<2},则N∩M=()A.{﹣1,2} B.{1} C.{2} D.{﹣1,1,2}2.复数z=(i为虚数单位),则复数z的虚部为()A.i B.﹣i C.1 D.﹣13.抛物线y=2x2的焦点坐标是()A.(,0) B.(0,) C.(0,) D.(,0)4.给出下列四个命题:①若命题“若¬p则q”为真命题,则命题“若¬q则p”也是真命题②直线a∥平面α的充要条件是:直线a⊄平面α③“a=1”是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件;④若命题p:“∃x∈R,x2﹣x﹣1>0“,则命题p的否定为:“∀x∈R,x2﹣x﹣1≤0”其中真命题的个数是()A.0 B.1 C.2 D.35.已知MOD函数是一个求余数的函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入n=25时,则输出的结果为()A.4 B.5 C.6 D.76.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=()A.5 B.6 C.7 D.87.某餐厅的原料费支出x与销售额y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为=8.5x+7.5,则表中的m的值为()8.已知某锥体的正视图和侧视图如图,其体积为,则该锥体的俯视图可以是()A.B.C.D.9.在三棱锥S﹣ABC中,侧棱SC⊥平面ABC,SA⊥BC,SC=1,AC=2,BC=3,则此三棱锥的外接球的表面积为()A.14πB.12πC.10πD.8π10.双曲线C1:﹣=1(a>0,b>0)与抛物线C2:y2=2px(p>0)相交于A,B两点,公共弦AB恰过它们公共焦点F,则双曲线的一条渐近线的倾斜角所在的区间可能是()A.(,)B.(,)C.(,)D.(0,)11.已知点G是△ABC的外心,是三个单位向量,且2++=,如图所示,△ABC的顶点B,C分别在x轴的非负半轴和y轴的非负半轴上移动,O是坐标原点,则||的最大值为()A.B.C.2 D.312.已知函数y=f(x)在R上的导函数f′(x),∀x∈R都有f′(x)<x,若f(4﹣m)﹣f (m)≥8﹣4m,则实数m的取值范围为()A .[﹣2,2]B .[2,+∞)C .[0,+∞)D .(﹣∞,﹣2]∪[2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.在区间[﹣5,5]内随机四取出一个实数a ,则a ∈(0,1)的概率为 .14.已知x ,y 满足,则z=2x+y 的最大值为 .15.数列{a n }的通项公式为a n =n 2﹣kn ,若对一切的n ∈N *不等式a n ≥a 3,则实数k 的取值范围 .16.已知函数y=f (x )的定义域为R ,当x >0时,f (x )>1,且对任意的x ,y ∈R 都有f (x+y )=f (x )•f(y ),则不等式f (log x )≤的解集为 .三、解答题:本大题共5小题,共60分。

东北三省三校2019年高三第一次联合模拟考试文科数学试卷

东北三省三校2019年高三第一次联合模拟考试文科数学试卷

东北三省三校2019年高三第一次联合模拟考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码 区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求. 1.已知集合2{0,},{30},A b B x Z x x ==∈-<若,AB ≠∅则b 等于( )A .1B .2C . 3D . 1或2 2.复数212ii+=-( )A.i B.i - C.2(2)i + D.1i +3. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,则“a b >”是“cos2cos2A B <”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.向量a,b 满足1,2,()(2),==+⊥-a b a b a b 则向量a 与b 的夹角为( ) A.45︒ B. 60︒ C. 90︒ D. 120︒5.实数m 是[]0,6上的随机数,则关于x 的方程240x mx -+=有实根的概率为( )A.14 B. 13 C.12 D.236.已知三棱锥的三视图,则该三棱锥的体积是 ( )A .63 B. 263 C.362 D. 627.椭圆2214x y +=两个焦点分别是12,F F ,点P 是椭圆上 任意一点,则12PF PF ⋅的取值范围是( )A. []1,4 B. []1,3 C. []2,1- D. []1,1-8.半径为1的球面上有四个点A,B,C,D,球心为点O,AB 过点O,CA CB =,DA DB =,1DC =, 则三棱锥A BCD -的体积为( ) A .36 B.33C.3 D.6 9. 已知数列{}n a 满足*312ln ln ln ln 32()258312n a a a a n n N n +⋅⋅⋅⋅=∈-,则 10a =( )A.26e B. 29e C.32e D.35e10.执行如图所示的程序框图,要使输出的S 的值小于1,则输入的t 值不能是下面的( ) A.8 B.9 C.10 D.1111.若函数32()236f x x mx x =-+在区间()2,+∞上为增函数,则实数m 的取值范围是( )A.(),2-∞ B.(],2-∞ C.5,2⎛⎫-∞ ⎪⎝⎭ D.5,2⎛⎤-∞ ⎥⎝⎦12.函数()lg(1)sin2f x x x =+-的零点个数为( )A.9 B.10 C.11 D.12开始结束输入t=S1=k3sinπk S S += t k >1+=k k输出S否是(第10题图)(第6题图)222 22正视图侧视图俯视图第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答. 二.填空题(本大题共4小题,每小题5分.) 13.若等差数列{}n a 中,满足46201020128a a a a +++=,则2015S =_________.14.若变量,x y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .15.已知双曲线C :221164y x -=,点P 与双曲线C 的焦点不重合.若点P关于双曲线C的上、下焦点的对称点分别为A 、B ,点Q 在双曲线C 的上支上,点P 关于点Q 的对称点为1P ,则11PA PB -=____. 16.若函数()f x 满足: (ⅰ)函数()f x 的定义域是R ; (ⅱ)对任意12,x x ∈R 有121212()()2()()f x x f x x f x f x ++-=;(ⅲ)3(1)2f =. 则下列命题中正确的是_____. (写出所有正确命题的序号)①函数()f x 是奇函数;②函数()f x 是偶函数;③对任意12,n n ∈N ,若12n n <,则12()()f n f n <;④ 对任意x R ∈,有()1f x ≥-.三.解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知ABC ∆的面积为,2且满足04,AB AC →→<⋅≤设→AB 和→AC 的夹角为θ. (Ⅰ)求θ的取值范围; (Ⅱ)求函数θθπθ2cos 3)4(sin 2)(2-+=f 的值域.18.(本题满分12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:3/g m μ)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量0.0010.002 0.003 0.004 0.005 0.006 0.007 0.008频率 组距空气污染指数 (3/g m μ)50100 150 200DCBAFE级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2019年1月某日某省x 个监测点数据统计如下:空气污染指数 (单位:3/g m μ) []0,50(]50,100(]100,150(]150,200监测点个数1540y10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出,x y 的值,并完成频率分布直方图; (Ⅱ)若A 市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A “其中至少有一个为良”发生的概率是多少?19.(本题满分12分)如图,多面体ABCDEF 中,底面ABCD 是菱形, 60BCD ∠=,四边形BDEF 是正方形,且DE ⊥平面ABCD .(Ⅰ)求证: //CF 平面AED ;(Ⅱ)若2AE =,求多面体ABCDEF 的体积V .20.(本题满分12分)在平面直角坐标系xOy 中,已知动圆过点(2,0),且被y 轴所截得的弦长为4. (Ⅰ) 求动圆圆心的轨迹1C 的方程;(Ⅱ) 过点(1,2)P 分别作斜率为12,k k 的两条直线12,l l ,交1C 于,A B 两点(点,A B 异于点P ),若120k k +=,且直线AB 与圆2:C 221(2)2x y -+=相切,求△PAB 的面积.21.(本题满分12分)已知实数a 为常数,函数2ln )(ax x x x f +=.(Ⅰ)若曲线)(x f y =在1=x 处的切线过点A)2,0(-,求实数a 值; (Ⅱ)若函数)(x f y =有两个极值点1212,()x x x x <.①求证:021<<-a ;②求证: 1()0f x <,21)(2->x f . 请从下面所给的22 , 23 , 24三题中任选一题做答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。

2019届辽宁省高三第一次模拟考试文科数学试卷【含答案及解析】

2019届辽宁省高三第一次模拟考试文科数学试卷【含答案及解析】

2019届辽宁省高三第一次模拟考试文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若集合,,则()(A)(B)(C)___________________________________ (D)或2. 已知i是虚数单位,复数则z的共轭复数是()(A)(B)_________ (C )(D)3. 已知向量,,若,则的值为()(A)_________ (B )______________ (C )______________ (D )4. 在等比数列中,则“ ”是“ ”的()(A)充分不必要条件___________________________________ (B)必要不充分条件(C)充要条件_____________________________________ (D)既不充分也不必要条件5. 已知倾斜角为的直线与直线垂直,则的值为()(A)______________________________ (B)_________________________________ (C) ________________________ (D)6. 已知,且,函数的图像的相邻两条对称轴之间的距离等于,则的值为()(A)______________________________ (B)_________________________________ (C)_________________________________ (D)7. 右面程序框图运行后,如果输出的函数值在区间[-2, ]内,则输入的实数x 的取值范围是()(A )___________________________________(B )(C)___________(D)8. 若满足且的最大值为 6 ,则的值为()(A)____________________ (B) 1____________________ (C)______________ (D)9. 设函数在上可导,其导函数为,且函数在处取得极小值,则函数的图象可能是()10. 一艘轮船从O点正东100海里处的A点处出发,沿直线向O点正北100海里处的B 点处航行.若距离O点不超过r海里的区域内都会受到台风的影响,设r是区间[50,100]内的一个随机数,则该轮船在航行途中会遭受台风影响的概率约为()(A)20.7% ________ (B)29.3% (C)58.6%________ (D)41.4%11. 过点的直线与双曲线的一条斜率为正值的渐进线平行,若双曲线右支上的点到直线的距离恒大于,则双曲线的离心率取值范围是()(A)______________ (B)______________ (C)______________ (D )12. 已知是函数的零点,,则①;② ;③ ;④ .其中正确的命题是()( A )①④___________ ( B )②④___________ ( C )①③ ( D )②③二、填空题13. 函数必过定点______________ .14. 各项均为正数的等差数列中,,则前12项和的最小值为______________ .15. 如图所示,某几何体的三视图,则该几何体的体积为___________________________________ .16. 己知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为_________________________________ .三、解答题17. 在中,三个内角的对边分别为,.(1)求的值;(2)设,求的面积 .18. 据统计,2015年“双11” 天猫总成交金额突破亿元.某购物网站为优化营销策略,对在 11月11日当天在该网站进行网购消费且消费金额不超过元的名网购者(其中有女性名,男性名)进行抽样分析.采用根据性别分层抽样的方法从这名网购者中抽取名进行分析,得到下表:(消费金额单位:元)女性消费情况:男性消费情况:(Ⅰ)计算的值;在抽出的名且消费金额在(单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;(Ⅱ)若消费金额不低于元的网购者为“网购达人”,低于元的网购者为“非网购达人”,根据以上统计数据填写右面列联表,并回答能否在犯错误的概率不超过的前提下认为“是否为‘网购达人’与性别有关?”附:(,其中)19. 如图,在四棱锥中,底面是正方形.点是棱的中点,平面与棱交于点.(Ⅰ)求证:∥ ;(Ⅱ)若,且平面平面,试证明平面;(Ⅲ)在(Ⅱ)的条件下,线段上是否存在点 ,使得平面 ?(请说明理由)20. 如图椭圆的离心率为,其左顶点在圆上 .(Ⅰ )求椭圆的方程;(Ⅱ )直线与椭圆的另一个交点为,与圆的另一个交点为 . ( i )当时,求直线的斜率;( ii )是否存在直线,使得 ? 若存在,求出直线的斜率;若不存在,说明理由 .21. 函数(a ∈ R ),为自然对数的底数.( 1 )当 a = 1 时,求函数的单调区间;( 2 )①若存在实数,满足,求实数的取值范围;②若有且只有唯一整数,满足,求实数的取值范围.22. 如图,是圆切线, 是切点, 割线是圆的直径,交于,, , .( 1 )求线段的长;( 2 )求证: .23. 在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线:(为参数),:(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点对应的参数为,为上的动点,求线段的中点到直距离的最小值 .24. 已知关于的不等式,其解集为 .(Ⅰ)求的值;(Ⅱ)若,均为正实数,且满足,求的最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019年辽宁省高考数学一模试卷(文科)(解析版)

2019年辽宁省高考数学一模试卷(文科)(解析版)

2019年辽宁省高考数学一模试卷(文科)一、选择题(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,值有一项是符合题目要求的)1.设全集U={﹣2,﹣1,0,1,2},A={x|x≤1},B={﹣2,0,2},则∁U(A∩B)=()A.{﹣2,0}B.{﹣2,0,2}C.{﹣1,1,2}D.{﹣1,0,2} 2.已知复数z=i(1+i)(i为虚数单位),则复数z在复平面上所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.一已知等差数列{a n}中,其前n项和为S n,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.1474.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行5.《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A.200πB.50πC.100πD.π6.函数的图象大致是()A.B.C.D.7.中国古代算书《孙子算经》中有一著名的问题“物不知数”如图1,原题为:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?后来,南宋数学家秦九韶在其著作《数学九章》中对此类问题的解法做了系统的论述,并称之为“大衍求一术”,如图2程序框图的算法思路源于“大衍求一术”执行该程序框图,若输入的a,b分别为20,17,则输出的c=()A.1 B.6 C.7 D.118.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如表(单位:万元):由表可得到回归方程为=10.2x+,据此模型,预测广告费为10万元时的销售额约为()A.101.2 B.108.8 C.111.2 D.118.29.如图一所示,由弧AB,弧AC,弧BC所组成的图形叫做勒洛三角形,它由德国机械工程专家、机械运动学家勒洛首先发现的,它的构成如图二所示,以正三角形ABCd的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,由三段弧所围成的曲边三角形即为勒洛三角形,有一个如图一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一点是等可能的,则此箭恰好射中三角形ABC内部(即阴影部分)的概率为()A.B.C.D.10.已知函数f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<),若f()=﹣f(0),则ω的最小值为()A.B.1 C.2 D.11.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F 作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.412.给出如下四个命题:①e>2②ln2>③π2<3π④<,正确的命题的个数为()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题5分,满分20分)13.已知平面向量与的夹角为120°,且||=2,||=4,若(m)⊥,则m=.14.①命题“∀x≥1,x2+3≥4”的否定是“∃x<1,x2+3<4”②A、B、C三种不同型号的产品的数量之比依次为2:3:4,用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么样本的容量n=72③命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y都不是偶数,则x+y不是偶数”④若非空集合M⊂N,则“a∈M或a∈N”是“a∈M∩N”的必要不充分条件以上四个命题正确的是(把你认为正确的命题序号都填在横线上).15.已知数列{a n}满足:2a1+22a2+23a3+…+2n a n=n(n∈N*),b n=,设数列{b n}的前n项和为S n,则S1•S2•S3•…•S10=.16.设实数x,y满足约束条件,则的取值范围是.三.解答题,本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤17.已知a,b,c分别为△ABC中角A,B,C的对边,函数且f(A)=5.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.18.如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别于BC,AD 交于点P ,Q ,若|DQ |=λ|DA |(1)当λ=时,求证:平面SAE ⊥平面MNPQ(2)是否存在实数λ,使得三棱锥Q ﹣BCN 的体积为?若存在,求出实数λ的值,若不存在,说明理由.19.2016﹣2017赛季中国男子篮球职业联赛(即CBA )正在如火如荼地进行,北京时间3月10日,CBA 半决赛开打,新疆队对阵辽宁队,广东队对阵深圳队:某学校体育组为了调查本校学生对篮球运动是否感兴趣,对本校高一年级两个班共120名同学(其中男生70人,女生50人)进行调查,得到的统计数据如表(1)完成下列2×2列联表丙判断能否在反错误的概率不超过0.05的前提下认为“对篮球运动是否感兴趣与性别有关”?(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本,其中男生和女生个多少人?从6人中随机选取3人做进一步的调查,求选取的3人中至少有1名女生的概率参考公式:K 2=,其中n=a +b +c +d 参考数据:20.已知椭圆C : =1(a >b >0)左、右焦点分别为F 1,F 2,A (2,0)是椭圆的右顶点,过F 2且垂直与x 轴的直线交椭圆于P ,Q 两点,且|PQ |=3(1)求椭圆的方程(2)若直线l 与椭圆交于两点M ,N (M ,N 不同于点A ),若•=0,求证:直线l 过定点,并求出定点坐标.21.已知函数f (x )=ax 2+(x﹣1)e x(1)当a=﹣时,求f (x )在点P (1,f (1)处的切线方程 (2)讨论f (x )的单调性(3)当﹣<a <﹣<0时,f (x )是否存极值?若存在,求所有极值的和的取值范围.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 1的参数方程为(θ为参数),曲线 C 2的极坐标方程为ρcosθ﹣ρsinθ﹣4=0. (1)求曲线C 1的普通方程和曲线 C 2的直角坐标方程;(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|2x+1|的最大值为m(1)作函数f(x)的图象(2)若a2+b2+2c2=m,求ab+2bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分,在每小题给出的四个选项中,值有一项是符合题目要求的)1.设全集U={﹣2,﹣1,0,1,2},A={x|x≤1},B={﹣2,0,2},则∁U(A∩B)=()A.{﹣2,0}B.{﹣2,0,2}C.{﹣1,1,2}D.{﹣1,0,2}【考点】交、并、补集的混合运算.【分析】根据交集和补集的定义写出运算结果即可.【解答】解:全集U={﹣2,﹣1,0,1,2},A={x|x≤1},B={﹣2,0,2},则A∩B={﹣2,0},∴∁U(A∩B)={﹣1,1,2}.故选:C.2.已知复数z=i(1+i)(i为虚数单位),则复数z在复平面上所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的乘法运算,写成复数的代数形式,写出复数对应的点的坐标,根据点的横标和纵标和零的关系,确定点的位置.【解答】解:∵z=i(1+i)=﹣1+i,∴z=i(1+i)=﹣1+i对应的点的坐标是(﹣1,1)∴复数在复平面对应的点在第二象限.故选B.3.一已知等差数列{a n}中,其前n项和为S n,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.147【考点】等差数列的前n项和.【分析】根据题意和等差数列的性质求出a4的值,由等差数列的前n 项和公式求出S7的值.【解答】解:等差数列{a n}中,因为a3+a4+a5=42,所以3a4=42,解得a4=14,所以S7==7a4=7×14=98,故选A.4.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用.【分析】利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D.【解答】解:A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.故选C.5.《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A.200πB.50πC.100πD.π【考点】球内接多面体;简单空间图形的三视图.【分析】几何体复原为底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥,扩展为长方体,长方体的对角线的长,就是外接球的直径,然后求其的表面积.【解答】解:由三视图复原几何体,几何体是底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥;扩展为长方体,也外接与球,它的对角线的长为球的直径:=5该三棱锥的外接球的表面积为:=50π,故选B.6.函数的图象大致是()A.B.C.D.【考点】函数的图象.【分析】利用函数的奇偶性排除选项,特殊值的位置判断求解即可.【解答】解:函数是偶函数,排除B,x=e时,y=e,即(e,e)在函数的图象上,排除A,当x=时,y=,当x=时,y=﹣=,,可知(,)在()的下方,排除C.故选:D.7.中国古代算书《孙子算经》中有一著名的问题“物不知数”如图1,原题为:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?后来,南宋数学家秦九韶在其著作《数学九章》中对此类问题的解法做了系统的论述,并称之为“大衍求一术”,如图2程序框图的算法思路源于“大衍求一术”执行该程序框图,若输入的a,b分别为20,17,则输出的c=()A.1 B.6 C.7 D.11【考点】程序框图.【分析】模拟执行程序运行过程,即可得出程序运行后输出的c值.【解答】解:模拟执行程序运行过程,如下;a=20,b=17,r=3,c=1,m=0,n=1,满足r≠1;a=17,b=3,r=2,q=5,m=1,n=1,c=6,满足r≠1;a=3,b=2,r=1,q=1,m=1,n=6,c=7,满足r=1;输出c=7.故选:C.8.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如表(单位:万元):由表可得到回归方程为=10.2x+,据此模型,预测广告费为10万元时的销售额约为()A.101.2 B.108.8 C.111.2 D.118.2【考点】线性回归方程.【分析】求出数据中心,代入回归方程求出,再将x=10代入回归方程得出答案.【解答】解:由题意,=4,=50.∴50=4×10.2+,解得=9.2.∴回归方程为=10.2x+9.2.∴当x=10时,=10.2×10+9.2=111.2.故选:C.9.如图一所示,由弧AB,弧AC,弧BC所组成的图形叫做勒洛三角形,它由德国机械工程专家、机械运动学家勒洛首先发现的,它的构成如图二所示,以正三角形ABCd的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,由三段弧所围成的曲边三角形即为勒洛三角形,有一个如图一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一点是等可能的,则此箭恰好射中三角形ABC内部(即阴影部分)的概率为()A.B.C.D.【考点】几何概型.【分析】设正三角形ABC的边长为a,先求出S△ABC,S扇形BAC,即可求出S勒洛三角形,根据几何概型的概率公式计算即可.【解答】解:设正三角形ABC的边长为a,则S△ABC=a2,S扇形BAC=,则S弓形=S扇形BAC﹣S△ABC=﹣a2,∴S勒洛三角形=a2+3(﹣a2)=πa2﹣a2,∴此箭恰好射中三角形ABC内部(即阴影部分)的概率为==,故选:B.10.已知函数f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<),若f()=﹣f(0),则ω的最小值为()A.B.1 C.2 D.【考点】正弦函数的图象.【分析】根据f()=﹣f(0),代入f(x)建立关系,0<φ<,可得,﹣<﹣φ<0,那么令π≤ω+φ,即可求解ω范围.可得ω的最小值.【解答】解:函数f(x)=Asin(ωx+φ)(A≠0,ω>0,0<φ<),∵f()=﹣f(0),即sin(﹣φ)=sin(ω×+φ),∵0<φ<,∴﹣<﹣φ<0,那么令π<ω×+φ,可得:φ.令,解得:ω=.故选:A.11.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F 作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A.B.2 C.3 D.4【考点】双曲线的简单性质.【分析】E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,求出可求双曲线的离心率.【解答】解:E上任意一点Q(x,y)到两条渐近线的距离之积为d1d2===d2,F(c,0)到渐近线bx﹣ay=0的距离为=b=2d,∴,∴e==2,故选B.12.给出如下四个命题:①e>2②ln2>③π2<3π④<,正确的命题的个数为()A.1 B.2 C.3 D.4【考点】不等式比较大小.【分析】①利用分析法和构造函数,利用导数和函数的最值得关系即可判断,②根据对数的运算性质即可判断,③利用中间量即可判断,④两边取对数即可判断.【解答】解:①要证e>2,只要证>ln2,即2>eln2,设f(x)=elnx﹣x,x>0,∴f′(x)=﹣1=,当0<x<e时,f′(x)>0,函数单调递增,当x>e时,f′(x)<0,函数单调递减,∴f(x)<f(e)=elne﹣e=0,∴f(2)=eln2﹣2<0,即2>eln2,∴e>2,因此正确②∵3ln2=ln8>ln2.82>lne2=2.∴ln2>,因此正确,③π2<42=16,3π>33=27,因此π2<3π,③正确,④∵2π<π2,∴<,④正确;正确的命题的个数为4个,故选:D.二、填空题(共4小题,每小题5分,满分20分)13.已知平面向量与的夹角为120°,且||=2,||=4,若(m)⊥,则m=1.【考点】平面向量数量积的运算.【分析】由已知求出的值,再由(m)⊥,得(m)•=0,展开后得答案.【解答】解:∵向量与的夹角为120°,且||=2,||=4,∴,又(m)⊥,∴(m)•=,解得m=1.故答案为:1.14.①命题“∀x≥1,x2+3≥4”的否定是“∃x<1,x2+3<4”②A、B、C三种不同型号的产品的数量之比依次为2:3:4,用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么样本的容量n=72③命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y都不是偶数,则x+y不是偶数”④若非空集合M⊂N,则“a∈M或a∈N”是“a∈M∩N”的必要不充分条件以上四个命题正确的是②④(把你认为正确的命题序号都填在横线上).【考点】命题的真假判断与应用.【分析】由由全称命题的否定为特称命题,只要对结论否定,即可判断①;运用分层抽样抽取的比例,即可计算判断②;由原命题的否命题,既对条件否定,也对结论否定,即可判断③;由充分必要条件的定义,结合结合集合的交集和并集运算,即可判断④.【解答】解:①由全称命题的否定为特称命题,可得命题“∀x≥1,x2+3≥4”的否定是“∃x≥1,x2+3<4”,故①错误;②由用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,可得B种型号产品有24件,C种型号产品有32件,则n=16+24+32=72.故②正确;③由原命题的否命题,既对条件否定,也对结论否定,可得否命题是“若x,y不都是偶数,则x+y不是偶数”,故③错误;④若非空集合M⊂N,则“a∈M或a∈N”推不出“a∈M∩N”,反之,成立,故为必要不充分条件,故④正确.故答案为:②④.15.已知数列{a n}满足:2a1+22a2+23a3+…+2n a n=n(n∈N*),b n=,设数列{b n}的前n项和为S n,则S1•S2•S3•…•S10=.【考点】数列的求和.【分析】利用数列递推关系可得a n,再利用“裂项求和”方法可得S n,进而利用“累乘求积”方法得出.【解答】解:数列{a n}满足:2a1+22a2+23a3+…+2n a n=n(n∈N*),∴n≥2时,2a1+22a2+23a3+…+2n﹣1a n﹣1=n﹣1,∴2n a n=1,∴a n=.b n===,∴数列{b n}的前n项和为S n=+…+=1﹣=.则S1•S2•S3•…•S10=×…×=.故答案为:.16.设实数x,y满足约束条件,则的取值范围是[0,2] .【考点】简单线性规划.【分析】画出约束条件的可行域,化简目标函数,转化为直线的斜率问题,通过函数的值域求解目标函数的范围即可.【解答】解:约束条件的可行域如图:由可得A(﹣,),可得B(,),则==,由题意可得∈[﹣1,1],令t=∈[﹣1,1],则=t+∈[2,+∞)∪(﹣∞,﹣2],∴∈[0,2].故答案为:[0,2].三.解答题,本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤17.已知a,b,c分别为△ABC中角A,B,C的对边,函数且f(A)=5.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.【考点】余弦定理.【分析】(1)利用三角恒等变换求得f(A)的解析式,由f(A)=5求得sin(2A+)的值,从而求得2A+的值,可得A的值.(2)利用余弦定理,基本不等式,求得bc的最大值,可得△ABC面积bc•sinA的最大值.【解答】解:(1)由题意可得:=3+sin2A+cos2A+1=4+2sin(2A+),∴sin(2A+)=,∵A∈(0,π),∴2A+∈(,),∴2A+=,∴A=.(2)由余弦定理可得:,即4=b2+c2﹣bc≥bc(当且仅当b=c=2时“=”成立),即bc≤4,∴,故△ABC面积的最大值是.18.如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB=2,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别于BC,AD交于点P,Q,若|DQ|=λ|DA|(1)当λ=时,求证:平面SAE⊥平面MNPQ(2)是否存在实数λ,使得三棱锥Q﹣BCN的体积为?若存在,求出实数λ的值,若不存在,说明理由.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)由直角梯形性质可得PQ⊥AE,结合PQ⊥SE得出PQ⊥平面SAE,故而平面SAE⊥平面MNPQ;(2)根据V Q﹣BCN=V N﹣BCQ=S△BCQ•列方程解出λ.【解答】解:(1)E为CD中点,所以四边形ABCE为矩形,所以AE ⊥CD当λ=时,Q为AD中点,PQ∥CD 所以PQ⊥AE因为平面SCD⊥平面ABCD,SE⊥CD,所以SE⊥面ABCD因为PQ⊂面ABCD,所以PQ⊥SE 所以PQ⊥面SAE所以面MNPQ⊥面SAE…(2)V Q﹣BCN=V N﹣BCQ=V S﹣BCQ=××S△BCQ•h,∵SC=SD,E为CD中点∴SE⊥CD又∵平面SCD⊥平面ABCD,平面SCD∩平面ABCD=CD,SE⊂平面SCD,∴SE⊥平面ABCD∴SE即为S到平面BCQ的距离,即SE=h.在△SCD中,SC=SD=CD=2,∴SE=,在直角梯形ABCD中,易求得:BC=,∵M,N为中点,∴MN∥AB,∴AB∥平面MNPQ,又∵平面MNPQ∩平面ABCD=PQ,∴AB∥PQ,又∵AB⊥BC,∴PQ⊥BC,∴S△BCQ=BC×PQ=PQ,=××S△BCQ•h=××PQ×=PQ,∴V由题意:PQ=,∴PQ=.在梯形ABCD中,=,FQ=PQ﹣AB=,GD=1,∴=.∴=即λ=∴存在实数λ=,使得三棱锥Q﹣BCN的体积为.19.2016﹣2017赛季中国男子篮球职业联赛(即CBA)正在如火如荼地进行,北京时间3月10日,CBA半决赛开打,新疆队对阵辽宁队,广东队对阵深圳队:某学校体育组为了调查本校学生对篮球运动是否感兴趣,对本校高一年级两个班共120名同学(其中男生70人,女生50人)进行调查,得到的统计数据如表(1)完成下列2×2列联表丙判断能否在反错误的概率不超过0.05的前提下认为“对篮球运动是否感兴趣与性别有关”?(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本,其中男生和女生个多少人?从6人中随机选取3人做进一步的调查,求选取的3人中至少有1名女生的概率 参考公式:K 2=,其中n=a +b +c +d参考数据:【考点】列举法计算基本事件数及事件发生的概率;独立性检验的应用.【分析】(1)作出2×2列联表,由K 2计算公式得K 2≈1.143<3.841,从而得到在犯错误概率不超过0.05的前提下不能认为“对篮球运动是否感兴趣与性别有关”.(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本,则抽样比例为=,应抽取男生4人,应抽取女生2人,不妨设4个男生为a ,b ,c ,d ,2个女生为A ,B ,利用列举法能求出从6人中随机选取3人,选取的3人中至少有1名女生的概率. 【解答】(本题满分12分) 解:(1)2×2列联表如下:由K 2计算公式得: K 2==≈1.143<3.841∴在犯错误概率不超过0.05的前提下不能认为“对篮球运动是否感兴趣与性别有关”.…(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本, 则抽样比例为=∴应抽取男生20×=4(人),应抽取女生10×=2(人)不妨设4个男生为a ,b ,c ,d ,2个女生为A ,B 从6人中随机选取3人所构成的基本事件有:(a,b,c),(a,b,d),(a,b,A),(a,b,B),(a,c,d),(a,c,A),(a,c,B),(a,d,A),(a,d,B),(a,A,B),(b,c,d),(b,c,A),(b,c,B),(b,d,A),(b,d,B),(b,A,B),(c,d,A),(c,d,B),(c,A,B),(d,A,B),共20个;选取的3人中至少有1名女生的基本事件有:(a,b,A),(a,b,B),a,c,A),(a,c,B),(a,d,A),(a,d,B),(a,A,B),(b,c,A),(b,c,B),(b,d,A),(b,d,B),(b,A,B),(c,d,A),(c,d,B),(c,A,B),(d,A,B)共16个基本事件;∴选取的3人中至少有1名女生的概率为=…20.已知椭圆C:=1(a>b>0)左、右焦点分别为F1,F2,A (2,0)是椭圆的右顶点,过F2且垂直与x轴的直线交椭圆于P,Q 两点,且|PQ|=3(1)求椭圆的方程(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若•=0,求证:直线l过定点,并求出定点坐标.【考点】直线与椭圆的位置关系.【分析】(1)由椭圆的通径公式求得=3,由a=2,即可求得b的值,求得椭圆方程;(2)当斜率不存在时,代入求得直线与椭圆的交点坐标,由丨MB 丨=丨AM丨即可求得m的值;当斜率存在且不为0,将直线方程代入椭圆方程,利用韦达定理及向量数量积的坐标运算,求得k与b的关系,即可求出定点坐标.【解答】解:(1)令x=c,y=,则椭圆的通径丨PQ丨==3,又a=2,则b=,∴椭圆的标准方程为;…(2)当直线MN斜率不存在时,设l MN:x=m,与椭圆方程联立得:y=,丨MN丨=2=,设直线MN与x轴交于点B,丨MB丨=丨AM丨,即=2﹣m,∴m=或m=2(舍),∴直线m过定点(,0);当直线MN斜率存在时,设直线MN斜率为k,M(x1,y1),N(x2,y2),则直线MN:y=kx+b,与椭圆方程为:联立,得(4k2+3)x2+8kbx+4b2﹣12=0,x1+x2=﹣,x1x2=,y1y2=(kx1+b)(kx2+b)=kx1x2+kb(x1+x2)+b2,△=(8kb)2﹣4(4k2+3)(4b2﹣12)>0,k∈R,•=0,则(x1﹣2,y1)(x2﹣2,y2)=0,即x1x2﹣2(x1+x2)+4+y1y2=0,∴7b2+4k2+16kb=0,∴b=﹣k,或b=﹣2k,∴直线lMN:y=k(x﹣)或y=k(x﹣2),∴直线过定点(,0)或(2,0)舍去;综合知,直线过定点(,0).…21.已知函数f(x)=ax2+(x﹣1)e x(1)当a=﹣时,求f(x)在点P(1,f(1)处的切线方程(2)讨论f(x)的单调性(3)当﹣<a<﹣<0时,f(x)是否存极值?若存在,求所有极值的和的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)当a=﹣时,f′(x)=﹣(e+1)x+xe x,利用导数的几何意义能求出f(x)在点P(1,f(1)处的切线方程.(2)由f′(x)=2ax+xe x=x(e x+2a),根据a≥0,﹣<a<0,a=﹣,a<﹣,分类讨论,结合导数性质讨论f(x)的单调性.(3)x1=ln(﹣2a)为极大值点,x2=0为极小值点,所有极值的和即为f(x1)+f(x2,由此能求出所有极值的和的取值范围.【解答】(本题满分12分)解:(1)当a=﹣时,f(x)=﹣x2+(x﹣1)e x,∴f(1)=﹣f′(x)=﹣(e+1)x+xe x∴f′(1)=﹣1切线方程为:y+=﹣(x﹣1)即:2x+2y+e﹣1=0(2)f′(x)=2ax+xe x=x(e x+2a)①当2a≥0即a≥0时,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增;②当﹣<a<0时,f(x)在(﹣∞,ln(﹣2a))上单调递增,在(ln(﹣2a),0)上单调递减,在(0,+∞)上单调递增;③当a=﹣时,f(x)在(﹣∞,+∞)上单调递增;④当a<﹣时,f(x)在(﹣∞,0))上单调递增,在(0,ln(﹣2a))上单调递减,在(ln(﹣2a),+∞)上单调递增;(3)由(2)知,当﹣<a<﹣<0时,f(x)在(﹣∞,ln(﹣2a))上单调递增,在(ln(﹣2a),0)上单调递减,在(0,+∞)上单调递增,∴x1=ln(﹣2a)为极大值点,x2=0为极小值点,所有极值的和即为f (x1)+f(x2),f(x1)+f(x2)=ax12+(x1﹣1)﹣1,∵x1=ln(﹣2a)∴a=﹣,∴f(x1)+f(x2)=﹣x12+(x1﹣1)﹣1=(﹣x12+x1﹣1)﹣1∵﹣<a<﹣∴<﹣2a<1∴﹣1<x1=ln(﹣2a)<0令ϕ(x)=e x(﹣x2+x﹣1)﹣1(﹣1<x<0)∴ϕ′(x)=e x(﹣x2)<0∴ϕ(x)在(﹣1,0)单调递减,∴ϕ(0)<ϕ(x)<ϕ(﹣1)即﹣2<ϕ(x)<﹣﹣1.∴所有极值的和的取值范围为(﹣2,﹣﹣1).[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),的极坐标方程为ρcosθ﹣ρsinθ﹣4=0.曲线C(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用参数方程与普通方程,极坐标方程与直角坐标方程互化的方法,可得曲线C1的普通方程和曲线C2的直角坐标方程;(2)利用参数方法,求|PQ|的最小值.【解答】解:(1)由曲线C1的参数方程为(θ为参数),消去参数θ得,曲线C1的普通方程得+=1.的直角坐标方程为x﹣y﹣4=0…由ρcosθ﹣ρsinθ﹣4=0得,曲线C的距离为(2)设P(2cosθ,2sinθ),则点P到曲线Cd==,…当cos(θ+45°)=1时,d有最小值0,所以|PQ|的最小值为0…[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|2x+1|的最大值为m(1)作函数f(x)的图象(2)若a2+b2+2c2=m,求ab+2bc的最大值.【考点】分段函数的应用;绝对值不等式的解法.【分析】(1)讨论x的范围:x≤﹣,﹣<x≤1,x≥1,去掉绝对值,写出分段函数的形式,画出图象;(2)通过图象可得最大值m,设a2+b2+2c2=a2+tb2+(1﹣t)b2+2c2≥2ab+2bc,令2:2=1:2,求出t的值,即可得到所求最大值.【解答】解:(1)f(x)=|x﹣1|﹣|2x+1|=,由分段函数的图象画法可得图象如右;(2)由(1)知,当x=﹣时,f(x)的最大值为,即m=;∴a2+b2+2c2=,设a2+b2+2c2=a2+tb2+(1﹣t)b2+2c2≥2ab+2bc,令2:2=1:2,即8(1﹣t)=16t 得:t=,∴a2+b2+2c2=a2+b2+b2+2c2≥2•ab+4•bc=(ab+2bc)∴ab+2bc≤(a2+b2+2c2)=(当且仅当a2=c2=,b2=时取“=”号).。

辽宁省沈阳市郊联体近年届高三数学第一次模拟考试试题文(含解析)(最新整理)

辽宁省沈阳市郊联体近年届高三数学第一次模拟考试试题文(含解析)(最新整理)

辽宁省沈阳市郊联体2019届高三数学第一次模拟考试试题文(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省沈阳市郊联体2019届高三数学第一次模拟考试试题文(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省沈阳市郊联体2019届高三数学第一次模拟考试试题文(含解析)的全部内容。

辽宁省沈阳市郊联体2019届高三第一次模拟考试文数试题一、选择题(本大题共12小题,共60。

0分)1.已知集合{}|0A x x a =-≤,{}3,2,1=B ,若A B φ=,则a 的取值范围为 A. ]1,(-∞ B. [1,)+∞C 。

(,3]-∞ D. [3,)+∞【答案】B 【解析】 【分析】解一元一次不等式得集合{|}A x x a =≤,由A B φ⋂=,能求出a 的取值范围. 【详解】∵集合{|0}{|}A x x a x x a =-≤=≤,{}1,2,3B =,A B φ⋂=, ∴1a ≥,∴a 的取值范围为[)1,+∞,故选B .【点睛】本题考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题。

2.设a 为1)2()2(22=-++y x 的虚部,b 为()21i +的实部,则a+b=( ) A. 1- B 。

2- C. 3-D 。

0【答案】A 【解析】 【分析】算出1)2()2(22=-++y x 和()21i +后可得前者的虚部和后者的实部从而得到要求的和. 【详解】1i i =-,故1a =-,又()212i i +=,故0b =,所以1a b +=-,选A 。

2019年三省三校一模考试文科数学试卷(含答案)

2019年三省三校一模考试文科数学试卷(含答案)

一. 选择题1-6 DBCCBA 7-12 BBCADD二.填空题13. 3 14. 乙 15. 30 16. 4π三.解答题17.解:(Ⅰ)1()2cos 21sin(2)126π=++=++f x x x x …………………2分 ∵[0,]2x π∈,∴72666πππ≤+≤x , …………………4分 ∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦; …………………6分 (Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A …………………8分由余弦定理,2222cos =+-a b c bc A ,∴2642=+-c c ,即2220--=c c又0>c ,∴1=c …………………10分 ∴1sin 2∆==ABC S bc A…………………12分18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件M设每周累计户外暴露时间不少于28小时的4为学生分别为A,B,C,D ,其中A 表示近视的学生,随机抽取2名,所有的可能有AB,AC,AD,BC,BD,CD 共6种情况,其中事件M 共有3种情况, 即AB,AC,AD,所以()3162==P M 故随机抽取2名,其中恰有一名学生不近视的概率为12. …………………4分(Ⅱ)根据以上数据得到列联表: 近视 …………………8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 所以能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.…………………12分19. 解:(Ⅰ)(方法一):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = …………………2分 ∵PG ⊥平面ABCD ,BG ⊂平面ABCD ,∴PG BG ⊥∴1124422PBG S BG PG ∆=⋅=⨯⨯= ∵13AG GD = ∴3332442BDG BCG S S ∆∆=⋅=⨯= …………………4分 设点D 到平面PBG 的距离为h ,∵D PBG P BDG V V --= 1133PBG BDG S h S PG ∆∆∴⋅⋅=⋅⋅, 11344332h ∴⋅⋅=⋅⋅32h ∴= …………………6分K M F GD C B A P(方法二):由已知11183323P BCG BCG V S PG BG GC PG -∆=⋅=⋅⋅⋅= ∴4PG = ………………2分 ∵PG ⊥平面ABCD ,PG ⊂平面PBG∴平面PBG ⊥平面ABCD ∵平面PBG 平面=ABCD BG 在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K , 则DK ⊥平面PBG∴DK 的长就是点D 到平面PBG 的距离 …………………4分223434322===∴=BC AD GD BC 在∆DKG 中,DK =DG sin 45︒=23 ∴点D 到平面PBG 的距离为23 …………………6分 (Ⅱ)在平面ABCD 内,过D 作DM ⊥GC 于M ,连结FM ,又因为DF ⊥GC , DM DF D = ∴GC ⊥平面FMD ,⊂FM 平面FMD ∴GC ⊥FMPG ⊥平面ABCD ,⊂GC 平面ABCD ∴PG ⊥GC∴FM ∥PG由GM⊥MD 得:3c o s 452GM G D ︒== …………………10分 32312PF GM FC MC ∴=== …………………12分 20. 解:(Ⅰ)24y x =焦点为(1,0)F ,则1(1,0)F -,2(1,0).F122a PF PF =+= 解得,1,1a c b ==,所以椭圆E 的标准方程为22 1.2x y += …………............4分 (Ⅱ)由已知,可设直线l 方程为1x ty =+,1122(,),(,).A x y B x y联立2213x ty x y =+⎧⎨+=⎩得22(1)220,t y ty ++-= 易知0.∆>则1221222,12.1t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩.........6分 ()()111212121211(2)(2)F A F Bx x y y t y t y y y ⋅=+++=+++ =221212222(1)2()41t t y y t y y t -++++=+. 因为111F A FB ⋅=,所以22221t t -=+1,解得213t =. (8)分 联立22112x ty x y =+⎧⎪⎨+=⎪⎩,得22(2)210t y ty ++-=,()2810t ∆=+> 设3344(,),(,)C x y B x y ,则3423422,21.2t y y t y y t ⎧+=-⎪⎪+⎨⎪=-⎪+⎩….....…….........10分112341273F CD S F F y y ∆=⋅-=== ….....…….........12分21. 解:(Ⅰ)当e a =时,()e e x t x x =-,'()e e x t x =-, (1)分令'()0=t x 则1=x 列表如下:......3分所以(极小值==t x . (5)(Ⅱ)设()()()ln e e ln e x F x f x g x x a ax x a =-+-+=-+-+,(1)≥x1'()e x F x a x=-+,(1)≥x 设1()e x h x a x =-+,2221e 1()e x x x h x x x ⋅-'=-=, ...........…........7分 由1x ≥得,21,x ≥2e 10->x x ,'()0>h x ,()h x 在(1,)+∞单调递增,即()F x '在(1,)+∞单调递增,(1)1F e a '=+-,① 当10e a +-≥,即1a e ≤+时,(1,)x ∈+∞时,()0F x '>,()F x 在(1,)+∞单调递增, 又(1)0F =,故当1x ≥时,关于x 的方程()ln e=()f x x g x a +--有且只有一个实数解. ..........9分②当10e a +-<,即1a e >+时,由(Ⅰ)可知e x ex ≥, 所以11'()e ,'()0x a a e e F x a ex a F e a x x e e a a =+-≥+-≥⋅+-=>,又11a e e>+ 故00(1,),()0a x F x e'∃∈=,当0(1,)x x ∈时,()0F x '<,()F x 单调递减,又(1)0F =, 故当(]01,x x ∈时,()0F x <,在[)01,x 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1.又0(,)x x ∈+∞时,()0F x '>,()F x 单调递增,且22()ln 1a a F a e a a a e e a =+-+->-+,令2()1(1)x k x e x x =-+≥, '()()2x s x k x e x ==-,()220'=-≥->x s x e e ,故'()k x 在()1,+∞单调递增,又'(1)0k > 1当时,∴>x'()0,>k x ()∴k x 在()1,+∞单调递增,故()(1)0>>k a k ,故()0F a >, 又0a a x e>>,由零点存在定理可知,101(,),()0x x a F x ∃∈=, 故在()0,x a 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1x .又在[)01,x 内,关于x 的方程()ln e=()f x x g x a +--有一个实数解1.综上,1a e ≤+. (12)22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩ (2)分所以曲线C 的极坐标方程为24cos 10ρρθ-+=. …….................4分(Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角, 代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ.21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ…….................7分1212OA OB +=+=+=ρρρρ (8)分 1cos θ∴= 满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan k θ==…….................10分23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-. .…….................4分 (Ⅱ)由(Ⅰ)知,4=m ,即424x y z ++=. 根据柯西不等式222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21164()22121x y y z ≥+-+= …….................8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得。

辽宁省沈阳市2019届高三上学期一模数学(文)试题(解析版)

辽宁省沈阳市2019届高三上学期一模数学(文)试题(解析版)

辽宁省沈阳市2019届高三上学期一模数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.已知全集3,5,,集合,,则如图所示阴影区域表示的集合为 A. B. C. D. 3,【答案】B【解析】【分析】先求出,阴影区域表示的集合为,由此能求出结果.【详解】全集3,5,,集合,,3,,如图所示阴影区域表示的集合为:.故选:B.【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.2.在复平面内,复数对应的点位于 A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】直接利用复数代数形式的乘除运算化简得答案.【详解】,复数对应的点的坐标为,位于第一象限.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.设函数,则 A. B. 1 C. D.【答案】A【解析】【分析】由题意结合函数的解析式求解函数值即可.【详解】函数,,故.故选:A.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.已知命题p:,,则 A. ,B. ,C. ,D. ,【答案】A【解析】【分析】命题“,”是全称命题,其否定应为特称命题,注意量词和不等号的变化.【详解】命题“,”是全称命题,否定时将量词对任意的变为,再将不等号变为即可.即已知命题p:,,则为,.故选:A.【点睛】本题考查命题的否定,全称命题和特称命题,属于基本知识的考查注意在写命题的否定时量词的变化,属基础题.5.在等比数列中,,,则 A. 4B. 5C.D.【答案】C【解析】【分析】设等比数列的公比为,由等比数列的通项公式可得,可解得的值,代入通项公式计算可得答案.【详解】设等比数列的公比为,因为,,所以,,可得,都符合题意,所以,故选C.【点睛】本题主要考查等比数列的性质与通项公式的应用,意在考查对基础知识的掌握情况,属于基础题.6.已知是空间中的两条不同的直线,,是空间中的两个不同的平面,则下列命题正确的是 A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】【分析】由直线还可以在平面内判断;由直线还可以在平面内判断;由直线还可以在平面内,可以与平面斜交,或者与平面平行判断;根据面面垂直的判定定理判断.【详解】对于选项,符合已知条件的直线还可以在平面内,所以选项错误;对于选项,符合已知条件的直线还可以在平面内,所以选项错误;对于选项,符合已知条件的直线还可以在平面内,与平面斜交,或者与平面平行,所以选项错误;对于选项,根据面面垂直的判定定理可知其正确性,所以选项正确,故选D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.7.曲线的方程为,则曲线的离心率为 A. B. C. D.【答案】A【解析】【分析】由双曲线方程求得的值,再由求得,则曲线的离心率可求.【详解】因为曲线的方程为,所以,,则,,,双曲线的离心率,故选A.【点睛】本题主要考查双曲线的方程与离心率,是基础的计算题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.8.某英语初学者在拼写单词“”时,对后三个字母的记忆有些模糊,他只记得由“”、“”、“”三个字母组成并且字母“”只可能在最后两个位置中的某一个位置上如果该同学根据已有信息填入上述三个字母,那么他拼写正确的概率为 A. B. C. D.【答案】B【解析】【分析】由列举法得到满足题意的字母组合有四种,拼写正确的组合只有一种,根据古典概型概率公式可得结果.【详解】因为某英语初学者在拼写单词“”时,对后三个字母的记忆有些模糊,他只记得由“”、“”、“”三个字母组成,并且字母“”只可能在最后两个位置中的某一个位置上.该同学根据已有信息填入上述三个字母,。

2019年辽宁省沈阳市高考数学一模试卷(文科)(解析版)

2019年辽宁省沈阳市高考数学一模试卷(文科)(解析版)

2019年辽宁省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P2.复数,且A+B=0,则m的值是()A.B.C.﹣D.23.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a4.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.905.设F1和F2为双曲线﹣=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x6.在△ABC中,O为其内部一点,且满足,则△AOB 和△AOC的面积比是()A.3:4 B.3:2 C.1:1 D.1:37.圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离的差是()A.18 B.C.D.8.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π9.若变量x,y满足,则x2+2x+y2的最大值是()A.4 B.9 C.16 D.1810.设a=log23,,c=log34,则a,b,c的大小关系为()A.b<a<c B.c<a<b C.a<b<c D.c<b<a11.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为()A.(1+)米B.2米C.(1+)米D.(2+)米12.已知椭圆的左焦点为F1,有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等比数列{a n}的公比q>0.已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=.14.如图所示,输出的x的值为.15.方程|cos(x+)|=|log18x|的解的个数为.(用数值作答)16.已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=2cos2x+2sinxcosx+a,且当x∈[0,]时,f (x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.18.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:学历35岁以下35~50岁50岁以上本科80 30 20研究生x 20 y(Ⅰ)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x、y的值.19.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且FD=EA=1.(Ⅰ)求多面体EABCDF的体积;(Ⅱ)求直线EB与平面ECF所成角的正弦值;(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.20.已知椭圆+=1(a>b>0)的离心率为,F1、F2是椭圆的左、右焦点,过F2作直线l交椭圆于A、B两点,若△F1AB的周长为8.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l的斜率为0,且它的中垂线与y轴交于Q,求Q的纵坐标的范围;(Ⅲ)是否在x轴上存在点M(m,0),使得x轴平分∠AMB?若存在,求出m的值;若不存在,请说明理由.21.已知方程x3+ax2+bx+c=0(a,b,c∈R).(1)设a=b=4,方程有三个不同实根,求c的取值范围;(2)求证:a2﹣3b>0是方程有三个不同实根的必要不充分条件.选修4-4:坐标系与参数方程22.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.选修4-5:不等式选讲23.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P【考点】子集与真子集.【分析】此题只要求出x2<4的解集{x|﹣2<x<2},画数轴即可求出.【解答】解:P={x|x<4},Q={x|x2<4}={x|﹣2<x<2},如图所示,可知Q⊆P,故选:B.2.复数,且A+B=0,则m的值是()A.B.C.﹣D.2【考点】复数相等的充要条件.【分析】复数方程两边同乘1+2i,利用复数相等求出A、B,利用A+B=0,求出m的值.【解答】解:因为,所以2﹣mi=(A+Bi)(1+2i),可得A﹣2B=2,2A+B=m 解得5(A+B)=﹣3m﹣2=0所以m=故选C.3.设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a (a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a【考点】极差、方差与标准差;众数、中位数、平均数.【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵y i=x i+a,∴E(y i)=E(x i)+E(a)=1+a,方差D(y i)=D(x i)+E(a)=4.方法2:由题意知y i=x i+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2= [(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]= [(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.4.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.90【考点】等差数列的前n项和;等差数列的通项公式.【分析】由等比中项的定义可得a42=a3a7,根据等差数列的通项公式及前n项和公式,列方程解出a1和d,进而求出s10.【解答】解:∵a4是a3与a7的等比中项,∴a42=a3a7,即(a1+3d)2=(a1+2d)(a1+6d),整理得2a1+3d=0,①又∵,整理得2a1+7d=8,②由①②联立,解得d=2,a1=﹣3,∴,故选:C.5.设F1和F2为双曲线﹣=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】设F1(﹣c,0),F2(c,0),则|F1P|=,由F1、F2、P(0,2b)是正三角形的三个顶点可知|F1P|==2c,由此可求出b==a,进而得到双曲线的渐近线方程.【解答】解:若F1,F2,P(0,2b)是正三角形的三个顶点,设F1(﹣c,0),F2(c,0),则|F1P|=,∵F1、F2、P(0,2b)是正三角形的三个顶点,∴=2c,∴c2+4b2=4c2,∴c2+4(c2﹣a2)=4c2,∴c2=4a2,即c=2a,b==a,∴双曲线的渐近线方程为y=±x,即为y=±x.故选:B.6.在△ABC中,O为其内部一点,且满足,则△AOB 和△AOC的面积比是()A.3:4 B.3:2 C.1:1 D.1:3【考点】向量的加法及其几何意义;向量的三角形法则.【分析】设M为AC的中点,则由向量加法的平行四边形法则可得+=2,结合题意可得2=﹣3,由数乘向量的性质可得B,O,M三点共线,且2OM=3BO;进而可得==,而又由S△AOB+S△=S△ABC,分析可得S△AOB=S△ABC,结合题意计算可得△AOB和△AOC BOC的面积比,即可得答案.【解答】解:根据题意,如图:在△ABC中,M为AC的中点,则+=2,又由,则有2=﹣3,从而可得B,O,M三点共线,且2OM=3BO;由2OM=3BO可得,==,S△AOB+S△BOC=S△ABC,又由S△AOB=S△BOC,则S△AOB=S△ABC,则=;故选:D.7.圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离的差是()A.18 B.C.D.【考点】直线与圆的位置关系.【分析】圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离分别是:d+r,d﹣r,其两者之差即为圆的直径,进而可得答案.【解答】解:∵圆x2+y2﹣4x﹣4y﹣10=0,∴(x﹣2)2+(y﹣2)2=18,∴圆半径r=3.圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离分别是:d+r,d﹣r,其两者之差即为圆的直径,故圆x2+y2﹣4x﹣4y﹣10=0上的点到直线x+y﹣8=0的最大距离与最小距离的差是,故选:B8.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π【考点】由三视图求面积、体积.【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选B.9.若变量x,y满足,则x2+2x+y2的最大值是()A.4 B.9 C.16 D.18【考点】简单线性规划.【分析】由约束条件作出可行域,再由x2+2x+y2=(x+1)2+y2﹣1=,其几何意义为可行域内的动点与定点P(﹣1,0)距离的平方减1求解.【解答】解:由约束条件作出可行域如图,∵x2+2x+y2=(x+1)2+y2﹣1=,其几何意义为可行域内的动点与定点P(﹣1,0)距离的平方减1,联立,解得A(3,﹣1),而|PA|2=(﹣1﹣3)2+(0+1)2=17,∴x2+2x+y2的最大值是16.故选:C.10.设a=log23,,c=log34,则a,b,c的大小关系为()A.b<a<c B.c<a<b C.a<b<c D.c<b<a【考点】对数值大小的比较.【分析】利用对数函数的单调性求解.【解答】解:∵a=log23>==b,=>log34=c,∴a,b,c的大小关系为c<b<a.故选:D.11.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为()A.(1+)米B.2米C.(1+)米D.(2+)米【考点】余弦定理;基本不等式.【分析】设BC的长度为x米,AC的长度为y米,依据题意可表示出AB的长度,然后代入到余弦定理中求得x和y的关系式,利用基本不等式求得y的最小值,并求得取等号时x的值.【解答】解:设BC的长度为x米,AC的长度为y米,则AB的长度为(y﹣0.5)米,在△ABC中,依余弦定理得:AB2=AC2+BC2﹣2AC•BCcos∠ACB,即(y﹣0.5)2=y2+x2﹣2yx×,化简,得y(x﹣1)=x2﹣,∵x>1,∴x﹣1>0,因此y=,y=(x﹣1)++2≥+2,当且仅当x﹣1=时,取“=”号,即x=1+时,y有最小值2+.故选:D.12.已知椭圆的左焦点为F1,有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意可得a+c=5(a﹣c),由此即可求得椭圆的离心率.【解答】解:∵椭圆上的点到左焦点距离最小的点是左顶点,距离最大的点是右顶点,∴由题意可得a+c=5(a﹣c),即4a=6c,得.∴椭圆的离心率为.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.等比数列{a n}的公比q>0.已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=.【考点】等比数列的前n项和.【分析】先根据:{a n}是等比数列把a n+2+a n+1=6a n整成理q2+q﹣6=0求得q,进而根据a2求得a1,最后跟等比数列前n项的和求得S4.【解答】解:∵{a n}是等比数列,∴a n+2+a n+1=6a n可化为a1q n+1+a1q n=6a1q n﹣1,∴q2+q﹣6=0.∵q>0,∴q=2.a2=a1q=1,∴a1=.∴S4===.故答案为14.如图所示,输出的x的值为17.【考点】程序框图.【分析】执行程序框图,写出每次循环得到的x的值,当a=b=17时满足条件a=b,输出x的值为17.【解答】解:模拟程序的运行,可得a=51,b=221不满足条件a=b,满足b>a,b=221﹣51=170,不满足条件a=b,满足b>a,b=170﹣51=119,不满足条件a=b,满足b>a,b=119﹣51=68,不满足条件a=b,满足b>a,b=68﹣51=17,不满足条件a=b,满足a>b,a=51﹣17=34,不满足条件a=b,满足a>b,a=34﹣17=17,满足条件a=b,x=17,输出x的值为17.故答案为:17.15.方程|cos(x+)|=|log18x|的解的个数为12.(用数值作答)【考点】根的存在性及根的个数判断.【分析】作出y=|sinx|与y=|log18x|的函数图象,根据图象的交点个数得出答案.【解答】解:∵|cos(x+)|=|log18x|,∴|sinx|=|log18x|,作出y=|sinx|与y=|log18x|在(0,+∞)上的函数图象如图所示:由图象可知y=|sinx|与y=|log18x|有12个交点,∴方程|cos(x+)|=|log18x|有12个解.故答案为:12.16.已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为2.【考点】球的体积和表面积;球内接多面体.【分析】作出图形,利用勾股定理,求出四面体外接球半径.【解答】解:如图所示,O′为△ACD的外心,O为球心,BE⊥平面ACD,BF⊥AC,则EF⊥AC,∴AF=2,AE=2,BE==2.设该四面体外接球半径为R,OO′=d,则2+(2+d)2=d2+(3)2,∴d=,CD=6,∴R==2,故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=2cos2x+2sinxcosx+a,且当x∈[0,]时,f (x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.【考点】两角和与差的正弦函数;正弦函数的单调性;函数y=Asin (ωx+φ)的图象变换.【分析】(1)化简可得f(x)=2sin(2x+)+a+1,由题意易得﹣1+a+1=2,解方程可得a值,解不等式2kπ﹣≤2x+≤2kπ+可得单调区间;(2)由函数图象变换可得g(x)=2sin(4x﹣)+3,可得sin(4x﹣)=,解方程可得x=或x=,相加即可.【解答】解:(1)化简可得f(x)=2cos2x+2sinxcosx+a=cos2x+1+sin2x+a=2sin(2x+)+a+1,∵x∈[0,],∴2x+∈[,],∴f(x)的最小值为﹣1+a+1=2,解得a=2,∴f(x)=2sin(2x+)+3,由2kπ﹣≤2x+≤2kπ+可得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由函数图象变换可得g(x)=2sin(4x﹣)+3,由g(x)=4可得sin(4x﹣)=,∴4x﹣=2kπ+或4x﹣=2kπ+,解得x=+或x=+,(k∈Z),∵x∈[0,],∴x=或x=,∴所有根之和为+=.18.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:学历35岁以下35~50岁50岁以上本科80 30 20研究生x 20 y(Ⅰ)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x、y的值.【考点】古典概型及其概率计算公式;分层抽样方法.【分析】(Ⅰ)设抽取学历为本科的人数为m,由题意可得,由此解得m=6,可得抽取了学历为研究生4人,学历为本科6人,故从中任取3人,至少有1人的教育程度为研究生的概率为.(Ⅱ)依题意得:,解得N的值,可得35~50岁中被抽取的人数,再根据分层抽样的定义和性质列出比例式,求得、xy的值.【解答】(Ⅰ)解:设抽取学历为本科的人数为m,由题意可得,解得m=6.∴抽取了学历为研究生4人,学历为本科6人,∴从中任取3人,至少有1人的教育程度为研究生的概率为=.(Ⅱ)解:依题意得:,解得N=78.∴35~50岁中被抽取的人数为78﹣48﹣10=20.∴,解得x=40,y=5.19.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且FD=EA=1.(Ⅰ)求多面体EABCDF的体积;(Ⅱ)求直线EB与平面ECF所成角的正弦值;(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【考点】棱柱、棱锥、棱台的体积;直线与平面所成的角.【分析】(Ⅰ)连接ED,多面体EABCDF的体积V=V E﹣FCD+V E﹣ABCD ,只有分别求解两个棱锥的体积即可;(Ⅱ)以点A为原点,AB所在的直线为x轴,AD所在的直线为y轴,建立空间直角坐标系,求出平面ECF的一个法向量,利用向量的夹角公式,即可求直线EB与平面ECF所成角的正弦值;(Ⅲ)取线段CD的中点Q;连接KQ,直线KQ即为所求.【解答】解:(Ⅰ)连接ED,∵EA⊥底面ABCD,FD∥EA,∴FD⊥底面ABCD,∴FD⊥AD,FD∩AD=D,∴AD⊥平面FDC,V E﹣FCD=AD•S△FDC=××1×2×2=,V E﹣ABCD=EA•S正方形ABCD=×2×2×2=,∴多面体EABCDF的体积V=V E﹣FCD+V E﹣ABCD =+=;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)以点A为原点,AB所在的直线为x轴,AD所在的直线为y轴,建立空间直角坐标系,如图.由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),∴=(2,2,﹣2),=(2,0,﹣2),=(0,2,﹣1)﹣﹣﹣﹣﹣﹣设平面ECF的法向量为=(x,y,z),得:取y=1,得平面ECF的一个法向量为=(1,1,2)﹣﹣﹣﹣﹣﹣设直线EB与平面ECF所成角为θ,∴sinθ=|cos<,>|==﹣﹣﹣﹣(Ⅲ)取线段CD的中点Q;连接KQ,直线KQ即为所求.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣如图所示…20.已知椭圆+=1(a>b>0)的离心率为,F1、F2是椭圆的左、右焦点,过F2作直线l交椭圆于A、B两点,若△F1AB的周长为8.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l的斜率为0,且它的中垂线与y轴交于Q,求Q的纵坐标的范围;(Ⅲ)是否在x轴上存在点M(m,0),使得x轴平分∠AMB?若存在,求出m的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的性质可知:2a=8,e==及b2=a2﹣c2,即可求得a和b的值,即可求得椭圆的方程;(Ⅱ)当k不存在时,Q为原点,y0=0,当k存在时,将直线方程代入椭圆方程,求得关于x的一元二次方程,利用韦达定理求得x1+x2及x1•x2,根据中点坐标公式,求得P点坐标,求得直线PQ方程,令x=0,y Q=∈[﹣,0)∪(0,],即可求得Q的纵坐标的范围;(Ⅲ)假设存在m,由x轴平分∠AMB可得, +=0,由(Ⅱ)可知,代入即可求得m的值.【解答】解:(Ⅰ)由椭圆的性质可知:4a=8,a=2,e==,c=1,b2=a2﹣c2=4﹣1=3,b=,∴椭圆的方程;(Ⅱ)当k不存在时,Q为原点,y0=0,当k存在时,由,整理得:(3+4k2)x2﹣8k2x+4k2﹣12=1,∴x1+x2=,x1•x2=,设弦AB的中点为P(x P,y P),则x P=,y P=k(x P﹣1)=,则l PQ:(y+)=﹣(x﹣),令x=0,有y Q=∈[﹣,0)∪(0,],∴综上所述,Q的纵坐标的范围[﹣,];(Ⅲ)存在m=4,假设存在m,由x轴平分∠AMB可得,k MA+k MB=0,即+=0,k(x1﹣1)(x2﹣m)+k(x2﹣1)(x1﹣m)=0,∴2x1•x2﹣(m+1)(x1+x2)+2m=0,∴8k2﹣24﹣8k2m﹣8k2+6m+8mk2=0,解得:m=4.21.已知方程x3+ax2+bx+c=0(a,b,c∈R).(1)设a=b=4,方程有三个不同实根,求c的取值范围;(2)求证:a2﹣3b>0是方程有三个不同实根的必要不充分条件.【考点】利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断;利用导数研究函数的极值.【分析】(1)当a=b=4时,方程x3+4x2+4x+c=0有三个不同实根,等价于函数f(x)=x3+4x2+4x+c=0有三个不同零点,由f(x)的单调性知,当且仅当时,函数f(x)=x3+4x2+4x+c有三个不同零点,可得结论;(2)若函数f(x)有三个不同零点,则必有△=4a2﹣12b>0,故a2﹣3b>0是f(x)有三个不同零点的必要条件,再证明充分性即可.【解答】解:设f(x)=x3+ax2+bx+c.(1)当a=b=4时,方程x3+4x2+4x+c=0有三个不同实根,等价于函数f(x)=x3+4x2+4x+c=0有三个不同零点,f'(x)=3x3+8x+4,令f'(x)=0得x1=﹣2或,f(x)与f'(x)的区间(﹣∞,+∞)上情况如下:x (﹣∞,﹣2)﹣2 (﹣2,﹣)﹣(﹣,+∞)f(x)+0 ﹣0 +f'(x) c c﹣所以,当c>0时且时,存在x1∈(﹣4,﹣2),,,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当时,函数f(x)=x3+4x2+4x+c 有三个不同零点.即方程x3+4x2+4x+c=0有三个不同实根.(2)当△=4a2﹣12b<0时,f'(x)=3x2+2ax+b>0,x∈(﹣∞,+∞),此时函数f(x)在区间(﹣∞,+∞)上单调递增,所以f(x)不可能有三个不同零点.当△=4a2﹣12b<0时,f'(x)=3x2+2ax+b只有一个零点,记作x0,当x∈(﹣∞,x0)时,f'(x)>0,f(x)在区间(﹣∞,x0)上单调递增;当x∈(x0,+∞)时,f'(x)>0,f(x)在区间(x0,+∞)上单调递增.所以f(x)不可能有三个不同零点.综上所述,若函数f(x)有三个不同零点,则必有△=4a2﹣12b>0.故a2﹣3b>0是f(x)有三个不同零点的必要条件.当a=b=4,c=0时,a2﹣3b>0,f(x)=x3+4x2+4x=x(x+2)2只有两个不同零点,所以a2﹣3b>0不是f(x)有三个不同零点的充分条件.因此a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.即a2﹣3b>0是方程x3+ax2+bx+c=0有三个不同实根的必要而不充分条件.选修4-4:坐标系与参数方程22.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D 的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]选修4-5:不等式选讲23.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明:|a+b|<;(2)利用(1)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.【解答】解:(1)记f(x)=|x﹣1|﹣|x+2|=,由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…。

辽宁省沈阳市2019-2020学年第一次高考模拟考试数学试卷含解析

辽宁省沈阳市2019-2020学年第一次高考模拟考试数学试卷含解析

辽宁省沈阳市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量(,4)a m =-r ,(,1)b m =r (其中m 为实数),则“2m =”是“a b ⊥r r”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件. 【详解】由2m =,则(2,4)(2,1)440a b ⋅=-⋅=-+=r r ,所以a b ⊥r r;而当a b ⊥r r,则2(,4)(,1)40a b m m m ⊥=-⋅=-+=r r ,解得2m =或2m =-.所以“2m =”是“a b ⊥r r”的充分不必要条件.故选:A 【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.2.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( ) A .12 B .16 C .20 D .8【答案】A 【解析】 【分析】先将除A ,B 以外的两人先排,再将A ,B 在3个空位置里进行插空,再相乘得答案. 【详解】先将除A ,B 以外的两人先排,有222A =种;再将A ,B 在3个空位置里进行插空,有23326A =⨯=种,所以共有2612⨯=种. 故选:A 【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.3.已知集合{}{}2|1,|31xA x xB x ==<„,则()R A B U ð=( )A .{|0}x x <B .{|01}x x 剟C .{|10}x x -<„D .{|1}x x -…【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð 【详解】{|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D 【点睛】此题考查的是集合的并集、补集运算,属于基础题. 4.i 是虚数单位,21iz i=-则||z =( )A .1B .2CD .【答案】C 【解析】 【分析】由复数除法的运算法则求出z ,再由模长公式,即可求解. 【详解】由22(1)1,||1i i z i z i+==-+=-故选:C. 【点睛】本题考查复数的除法和模,属于基础题.5.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:如图的算法框图中输入的i a 为上表中的学生的数学竞赛成绩,运行相应的程序,输出m ,n 的值,则m n -=( )A .6B .8C .10D .12【答案】D 【解析】 【分析】根据程序框图判断出,n m 的意义,由此求得,m n 的值,进而求得m n -的值. 【详解】由题意可得n 的取值为成绩大于等于90的人数,m 的取值为成绩大于等于60且小于90的人数,故24m =,12n =,所以241212m n -=-=.故选:D 【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.6.函数()2xx e f x x=的图像大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可. 【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x ==,当0x →,()0f x →,排除B , 故选:A . 【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题. 7.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( )A .1112- B .31- C .221-D .32【答案】C 【解析】 【分析】求出点()1,2关于直线10x y --=的对称点C 的坐标,进而可得出圆()()22121x y -+-=关于直线10x y --=的对称圆C 的方程,利用二次函数的基本性质求出MC 的最小值,由此可得出min min 1MN MC =-,即可得解.【详解】 如下图所示:设点()1,2关于直线10x y --=的对称点为点(),C a b ,则1210 22211a bba++⎧--=⎪⎪⎨-⎪=-⎪-⎩,整理得3030a ba b--=⎧⎨+-=⎩,解得3ab=⎧⎨=⎩,即点()3,0C,所以,圆()()22121x y-+-=关于直线10x y--=的对称圆C的方程为()2231x y-+=,设点2,4yM y⎛⎫⎪⎝⎭,则()224222213948416216y y yMC y y⎛⎫=-+=-+=-+⎪⎝⎭,当2y=±时,MC取最小值22,因此,min min1221MN MC=-=-.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.8.一个几何体的三视图如图所示,则该几何体的表面积为()A.48122+B.60122+C.72122+D.84【答案】B【解析】【分析】画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故()2422626246622641222S+⨯=⨯+⨯+⨯+⨯+⨯=+.故选:B.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.9.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B I 的真子集的个数是( ) A .8 B .7C .4D .3【答案】D 【解析】 【分析】转化条件得{}0,1A B =I ,利用元素个数为n 的集合真子集个数为21n -个即可得解. 【详解】由题意得()(){}{}12012B x x x x x =+-<=-<<,∴{}0,1A B =I ,∴集合A B I 的真子集的个数为2213-=个.故选:D. 【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.10.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k 的值为( ) A .45B .60C .75D .100【答案】B 【解析】 【分析】根据程序框图中程序的功能,可以列方程计算. 【详解】 由题意12315234S ⨯⨯⨯=,60S =.故选:B. 【点睛】本题考查程序框图,读懂程序的功能是解题关键.11.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>【答案】B 【解析】 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=,故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯,故223E ξ=,2221242013399D ξ=⨯+⨯-=,故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.12.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个【答案】D 【解析】 【分析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可. 【详解】()f x 是定义域为R 的奇函数,则()()f x f x -=-,(0)0f =,又(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=, 即()f x 是以4为周期的函数,(4)(0)0()f k f k Z ==∈, 所以函数()f x 的零点有无穷多个;因为(2)()f x f x +=-,[(1)1]()f x f x ++=-,令1t x =+,则(1)(1)f t f t +=-, 即(1)(1)f x f x +=-,所以()f x 的图象关于1x =对称, 由题意无法求出()f x 的值域, 所以本题答案为D. 【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键. 二、填空题:本题共4小题,每小题5分,共20分。

【精品】2019年东北三省三校(辽宁省实验中学)高考数学一模试卷(文科)【解析版】

【精品】2019年东北三省三校(辽宁省实验中学)高考数学一模试卷(文科)【解析版】

A.{x|﹣1≤x≤2} B.{x|0<x≤2}
C.{x|1≤x≤2}
D.{x|x≤﹣1 或 x>
2}
3.(5 分)已知向量 , 的夹角为 60°,| |=1,| |=2,则|3 + |=( )
A.
B.
C.
D.
4.(5 分)设直线 y=x﹣ 与圆 O:x2+y2=a2 相交于 A,B 两点,且|AB|=2 ,则圆 O
第 1 页(共 22 页)
A.0
B.﹣1
C.1
D.2
8.(5 分)设 a=( ) ,b=( ) ,c=( ) ,则 a,b,c 的大小关系为( )
A.a<b<c
B.b<c<a
C.a<c<b
D.c<a<b
9.(5 分)已知 α,β 是不重合的平面,m,n 是不重合的直线,则 m⊥α 的一个充分条件是
的面积为( )
A.π
B.2π
C.4π
D.8π
5.(5 分)等差数列{an}的前 n 项和为 Sn,且 a2+a10=16,a8=11,则 S7=( )
A.30
B.35
C.42
D.56
6.(5 分)已知 α∈(0, ),tan(
)=﹣3,则 sinα=( )
A.
B.
C.
D.
7.(5 分)执行两次如图所示的程序框图,若第一次输入的 x 的值为 4,第二次输入的 x 的 值为 5,记第一次输出的 a 的值为 a1,第二次输出的 a 的值为 a2,则 a1﹣a2=( )
与圆 O:x2+y2=a2 相交于 A,B 两点,且|AB|=2
,则圆 O
的面积为( )
A.π
B.2π

【名校试题】辽宁省沈阳市郊联体2019届高三第一次模拟考试能力测试文数试题答案

【名校试题】辽宁省沈阳市郊联体2019届高三第一次模拟考试能力测试文数试题答案

直线 NB2 : y 2kx 3 ……②
由①,②解得
N
点的横坐标为
xN


6k , 2k 2 1
……………………………8 分
3
四边形 MB2NB1 的面积
S

1 2
|
B1B2
| (|
xM
|

|
xN
|)

3

(
12 | 2k 2
k| 1
6| 2k 2
k| ) 1

54 | k | 2k 2 1
54 27 2 ,
2|k| 1
2
|k|
………………………………………………10 分
当且仅当| k| 2 时, S 取得最大值 27 2 .…………………………………12 分
2
2
解:
f
(x)


2 x2

a x
(x

0)
,
………………………………………………1 分
(1)∵ a 0 ,∴当 1 a 时, f (x) 取最大值 a2 ,∴ a2 =2 ,
成一件产品。
综上所述,甲车间大概有 60 人,乙车间大概有 30 人生产一件产品小于 75min. ……4 分
(II)第一组平均时间为
x甲

60 2

70 4 8010 20
90 4

78
(min),…………5

第二组平均时间为 x乙 60 0.25 70 0.5 80 0.2 90 0.05 70.5 (min),…6 分
所以甲车间大概有 60 人在 75min 内(不含 75min)生产完成一件产品;

辽宁省沈阳市郊联体2019届高三第一次模拟考试文数试题

辽宁省沈阳市郊联体2019届高三第一次模拟考试文数试题

辽宁省沈阳市郊联体2019届高三第一次模拟考试文数试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠∅,则a的取值范围为()A. B. C. D.2.设a为i-1的虚部,b为(1+i)2的实部,则a+b=()A. B. C. D. 03.执行如图所示的程序框图,若输入如下四个函数:①f(x)=2x;②f(x)=-2x;③f(x)=x+x-1;④f(x)=x-x-1.则输出函数的序号个数为()A. 4B. 3C. 2D. 14.函数的图象大致是()A. B.C. D.5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.6.若sin()=,则cos()=()A. B. C. D.7.已知双曲线>,>的一条渐近线与圆(x-4)2+y2=4相切,则该双曲线的离心率为()A. 2B.C.D.8.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,中等级中的五等人与六等人所得黄金数()A. B. C. D.9.已知向量,,向量,,函数,则下列说法正确的是()A. 是奇函数B. 的一条对称轴为直线C. 的最小正周期为D. 在上为减函数10.将正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,异面直线AD与BC所成角为()A. B. C. D.11.若平面向量,满足||=|3|=2,则在方向上的投影的最大值为()A. B. C. D.12.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=()x-1,若关于x的方程f(x)-1og a(x+2)=0(a>1)在区间(-2,6]内恰有三个不同实根,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知变量x,y满足约束条件,则z=2x+y最小值为______.14.如图,在△ABC中,角A,B,C的对边分别为a,b,c,向量=(a,b),=(sin A,cos B),且 ∥ ,若点D是△ABC外接圆O的劣弧上的点,AB=3,BC=2,AD=1,则四边形ABCD的面积为______.15.若直线y=2x-1是曲线y=ax+ln x的切线,则实数a的值为______.16.已知椭圆=1的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论序号正确的有______.①+<1②+>1③+<1 ④4x02+3y02>1三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和为S n,且1,a n,S n成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n•b n=1+2na n,求数列{b n}的前n项和T n.18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,设AC∩BD=O,且∠PDO=60°,求四棱锥P-ABCD的体积.19.某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度y(单位:cm)的情况如表1:该省某市2017年11月份AQI指数频数分布如表2:(1)设,若x与y之间是线性关系,试根据表1的数据求出y关于x的线性回归方程;(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:根据表3估计小李的洗车店2017年11月份每天的平均收入.附参考公式:=x+,其中=,=-.20.已知椭圆C:(a>b>0)的离心率,直线被以椭圆C的短轴为直径的圆截得的弦长为.(1)求椭圆C的方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|•|MB|,求λ的取值范围.21.已知:函数(其中常数a<0).(Ⅰ)求函数f(x)的定义域及单调区间;(Ⅱ)若存在实数x∈(a,0],使得不等式成立,求a的取值范围.22.已知平面直角坐标系xOy中,过点P(-1,-2)的直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若|PM|=|MN|,求实数a的值.23.已知函数f(x)=|x+m|-|2x-2m|(m>0).(1)当时,求不等式的解集;(2)对于任意的实数x,存在实数t,使得不等式f(x)+|t-3|<|t+4|成立,求实数m的取值范围.答案和解析1.【答案】B【解析】解:∵集合A={x|x-a≤0}={x|x≤a},B={1,2,3},A∩B≠∅,∴a≥1,∴a的取值范围为[1,+∞).故选:B.求出集合A={x|x≤a},B={1,2,3},由A∩B=∅,能求出a的取值范围.本题考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:i-1==-i,则a=-1.(1+i)2=1-1+2i=2i.∴b=0,则a+b=-1+0=-1.故选:A.利用复数的运算法则、有关概念即可得出.本题考查了复数的运算法则、有关概念,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:①f(x)=2x>0恒成立,不存在零点,②f(x)=-2x<0恒成立,不存在零点,③f(x)=x+x-1=x+=不存在零点,④f(x)=x-x-1=x-=,当x=1或x=-1时,满足f(x)=0,即存在零点,故只有④满足条件.故选:D.根据条件分别判断四个函数是否存在零点即可.本题主要考查程序框图的识别和判断,根据条件判断函数是否存在零点是解决本题的关键.4.【答案】B【解析】解:由1-x2≠0,解得x≠±1,∵函数,当x=2时,f(x)<0,当x=-2时,f(x)>0,当x=时,f(x)>0,当x=-时,f(x)<0,故选:B.先求出函数的定义域,再利用函数值,即可判断.本题考查了函数的图象的识别,掌握函数的定义域,函数的值,属于基础题.5.【答案】C【解析】解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,∴取出的2张卡片上的数字之和为奇数的概率为=.故选:C.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n==6,取出的2张卡片上的数字之和为奇数包含的基本事件个数m==4,由此能求出取出的2张卡片上的数字之和为奇数的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件的概率计算公式的合理运用.解:∵sin()==cos(+x),则cos()=2-1=2×-1=-,故选:C.利用诱导公式求得cos(+x)的值,再利用二倍角公式求得cos()的值.本题主要考查诱导公式、二倍角公式的应用,属于基础题.7.【答案】B【解析】解:双曲线的一条渐近线y=与圆(x-4)2+y2=4相切,可得:=2,可得:2b=c,即4b2=c2,所以4c2-4a2=c2,解得e==.故选:B.求出双曲线的渐近线方程,利用渐近线与圆相切,列出方程,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,直线与圆的位置关系的应用,考查计算能力.8.【答案】C【解析】解:设十等人,将每等人按顺序排成一排,构成等差数列a1,a2…a9,a10,由已知有a1+a2+a3=4,a8+a9+a10=3,由等差数列的性质有a5+a6=a1+a10=a2+a9=a3+a8=,故选:C.由等差数列的性质及简单的合情推理得:将每等人按顺序排成一排,构成等差数列a1,a2…a9,a10,由已知有a1+a2+a3=4,a8+a9+a10=3,则a5+a6=a1+a10=a2+a9=a3+a8=,得解.本题考查了等差数列的性质及简单的合情推理,属中档题.解:向量,向量,函数=sin4+cos4=(sin2+cos2)2-2sin2cos2=1-(2sin cos)2=1-sin2x=1-•(1-cos2x)=(3+cos2x),由f(-x)=(3+cos(-2x))=(3+cos2x)=f(x),可得f(x)为偶函数,则A错;由2x=kπ,可得x=kπ(k∈Z),则B错;f(x)的最小正周期为T==π,则C错;由x∈(,)可得2x∈(,π),则f(x)在上为减函数,D正确.故选:D.运用向量数量积的坐标表示,以及二倍角的正弦公式、余弦公式,化简函数f (x),再由奇偶性和对称轴、周期性和单调性,计算可得所求结论.本题考查向量数量积的坐标表示和二倍角的正弦公式、余弦公式的运用,考查余弦函数的图象和性质,考查化简整理的运算能力,属于中档题.10.【答案】C【解析】解:设O是正方形对角线AC、BD的交点,将正方形ABCD沿对角线AC折起,可得当BO⊥平面ADC时,点B到平面ACD的距离等于BO,而当BO与平面ADC不垂直时,点B到平面ACD的距离为d,且d<BO由此可得当三棱锥B-ACD体积最大时,BO⊥平面ADC.设B'是B折叠前的位置,连接B′B,∵AD∥B′C,∴∠BCB′就是直线AD与BC所成角设正方形ABCD的边长为a∵BO⊥平面ADC,OB'⊂平面ACD∴BO⊥OB',∵BO'=BO=AC=a,∴BB′=BC=B′C=a,得△BB′C是等边三角形,∠BCB′=60°所以直线AD与BC所成角为60°故选:C.将正方形ABCD沿对角线AC折起,可得当三棱锥B-ACD体积最大时,BO⊥平面ADC.设B′是B折叠前的位置,连接B′B,可得∠BCB′就是直线AD与BC所成角,算出△BB′C的各边长,得△BB′C是等边三角形,从而得出直线AD与BC所成角的大小.本题将正方形折叠,求所得锥体体积最大时异面直线所成的角,着重考查了线面垂直的性质和异面直线所成角求法等知识,属于中档题.11.【答案】A【解析】解:由||=|3|=2,得9+6•+=4,∴9×4+6•+=4,∴•=--;显然||>0,否则|3+|=2不成立;则在方向上的投影为:=--≤-×2=-,当且仅当||=4时取等号;所以在方向上投影的最大值为-.故选:A.由题意用||、||表示出•,计算在方向上的投影,利用基本不等式求出它的最大值.本题考查了平面向量的数量积与投影的计算问题,是中档题.12.【答案】B【解析】解:∵对于任意的x∈R,都有f(2-x)=f(x+2),∴函数f(x)的图象关于直线x=2对称,又∵当x∈[-2,0]时,f(x)=()x-1,且函数f(x)是定义在R上的偶函数,若在区间(-2,6]内关于x的方程f(x)-log a(x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=log a(x+2)在区间(-2,6]上有三个不同的交点,如下图所示:又f(-2)=f(2)=3,则有log a(2+2)<3,且log a(6+2)>3,解得:<a<2,故选:B.由已知中可以得到函数f(x)的图象关于直线x=2对称,结合函数是偶函数,及x∈[-2,0]时的解析式,可画出函数的图象,将方程f(x)-log a x+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=log a x+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.本题考查的知识点是根的存在性及根的个数判断,指数函数与对数函数的图象与性质,其中根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键,体现了转化和数形结合的数学思想,属于中档题.13.【答案】-2【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-经过点B时,直线y=-的截距最小,此时z最小.由,解得B(-,1),代入目标函数得z=2×(-)+1=-2.即z=2x+y的最小值为-2.故答案为:-2.作出不等式组对应的平面区域,利用目标函数的几何意义,求最小值.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.【答案】2【解析】解:∵向量=(a,b),=(sinA,cosB),且∥,∴=,即,即tanB=,得B=60°,∵ABCD四点共圆.∴∠ADC=120°,∵AB=3,BC=2,∴由余弦定理得AC2=32+22-2×=9+4-6=7,∵AD=1,∴设CD=x,在△ACD中,AC2=AD2+CD2-2AD•CDcos120°=1+x2+x=7,即x2+x-6=0,得x=2或x=-3(舍)则四边形ABCD的面积S=S△ABC+S△ACD=AB•BCsin60°+AD•CDsin120°=+==2,故答案为:2根据向量共线结合正弦定理求出B的大小,结合余弦定理以及三角形的面积公式进行转化求解即可.本题主要考查解三角形的应用,结合向量共线的坐标公式求出B的大小,结合正弦定理余弦定理即三角形的面积公式进行求解是解决本题的关键.15.【答案】1【解析】解:设切点为(m,n),y=ax+lnx的导数为y′=a+,可得切线的斜率为a+=2,又2m-1=n=am+lnm,解得m=a=1,故答案为:1.设切点为(m,n),求得函数y=ax+lnx的导数,可得切线的斜率,由已知切线的方程可得m,n的方程组,解方程可得a的值.本题考查导数的运用:求切线的斜率,考查直线方程的运用,正确求导是解题的关键,考查方程思想和运算能力,属于基础题.16.【答案】①③④【解析】解:由椭圆=1,可得:a=2,b=,c=1.∴左、右焦点分别为F1(-1,0),F2(1,0),设A(0,),则tan∠AF1F2=,可得:∠AF1F2=,∴∠F1AF2=.∵l1⊥l2,∴直线l1与直线l2交点M在椭圆的内部.∴①+<1正确;②+>1不正确;③直线=1与椭圆=1联立,可得:7y2-24y+27=0无解,因此直线=1与椭圆=1无交点.而点M在椭圆的内部,在直线的左下方,∴满足+<1,正确.④∵+=1,0≤≤1,∴4x02+3y02=4(1-)+3=4->1,因此正确.综上可得:正确的序号为:①③④.故答案为:①③④.由椭圆=1,可得:左、右焦点分别为F1(-1,0),F2(1,0),设A(0,),可得∠F1AF2=.由l1⊥l2,可得直线l1与直线l2交点M在椭圆的内部.进而判断出①正确;②不正确;③直线=1与椭圆=1联立,可得直线=1与椭圆=1无交点.而点M在椭圆的内部,在直线的左下方,即可判断出正误.④根据+=1,0≤≤1,代入化简即可判断出正误.本题考查了椭圆与圆的标准方程位置关系及其性质、方程与不等式的应用,考查了推理能力与计算能力,属于中档题.17.【答案】解:(1)由已知1,a n,S n成等差数列得2a n=1+S n①当n=1时,2a1=1+S1=1+a1,∴a1=1,当n≥2时,2a n-1=1+S n-1②①─②得2a n-2a n-1=a n,∴,∴数列{a n}是以1为首项,2为公比的等比数列,∴ .(2)由a n•b n=1+2na n得,∴==.【解析】(1)利用数列的递推关系式推出数列{a n}是以1为首项,2为公比的等比数列,然后求解通项公式.(2)化简数列的通项公式,利用拆项求和求解即可.本题考查数列的递推关系式的应用,求出通项公式以及数列求和,考查计算能力.18.【答案】(本题满分(12分)证明:(1)因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.又AC⊥BD,PA,AC是平面PAC内的两条相交直线,所以BD⊥平面PAC.而PC⊂平面PAC,所以BD⊥PC.…………(4分)解:(2)设AC和BD相交于点O,连结PO,由(1)知,BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,因为∠PDO=60°,所以∠DPO=30°,得PD=2OD.、(6分)又因为四边形ABCD为等腰梯形,AC⊥BD,所以△AOD,△BOC均为等腰直角三角形.从而梯形ABCD的高为AD+BC=×(4+2)=3,于是梯形ABCD的面积S=×(4+2)×3=9.(9分)在等腰直角三角形AOD中,OD=AD=2,所以PD=2OD=4,PA==4.故四棱锥P-ABCD的体积为V=×S×PA=×9×4=12.…………(12分)【解析】(1)推导出PA⊥BD.AC⊥BD,由此能证明BD⊥平面PAC,从而BD⊥PC.(2)设AC和BD相交于点O,连结PO,推导出BD⊥平面PAC,BD⊥PO.推导出AC⊥BD,从而△AOD,△BOC均为等腰直角三角形.进而梯形ABCD的高为AD+BC=3,由此能求出四棱锥P-ABCD的体积.本题考查线线垂直的证明,考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)根据表中数据,计算,,00,=92+72+32+12=140;∴,,∴y关于x的线性回归方程为;(2)根据表3可知,该月30天中有3天每天亏损2000元,有6天每天亏损1000元,有12天每天收入2000元,有6天每天收入6000元,有3天每天收入8000元,估计小李洗车店2017年11月份每天的平均收入为8000×3)=2400(元).【解析】(1)根据表中数据计算平均数与回归系数,写出线性回归方程;(2)根据表3,计算洗车店2017年11月份每天的平均收入即可.本题考查了线性回归方程与加权平均数的计算问题,是基础题.20.【答案】解:(1)原点到直线的距离为d==,所以(b>0),解得b=1,又,得a=2,所以椭圆C的方程为;(2)当直线l的斜率为0时,直线l:y=0即x轴,λ=|MA|•|MB|=12;当直线l的斜率不为0时,设直线l:x=my+4,A(x1,y1),B(x2,y2),联立方程组,得(m2+4)y2+8my+12=0,由△=64m2-48(m2+4)>0,得m2>12,所以,λ=|MA|•|MB|=•|y1|••|y2|==12(1-),由m2>12,得<<,所以<<.综上可得:<,即∈,.【解析】(1)求得原点到直线的距离,运用弦长公式可得b,再由椭圆的离心率公式可得a,进而得到所求椭圆方程;(2)讨论直线AB的斜率为0,求得|MA|,|MB|,可得λ;当直线l的斜率不为0时,设直线l:x=my+4,A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理和弦长公式,化简整理,结合不等式的性质,即可得到所求范围.本题考查椭圆的方程和性质,主要是离心率的运用,考查方程思想,联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.21.【答案】解:(Ⅰ)函数f(x)的定义域为{x|x≠a}.(1分).(3分)由f'(x)>0,解得x>a+1.由f'(x)<0,解得x<a+1且x≠a.∴f(x)的单调递增区间为(a+1,+∞),单调递减区间为(-∞,a),(a,a+1);(6分)(Ⅱ)由题意可知,a<0,且在(a,0]上的最小值小于等于时,存在实数x∈(a,0],使得不等式成立.(7分)若a+1<0即a<-1时,∴f(x)在(a,0]上的最小值为f(a+1)=e a+1.则,得.(10分)若a+1≥0即a≥-1时,f(x)在(a,0]上单调递减,则f(x)在(a,0]上的最小值为.由得a≤-2(舍).(12分)综上所述,.则a的取值范围是(-∞,-ln2-1]【解析】(1)分式函数使分母不为零即{x|x≠a},先求导数fˊ(x),然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;确定出单调区间.(2)转化成在(a,0]上的最小值小于等于,利用导数求出函数在(a,0]上的最小值,注意讨论.本题考查了函数的定义域、单调性以及利用导数求解恒成立问题,是高考中的热点问题.22.【答案】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程:x-y-1=0,∵曲线C的极坐标方程为ρsinθtanθ=2a(a>0),∴ρ2sin2θ=2aρcosθ(a>0),∴曲线C的普通方程:y2=2ax;(2)∵y2=2ax;∴x≥0,设直线l上点M、N对应的参数分别为t1,t2,(t1>0,t2>0),则|PM|=t1,|PN|=t2,∵|PM|=|MN|,∴|PM|=|PN|,∴t2=2t1,将(t为参数),代入y2=2ax得t2-2(a+2)t+4(a+2)=0,∴t1+t2=2(a+2),t1t2=4(a+2),∵t2=2t1,∴a=.【解析】(1)利用同角的平方关系以及极坐标方程和直角坐标的互化公式求解;(2)结合直线的参数方程中参数的几何意义和二次方程的韦达定理,求解即可.本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.23.【答案】解:因为m>0,所以,,<<,.……………………1分(1)当时,,,<<,…………………………………………………………2分所以由,可得或<<或, (3)分解得<或,………………………………………………………………………………4分故原不等式的解集为<.………………………………………………………………………5分(2)因为f(x)+|t-3|<|t+4|⇔f(x)≤|t+4|-|t-3|,令g(t)=|t+4|-|t-3|,则由题设可得f(x)max≤g(t)max. (6)分由,,<<,,得f(x)max=f(m)=2m.……………………………………7分因为||t+4|-|t-3||≤|(t+4)-(t-3)|=7,所以-7≤g(t)≤7. (8)分故g(t)max=7,从而2m<7,即<,………………………………………………………………9分又已知m>0,故实数m的取值范围是,.…………………………………………………………10分【解析】(1)代入m的值,求出f(x)的分段函数,得到关于x的不等式组,求出不等式的解集即可;(2)问题转化为f(x)max≤g(t)max,分别求出f(x)和g(t)的最大值,得到关于m 的不等式,解出即可.本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届辽宁省沈阳市郊联体高三第一次模拟考试数学(文)试题一、单选题1.已知集合,,若,则的取值范围为A.B.C.D.【答案】B【解析】解一元一次不等式得集合,由,能求出的取值范围.【详解】∵集合,,,∴,∴的取值范围为,故选B.【点睛】本题考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.设a为的虚部,b为的实部,则a+b=()A.B.C.D.0【答案】A【解析】算出和后可得前者的虚部和后者的实部从而得到要求的和.【详解】,故,又,故,所以,选A.【点睛】本题考查复数的运算及复数的概念,属于基本题.3.执行如图所示的程序框图,若输入如下四个函数:①;②;③;④.则输出函数的序号个数为()A.4 B.3 C.2 D.1【答案】D【解析】判断各选项的函数是否有零点后可得正确的选项.【详解】若,则恒成立,故无零点;若,则恒成立,故无零点;若,则或,故无零点;若,令,则,故有零点,综上,有一个函数有零点,故输出函数的序号个数为1,选D.【点睛】本题考查算法中的判断结构,属于基础题.4.函数的图象大致是()A.B.C.D.【答案】B【解析】根据函数在、上的符号及的值可得正确的选项.【详解】当时,,故D不正确,当时,,故A不正确,当时,,故C不正确,综上,选B.【点睛】对于函数的图像问题,我们可先计算函数的定义域,然后研究函数的奇偶性,再研究函数在特殊点的函数值的大小或特殊范围上函数值的符号,必要时可依据导数的符号确定函数的单调区间,结合排除法可得正确的结果.5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.【答案】C【解析】: 取出的2张卡片上的数字之和为奇数的抽取方法是一奇一偶,C C÷C=6.若sin()=,则cos()=()A.B.C.D.【答案】C【解析】令,利用诱导公式和倍角公式可得.【详解】令,则,所以,故选C.【点睛】三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法.7.已知双曲线的渐近线与圆相切,则该双曲线的离心率为()A.B.C.D.【答案】B【解析】由双曲线方程可知,双曲线的一条渐近线为:,即:,由直线与圆的位置关系可得:,整理可得:,则:,据此有:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).8.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,中等级中的五等人与六等人所得黄金数()A.B.C.D.【答案】C【解析】设为第等人的得金数,则为等差数列,利用等差数列的性质可得.【详解】设为第等人的得金数,则为等差数列,由题设可知,,故,而,故选C.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2) 且 ;(3)且为等差数列; (4)为等差数列.9.已知向量44sin ,cos 22x x a ⎛⎫= ⎪⎝⎭v ,向量()1,1b =v ,函数()·f x a b =v v ,则下列说法正确的是( )A .()f x 是奇函数B .()f x 的一条对称轴为直线4x π=C .()f x 的最小正周期为2πD .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数 【答案】D【解析】()·f x a b =vv 2442222213+cos2sin cos sin cos 2sin cos 1sin =22222224x x x x x x x x ⎛⎫=+=+-=- ⎪⎝⎭, 所以()f x 是偶函数, 4x π=不是其对称轴,最小正周期为π,在,42ππ⎛⎫⎪⎝⎭上为减函数,所以选D. 【点睛】函数()sin (0,0)y A x B A ωϕω=++>>的性质 (1) max min =+y A B y A B =-,. (2)周期2.T πω=(3)由 ()ππ2x k k Z ωϕ+=+∈求对称轴 (4)由()ππ2π2π22k x k k Z ωϕ-+≤+≤+∈求增区间;由()π3π2π2π22k x k k Z ωϕ+≤+≤+∈求减区间10.将正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,异面直线与所成的角为A .B .C .D . 【答案】C【解析】分析:将正方形沿对角线折起,可得当三棱锥体积最大时,平面.设是折叠前的位置,连接,可得就算直线与所成角,算出的各边长,得是等边三角形,从而求得直线与所成角的大小.详解:设是正方形对角线、的交点,将正方形沿对角线折起,可得当平面时,点到平面的距离等于,而当与平面不垂直时,点到平面的距离为,且,由此可得当三棱锥体积最大时,平面.设是折叠前的位置,连接,因为,所以就算直线与所成角,设正方形的边长为,因为平面,平面,所以,因为,所以,得是等边三角形,,所以直线与所成角为,故选C.点睛:该题所考查的是有关平面图形的翻折问题,解决该题的关键是要明确翻到什么程度是题中的要求,因为底面是定的,所以高最大时就是三棱锥体积最大时,即翻折成直二面角时满足条件,之后将异面直线所成角转化为平面角,即三角形的内角来解,求出三角形的各边长,从而求得角的大小.11.若平面向量,满足||=|3|=2,则在方向上的投影的最大值为()A.B.C.D.【答案】A【解析】两边平方后得到,求出后可得.【详解】因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故,故,故,故选A.【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.12.设是定义在R上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】根据得到是周期函数且周期为,在坐标平面中画出两个函数的图像,依据它们有三个不同的交点得到,解这个不等式组可得的取值范围.【详解】因为为偶函数,故,所以,故是函数且周期为,因时,,故在上的图像如图所示:因为有3个不同的解,所以的图像与的图像有3个不同的交点,故即,解得,故选B.【点睛】含参数的函数的零点个数问题,可以利用函数的单调性和零点存在定理来判断,如果该函数比较复杂,那么我们可以把该零点个数问题转化为两个熟悉函数图像的交点问题,其中一个函数的图像为动态变化的,另一个函数的图像是确定的.二、填空题13.已知变量x,y满足约束条件,则z=2x+y最小值为______.【答案】【解析】画出不等式组对应的可行域,平移动直线后可得所求的最小值.【详解】不等式组对应的可行域如图所示:当动直线过时目标函数有最小值,由的,故,填.【点睛】二元一次不等式组条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如表示动直线的横截距的三倍,而则表示动点与的连线的斜率.14.如图,在△ABC中,角A,B,C的对边分别为a,b,c,向量=(a,b),=(sinA,cosB),且∥,若点D是△ABC外接圆O的劣弧上的点,AB=3,BC=2,AD=1,则四边形ABCD的面积为______.【答案】【解析】根据向量共线得到,利用正弦定理得到,求出后利用余弦定理算出,再利用面积公式可求得四边形的面积.【详解】因为共线,故,由正弦定理有:,由,故,所以即,,所以,故.在中,,在中,有,故解得,故四边形的面积为,填.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.注意三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量,具体如下:(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.15.若直线是曲线的切线,则实数的值为_______.【答案】1.【解析】分析:设切点为(m,n),求得函数y=ax+lnx的导数,可得切线的斜率,由已知切线的方程可得m,n的方程组,解方程可得a的值.详解:设切点为(m,n),y=ax+lnx的导数为y′=a+,可得切线的斜率为a+=2,又2m﹣1=n=am+lnm,解得m=a=1,故答案为:1点睛:(1)本题考查导数的几何意义和解方程的能力,意在考查学生对这些知识的掌握水平.(2)导数里,遇到有切线的问题,一般都要先找到切点,如果切点不知道,要设切点的坐标再解答.16.已知椭圆=1的左、右焦点分别为,过的直线与过的直线交于点M,设M的坐标为,若,则下列结论序号正确的有______.①+<1②+>1③+<1 ④【答案】①③④【解析】利用得到在圆上,它在椭圆的内部,从而可判断①正确,②错误,再根据原点(即圆心)到直线的距离及它在直线的下方得到③正确.最后根据不等式的性质得到④也是正确的.【详解】,因为,,所以即,在圆上,它在椭圆的内部,故,故①正确,②错误;到直线的距离为,在直线的下方,故圆在其下方即,故③正确;,但不同时成立,故,故④成立,综上,填①③④.【点睛】求动点的轨迹方程,一般有如下几种方法:(1)几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;(2)动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;(3)参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.三、解答题17.已知数列的前n项和为,且1,,成等差数列.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.【答案】(1);(2)【解析】(1)利用数列的递推关系式推出数列是以1为首项,2为公比的等比数列,然后求解通项公式.(2)化简数列的通项公式,利用分组求和法求和即可.【详解】(1)由已知1,,成等差数列得①,当时,,∴,当时,②①─②得即,因,所以,∴,∴数列是以1为首项,2为公比的等比数列,∴.(2)由得,所以.【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,设AC∩BD=O,且∠PDO=60°,求四棱锥P-ABCD的体积.【答案】(1)见解析;(2)12【解析】(1)可证平面,从而得到.(2)连结,根据可得,再根据均为等腰直角三角形得到梯形的高和的长度,从而得到的长度后可利用体积公式计算四棱锥的体积.【详解】证明:(1)因为平面,平面,所以.又,是平面内的两条相交直线,所以平面.而平面,所以.(2)连结,由(1)知,平面,平面知,.在中,因为,所以,得.又因为四边形为等腰梯形,,所以均为等腰直角三角形.从而梯形的高为,于是梯形面积.在等腰直角三角形中,,所以,.故四棱锥的体积为.【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.棱锥体积的计算关键是几何体高的确定,必要时可把复杂几何体分割成若干个简单的三棱锥,它们的体积容易计算.19.某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度(单位:cm)的情况如表1:9007003001000.5 3.5 6.59.5该省某市2017年11月份AQI指数频数分布如表2:频数(天)361263(1)设,若与之间是线性关系,试根据表1的数据求出关于的线性回归方程;(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:日均收入(元)-2000-1000200060008000根据表3估计小李的洗车店2017年11月份每天的平均收入.附参考公式:,其中,.【答案】(1);(2)2400【解析】试题分析:(1)计算和,根据题中公式计算和,从而得解;(2)由AQI指数频数分布可知亏损和盈利的天数,进而利用收入乘以天数求和后求均值即可. 试题解析:(1),,,.∴,,∴关于的线性回归方程为.(2)根据表3可知,该月30天中有3天每天亏损2000元,有6天每天亏损1000元,有12天每天收入2000元,有6天每天收入6000元,有3天每天收入8000元,估计小李洗车店2017年11月份每天的平均收入为 (元).20.已知椭圆C : 22221x y a b+=(0a b >> )的离心率32e =,直线310x -= 被以椭圆C 的3. (1)求椭圆C 的方程;(2)过点()40M , 的直线l 交椭圆于A , B 两个不同的点,且MA MB λ=⋅ ,求λ 的取值范围.【答案】(1) 2214x y +=;(2) 39124⎛⎤⎥⎝⎦,. 【解析】试题分析:(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,12MA MB λ=⋅=,当直线l 的斜率不为0时,设直线l 在y 轴上的截距式方程为4x my =+, ()11A x y ,, ()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理可知231214MA MB m λ⎛⎫=⋅=-⎪+⎝⎭,据此可知39124λ<<.综上可得39124λ⎛⎤∈⎥⎝⎦,. 试题解析:(1)因为原点到直线310x -=的距离为12, 所以2221322b ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,12MA MB λ=⋅=,当直线l 的斜率不为0时,设直线l : 4x my =+, ()11A x y ,, ()22B x y ,,联立方程组224{ 14x my x y =++=,得()2248120m y my +++=,由()22=644840m m ∆-+>,得212m >, 所以122124y y m =+,()222122212131112144m MA MB m y m y m m λ+⎛⎫=⋅=+⋅+==-⎪++⎝⎭, 由212m >,得2330416m <<+,所以39124λ<<.综上可得:39124λ<≤,即39124λ⎛⎤∈ ⎥⎝⎦,. 点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.已知:函数(其中常数).(Ⅰ)求函数的定义域及单调区间;(Ⅱ)若存在实数,使得不等式成立,求a 的取值范围 【答案】(1)的单调递增区间为,单调递减区间为,(2)【解析】(1)函数的定义域为………………………………………………1分……………………………………………3分由,解得,由,解得且的单调递增区间为,单调递减区间为和………5分(2)由题意可知,当且仅当,且在上的最小值小于或等于时,存在实数,使得不等式成立…………………………………6分若即时0 +单减极小值单增在上的最小值为,则,得………9分若,即时,在上单调递减,则在上的最小值为,由,得(舍)………………………………………11分综上所述,……………………………………………………………………12分22.已知平面直角坐标系中,过点的直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N .(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若,求实数a的值.【答案】(1)直线方程为 x-y-1=0,(2) .【解析】分析:(1)先根据加减消元得直线的普通方程;根据将曲线的极坐标方程化为直角坐标方程,(2)先将直线参数方程代入曲线的直角坐标方程,利用参数几何意义以及韦达定理得实数的值.详解:(1)∵(为参数),∴直线的普通方程为.∵,∴,由得曲线的直角坐标方程为.(2)∵,∴,设直线上的点对应的参数分别是,则,∵,∴,∴,将,代入,得,∴,又∵,∴.点睛:涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.23.已知函数(1)当时,求不等式的解集;(2)对于任意的实数,存在实数,使得不等式成立,求实数的取值范围。

相关文档
最新文档