3.1放大电路的基础知识
放大电路基础知识
第一节 半导体二极管
2.最大反向工作电压URM 最大反向工作电压URM是指二极管工作时两端所允许加的最
大反向电压。为保证二极管安全工作、不被击穿,通常URM 约为反向击穿电压UR的一半。 3.反向电流 反向电流是指二极管加最高反向工作电压时的反向电流。反 向电流越小,管子的单向导电性能越好。常温下,硅管的反 向电流一般只有几微安;锗管的反向电流较大,一般在几十 至几百微安之间。 4.最高工作频率
上-页 下-页 返回
第二节 半导体三极管
由图1-14所示的输出特性曲线可以看出如下三点特性。 曲线的起始部分较陡,且不同的IB曲线的上升部分几乎重合,
表明当UCE较小时,只要UCE略有增大, IC就迅速增加,但 IB几乎不受IC的影响。 当UCE较大(例如大于1 V)后,曲线比较平坦。 曲线是非线性的。由于三极管的输入、输出特性曲线都是非 线性的,所以它是非线性器件。 六、晶体管的主要参数 1.穿透电流 穿透电流ICEO是指基极开路时集一射极之间的电流。
在数字电路中,三极管作为开关元件,主要工作在截止状态 或饱和状态,并在截止状态和饱和状态之间经过短促的放大 状态进行快速转换和过渡。
上-页 下-页 返回
第二节 半导体三极管
(1)截止状态 当开关S接位置1时,三极管发射结电压 UBE<UT,相当于开关断开状态,等效电路如图1-11 (b) 所示。
是具有电流放大作用。三极管按其结构不同,分为NPN型和 PNP型两种。相应的结构示意图及电路符号如图1-8所示。 在制作三极管时,其内部的结构特点是: 发射区掺杂浓度高; 基区很薄,且掺杂浓度低; 集电结面积大于发射结面积。 以上特点是三极管实现放大作用的内部条件。 另外,三极管按其所用半导体材料不同,分为硅管和锗管; 按用途不同,分为放大管、开关管和功率管;按工作频率不 同,分为低频管和高频管;按耗散功率大小不同,分为小功
第三章 基本放大电路
输出
话筒
放
大
器
喇叭
应用举例
直 流 电 源
基本放大电路
输入 放大器 输出
1、定义:放大电路的目的是将微弱的变化信 号不失真的放大成较大的信号。。
2、组成:三极管、场效应管、电阻、电容、电感、 变压器等。 3、特点:
①输出信号的功率大于输入信号的功率;
②输出信号的波形与输入信号的波形相同。
基本放大电路
RC
ui
T
C2
RL
基本放大电路
3.2.2 放大器中电流电压符号使用规定含义 “小大” uBE—小写字母,大写下标,表示交、直混合量。 “大大” UBE — 大写字母,大写下标,表示直 流量。 “小小” ube—小写字母,小写下标,表示交流分量。
“大小” Ube—大写字母,小写下标,表示交流分量有效值。 uA
电路改进:采用单电源供电 +VCC RC C1 T
可以省去
C2
RB VBB
基本放大电路
+VCC RB C1 T RC C2
单电源供电电路
基本放大电路
(1)电路的简化
C1
ui (2)电路的简化画法
VCC
RB
C1
只用一个电源,减 少电源数。
T
C2
RL
RB
RC
VCC
uo
uo
不画电源符号, 只写出电源正 极对地的电位。
T
I CQ
U CEQ
(b) 首先画出放大电路的交流通路
基本放大电路
VCC
交流通路
放大电路基础
3.3 放大电路的分析方法 3.3.1 放大电路的静态和动态
(1) 静态
当放大电路没有交流输入信号时,电路中各处的电 压和电流都是不变的直流,称为“直流工作状态”或 “静态”。 分析放大电路的“静态”,需要绘出电路的“直流 通路 ( 道 )” ,此时保留直流电源,去除交流输入信号 ( 交流电压源短路、交流电流源开路 ) ,耦合电容作开 路处理。
(2) 图解分析法
用图解法进行动态分析时需要进行的准备工作: 要有BJT管的输入和输出特性曲线; 对电路进行静态分析,在输出特性曲线
上确定静态工作点Q,并过Q点作出交流负 载线;
作出输入信号vi的波形图。
直线段 Q'Q" 是动态时工作点移动 的轨迹,称为动态工作范围
iC/mA
4 3 2 1 0
1 共射极放大电路的直流通路
固定偏流电路 和 VBB配合,在直 流静态时供给三极 管合适的基极电流
基极电流I B (常称作“偏流” ):
VBB VBE VBB 定值 IB = Rb Rb
(2) 动态
当放大电路有交流输入信号时,电路中各处 的电压和电流处于变动状态,称为“交流工作 状态”或“动态”。
放大电路 的工作点 进入截止 区,引起 截止失真 ( 对 NPN 管 输出波形 出现削顶 现象),其 原因是静 态工作点 选得过低
(2) 静态工作点的选取
如果输入信号的幅度较小,可 将静态工作点设低,以减少直 流电源功率损耗(此时iC低)。
设交流负载线分 别与饱和区、截 止区的分界线交 于 Q 1 、 Q 2 点,将 静态工作点选在 Q 1 、 Q 2 点的中间, 这样可以得到最 大不失真输出, 但这也需要输入 信号幅度较大, 以使iB电流达到一 定 幅 度
模拟电子技术项目教程 3.1差动放大电路
电路。
31
3.1.1 差动放大电路
5. 共模抑制比
为了更好地描述差动放大电路放大差模、抑制共模的 特性,要看差动放大电路对这两种信号放大倍数的比值。 这个比值越大,则放大电路抑制温漂的能力就越强,这个 比值被称之为共模抑制比,定义为:
KCMR
29
3.1.1 差动放大电路
4.差模信号与共模信号的概念
在理想情况下(电路完全对称的情况下),
0
uo Aud uid Auc uic
uo Aud (ui1 ui2 )
可见,理想的差动放大电路仅对差模信号具有放大能力 ,对共模信号不予放大。
但是实际情况是电路不可能绝对对称,实际的输出信
RE
–VEE
24
3.1.1 差动放大电路
4.差模信号与共模信号的概念
2)共模输入方式:在差分放大电路的两个输入端分别输入 大小相等、极性相同的信号,即ui1=ui2。
所输入的信号称 为共模信号,用 uic表示:
+ vi1
VCC
RC
RC
RL
+ vo
T1
T2
+ vi2
RE
-VEE
25
3.1.1 差动放大电路
A. AUD不变,AUC增大
B. AUD减小,AUC不变
C. AUD减小,AUC增大
D. AUD增大,AUC减小
12.差动倍 B.为双端输入的1/2 C.不变 D.不定
34
3.1.2 差动放大电路的输入、输出方式
差动放大器有两个对地的输入端和两个对地的输出 端,所以信号的输入、输出共有四种输入输出方式: 1. 双端输入、双端输出(双入双出) 2. 双端输入、单端输出(双入单出) 3. 单端输入、双端输出(单入双出) 4. 单端输入、单端输出(单入单出)
差动放大电路与集成运算放大器基础知识讲解
(2)电路采用正负双电源供电。
图3.1 典型基本差动放大电路
2.差动放大电路抑制零点漂移的原理
由于电路的对称性,温度的变化对VT1、 VT2两管组成的左右两个放大电路的影响 是一致的,相当于给两个放大电路同时加 入了大小和极性完全相同的输入信号。因 此,在电路完全对称的情况下,两管的集 电极电位始终相同,差动放大电路的输出 为零,不会出现普通直接耦合放大电路中 的漂移电压,可见,差动放大电路利用电 路对称性抑制了零点漂移现象。
1.单端输入
单端输入和双端输入并没有本质的区 别,可以直接利用双端输入时的公式进行 计算。
2.单端输出
单端输出的输出信号可以取自 VT1或 VT2的集电极。
(1)单端输出时的差模电压放大倍数Aud1 (2)单端输出时的共模电压放大倍数Auc1 (3)单端输出时的共模抑制比KCMR (4)单端输出时差动放大电路的输出电阻rod
输入失调电流温漂ΔIIO/ΔT 6.共模抑制比KCMR 7.差模输入电阻rid 8.输出电阻rod
3.2.3 集成运算放大器使用 中的几个具体问题
1.集成运放的选择 (1)信号源的性质 (2)负载的性质 (3)精度要求 (4)环境条件
2.集成运放参数的测试
以μA741为例,其管脚排列如图3.14(a) 所示。其中2脚为反相输入端,3脚为同相 输入端,7脚接正电源15V,4脚接负电源15V,6脚为输出端,1脚和5脚之间应接调 零电位器。μA741的开环电压增益Aud约为 94dB(5×104倍)。
3.1.2 差动放大电路的基本形式
差动放大电路是一种具有两个输入端且 电路结构对称的放大电路,其基本特点是只 有两个输入端的输入信号间有差值时才能进 行放大,即差动放大电路放大的是两个输入 信号的差,所以称为差动放大电路。
放大电路基本知识
放大电路基本知识目录1. 基本概念 (2)1.1 电压放大 (3)1.2 电流放大 (4)1.3 电阻放大 (5)2. 常见的放大器类型 (7)2.1 晶体管放大器 (8)2.1.1 NPN晶体管放大器 (10)2.1.2 PNP晶体管放大器 (11)2.2 场效应管放大器 (12)2.2.1 增强型场效应管 (14)2.2.2 depletion型场效应管 (15)2.3 运算放大器 (17)3. 放大器电路分析 (18)3.1 直流分析 (20)3.2 交流分析 (21)3.3 频率响应 (23)3.4 稳定性和可靠性 (24)4. 放大电路应用 (25)4.1 音频放大 (26)4.2 无线通信 (28)4.3 数据处理 (29)4.4 图像处理 (31)5. 放大电路设计 (32)5.1 选型元器件 (33)5.2 电路仿真 (38)5.3 调试和测试 (39)1. 基本概念放大电路的核心在于放大因子,也称为电压放大倍数或者增益。
放大因子的定义是输出信号幅度与输入信号幅度的比值,用数学公式表示为:放大电路中,信号从电路的一个端部引入,称为“输入”(通常标记为V_in);经放大后,信号将从另一端输出,称为“输出”(通常标记为V_out)。
直流通路:是指在放大电路中,当所有元件的瞬时值保持为零时电流的流动路径。
在直流通路中,直流电源和直流电阻构成了电路的主干。
交流通路:是指当 circuit 中含有电容或电感时,信号激励下电荷或磁链的流动路径。
在交流通路中,交流信号源和周边电容、电感共同构成电路的核心。
线性放大:指的是放大电路在一定的输入范围内(通常是增益系数近似恒定的范围),输出与输入信号成正比。
这适用于简单的电子工作中,如收音机、传感器等。
非线性放大:是指放大电路的输出和输入不再成正比关系,存在显著的非线性失真。
非线性放大电路被应用于手机、非线性失真必须被当作优势利用的应用中,如电子振荡器、调制器等。
基本放大电路知识点总结
基本放大电路知识点总结一、放大电路的概念与分类1. 放大电路的定义放大电路是一种能够将输入信号放大的电路,通过控制放大倍数来增加信号的幅度,以便更好地进行后续处理或传输。
2. 放大电路的分类根据放大器的工作原理和应用场景,放大电路可以分为以下几类: - 模拟放大电路:用于增加模拟信号的幅度,常见于音频、通讯等领域。
- 数字放大电路:用于增加数字信号的幅度,常见于数字通信、数据处理等领域。
- 功率放大电路:用于增加电力信号的幅度,常见于音响、无线电等领域。
二、放大器的基本组成部分1. 输入端输入端接收输入信号,并将其传递给放大器的其他部分进行处理。
输入端通常包括耦合电容、阻抗匹配电路等。
2. 放大器核心部分放大器核心部分是放大器的主要放大部分,根据不同的工作原理,可以分为三种常见的放大器结构: - 电压放大器:通过增大输入信号的电压来实现放大。
- 电流放大器:通过增大输入信号的电流来实现放大。
- 转移放大器:通过改变输入信号的形式(如电压-电流、电压-电压等)来实现放大。
3. 输出端输出端将经过放大处理后的信号输出给下一级电路或外部设备。
输出端通常包括耦合电容、输出阻抗匹配电路等。
三、放大电路的基本原理1. 放大增益放大增益是衡量放大器放大能力的指标,其定义为输出信号幅度与输入信号幅度之比。
放大增益可以通过改变电路元件的参数来调节,如电阻、电容、电感等。
2. 频率响应频率响应描述了放大电路在不同频率下对输入信号的放大能力。
通常通过幅频特性曲线来表示放大器的频率响应情况,其中,通频带为幅度降低3dB的频率范围。
3. 噪声噪声是放大器中不可避免的因素,它会对输出信号产生干扰并引入误差。
常见的噪声有热噪声、互模干扰噪声等。
在设计放大电路时,需要在放大增益和噪声之间进行权衡。
四、常见的放大电路类型与应用1. 乙类放大电路乙类放大电路常用于功率放大领域,特点是高效率、大功率输出。
常见的乙类放大电路有B类、C类等。
3.1 多级放大电路的耦合方式
共射放大电路、共集放大电路、共基放大电路
放大倍数:共射放大电路放大倍数较大 缺点:输入电阻不够大,信号采集能力差 输出电阻不够小,带负载能力差 输入电阻最高:共集放大电路 输出电阻最低:共集放大电路
∴集中各种电路的优点在一个电路中,采用共集放大 电路做输入输出级,共射放大电路做中间级。
+Vcc
+Vcc
R3 R1
R5
_+
+
+
ui
c1
R2
T1
uo
R4
+ c3
_
_
+
C2
ui
_
T2
+ c4
+
R6
RL uo
_
典型的Q点稳定电路
共集放大电路
两级阻容耦合放大电路 C1 C2 C4的作用?
一、优点: 1)静态工作点
由于电容隔直流 ,所以它们的直流通路各不相通, 静态工作点相互独立。
二、缺点:
1)有大容量的电容,不便于集成。 2)低频特性差
R3
R5
R1
+Vcc
_+
c2
+ c1
+ c4
+
ui
R2 R4
+ c3
R6
_
RL uo
_
解:(1)求解Q点: 阻容耦合电路,Q点相互独立
第一级:典型的Q点稳定电路,(1+β)Re>Rb1//Rb2
U BQ1
R2 R1 R2
VCC
5 5 15
12
3V
I EQ1
U BQ
RR3.1-3.3(放大电路基础)
© Copyright by KouGe, Nanjing University of Sci. & Tech.
• 在坐标平面上面出对应的iB、ic和vCE 的波形图,如曲线②、 ③、④所示。vCE 中的交流量vce的波形就是输出电压vo的波 形。
© Copyright by KouGe, Nanjing University of Sci. & Tech.
© Copyright by KouGe, Nanjing University of Sci. & Tech.
固定偏流电路
VBB − VBE VBB IB = ≈ Rb Rb
偏流IB 决定于VBB 和Rb 的大小,VBB 和Rb 一经确定 后,偏流IB就是固定的,称为固定偏流电路。Rb又 称为基极偏置电阻。
© Copyright by KouGe, Nanjing University of Sci. & Tech.
Hale Waihona Puke 3.2 共发射极放大电路© Copyright by KouGe, Nanjing University of Sci. & Tech.
共射极放大电路的简化电 路(一般选取VCC=VBB) 及习惯画法
© Copyright by KouGe, Nanjing University of Sci. & Tech.
共射极放大电路工作原理
• 输入电压vi从电路的A、 O两点(输入端)输入, 输出电压vo由B、O两 点(称输出端)输出。 • 输入端的交流电压vi通 过电容Cb1加到BJT的 发射结,引起基极电 流iB相应的变化。iB的 变化使集电极电流iC随 之变化。
© Copyright by KouGe, Nanjing University of Sci. & Tech.
放大电路基础知识
•画出直流通路:标出IBQ,ICQ,UBEQ,UCEQ •利用输入特性曲线来确定IBEQ和UBEQ •利用输出特性曲线来确定ICQ和 直流负载线:UCE=EC-ICRC UCEQ 只给出输出特性曲线来确定UCEQ和ICQ
•估算IBQ及UBEQ •利用输出特性曲线来确定ICQ,UCEQ
动态分析
常用两个H参数等效电路
rbe估算:可从输入特性曲线上Q点附近求出(但误差较大)
近似计算公式:rbe=△UBE/△IB=rbb+(1+β)re
26mv 26mv 300 I BQ I BQ 基本放大电路性能指标分析 rBE 300 1
rbb——基区半导体体电阻 re——发射区体电阻;
故AI<1
结论:A.共基电路是同相放大器UO、UI同相 B.电压其有放大,电流不具有放大作用 C.输入电阻小可作为宽频带放大器, 频率响应带(工作频率范围宽)
三种电路比较
AV AI RI
<1
RO UO与VI
小 大 同相
应用
共基 放大
频率特性好应用于宽带 放大 共集 <1 放大 大 小 同相 实现阻抗变换的缓冲级,带 负载能力的输出级 共射 放大 放大 中 中 反相多级放大的输入级 多级放大
hoe
故微变等效参数为:
u BE hie rbe iB hfe iC u 常数 CE iB
简化H参数的等效电路 • 若RCE≥10RL 可用两参数简化等效:IC =hfeIB IC=β •若RCE与RL 可比拟:用三个参数的简化等效
3) 考虑信号源电阻碍RS时的电压的大倍数:AVS =UO/US IB=RB/(RB+rBE).IS , IS=(RB+rBE)/RB.IB 一般地RB》rBE,则IS =IB UI=IB(RS+rBE) US=IB(RS+rBE) AUS=-β IBRL/(IB(RS+rBE))=-β RL/(RS+rBE)
第三章 半导体三极管及其放大电路基础3.1
IB/mA -0.001 IC/mA 0.001 IE/mA 0
0 0.01 0.01
0.01 0.56 0.57
0.02 1.14 1.16
0.03 1.74 1.77
0.04 2.33 2.37
0.05 2.91 2.96
I B IC I E , IC I E
IC IB
U CE
(b ) 共 发 射 极
(c) 共 集 电 极
图3 -
三极管的三种组态
下面以共发射极组态为例 分析:
1)NPN型晶体管
2)依据外部条件建立电路:
发射结(BE结)须正向偏置→ 输入回路(基极回路) 集电结(BC结)须反向偏置→ 输出回路(集电极回路) 发射极接地(原因) 3)VCC(EC)
>VBB(EB)
第三章
半导体三极管及其放大电路 基础
3.1 半导体三极管
3.2 基本共射极放大电路
3.3 放大电路的静态分析 3.4 放大电路的动态分析 3.5 静态工作点的稳定 3.6 共集与共基极放大电路
3.1 半导体三极管
晶体管
半导体二极管(第二章) 双极型半导体三极管(第三章) 半导体三极管 单极型半导体三极管(第四章)
发射极的箭头代表发射极电流的实际方向。
常用的半导体材料有硅和锗, 因此共有四种系列三极 管类型。它们对应的型号分别为: 3A(锗PNP)、3B(锗NPN)、 3C(硅PNP)、3D(硅NPN) 。
围绕内部结构阐述晶体管的电流放大作用:
二、三极管中的电流分配(内部载流子的传输过程)* 1.三极管放大的两个条件: 1)内部条件:三个区(发射区、基区和集电区)的掺杂浓度 与厚薄均不一样。两个PN结的结面积不同。从外表上看两个N
第3章 基本放大电路
第3章 基本放大电路内容提要:本章介绍双极型三极管组成的基本放大电路的工作原理、直流和交流分析方法,放大电路的技术指标,介绍三种组态放大电路的基本特性。
以及场效应三极管放大电路的构成和工作原理等。
3.1 放大电路的基本概念三极管具有电流放大作用,如何使用三极管构成一个电路,实现对输入信号的放大?本节就来讨论这一问题。
基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。
它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。
本章基本放大电路的知识是进一步学习电子技术的重要基础。
本书中双极型半导体三极管简称三极管,场效应半导体三极管简称场效应管。
3.1.1 放大的概念基本放大电路一般是指由一个三极管或场效应管组成的放大电路。
从电路的角度来看,可以将基本放大电路看成一个双端口网络。
放大的作用体现在如下方面:1.放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。
2.输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。
放大电路的结构示意图见图3-1-1。
图3-1-1 放大电路结构示意图3.1.2 基本放大电路的组成及工作原理3.1.2.1 共射组态基本放大电路的组成共射组态基本放大电路如图3-1-2所示。
在该电路中,输入信号加在加在基极和发射极之间,耦合电容器C 1和C e 视为对交流信号短路。
输出信号从集电极对地取出,经耦合电容器C 2隔除直流量,仅将交流信号加到负载电阻R L 之上。
放大电路的共射组态实际上是指放大电路中的三极管是共射组态。
o 图3-1-2 共射组态交流基本放大电路共射组态基本放大电路中各元件的作用三极管VT ——起放大作用。
在输入信号的控制之下,通过三极管将直流电源的能量,转换为输出信号的能量。
放大电路基础知识
CE
CC C C
CEQ c C
CEQ
ce
(1)
(2) (3) (4)
u u i R
o
ce
cc
(5)
三. 放大电路的失真现象分析
所谓失真,是指输出信号的波形与输入信号的波形不 成比例的现象。
1. 演示电路如图7所示。 2. (1)通过信号发生器产生一频率为1000Hz的正弦波 信号ui,输入放大电路,调整ui的幅值和电位器RP,通过示 波器在输出端可观察到最大不失真输出信号的波形,如 图8(a)所示。
3. 放大电路中电压、 电流的方向及符号规定 1) 电压、 2)电压、
IB
O
t
(a)
ib Ibm
O
(b)
iB
IB t
O
t (c)
图3 (a)直流分量;(b)交流分量;(c)总变化量
(1)直流分量。如图3(a)所示波形,用大写字母和大写下 标表示。如IB表示基极的直流电流。
(2)交流分量。如图3(b)所示波形,用小写字母和小写下 标表示。如ib表示基极的交流电流。
2)
所谓交流通路,是指在信号源ui的作用下,只有交流电流 所流过的路径。画交流通路时,放大电路中的耦合电容短 路;由于直流电源UCC的内阻很小,对交流变化量几乎不
起作用,故可看作短路。图2所对应的交流通路如图4(b)
所示。
+UCC
ic
c
+
Rb
Rc
V
b ib
+
+
+
uce
-
ui
Rb
ube
ie
uo
Rc
RL
(b)
(c)
放大电路的基本概念汇总
3.1.1 放大的概念基本放大电路一般是指由一个三极管组成的三种基本组态放大电路。
1. 放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。
2. 输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。
放大电路的结构示意图见图3-23。
图3-23 放大概念示意图 3.1.2 放大电路的主要技术指标(1) 放大倍数输出信号的电压和电流幅度得到了放大,所以输出功率也会有所放大。
对放大电路而言有电压放大倍数、电流放大倍数和功率放大倍数,它们通常都是按正弦量定义的。
放大倍数定义式中各有关量如图3-24所示。
图3-24 放大倍数的定义 电压放大倍数定义为)01.03(/=.i.o .V V A v电流放大倍数定义为 )02.03(/=.i .o .I I A i功率放大倍数定义为 )03.03(//=i ..i .o .o i o I V I V P P A p(2) 输入电阻R i输入电阻是表明放大电路从信号源吸取电流大小的参数,R i 大,放大电路从信号源吸取的电流则小,反之则大。
R i 的定义见图3-25和式(03.04))04.03(/=.i .i i I V R图 03.03 输入电阻的定义 (3) 输出电阻R o输出电阻是表明放大电路带负载的能力,R o 大,表明放大电路带负载的能力差,反之则强。
R o 的定义见图3-26和式(03.05)。
)05.03(/=.o.o o I V R ∆∆图(a)是从输出端加假想电源求R o ,图(b)是通过放大电路负载特性曲线求R o 。
(a) 从输出端求V o ' (b) 从负载特性曲线求图3-26 输出电阻的定义 根据图3-26(b),在带R L 时,测得o o , I V ,开路时输出为oV ' 。
根据式(03.05)有 )06.03(]1)/[( /)(/)(/L o o o L o o o o o o o o R V V V R V V I V V I V R -=-'=-'=∆∆=注意:放大倍数、输入电阻、输出电阻通常都是在正弦信号下的交流参数,只有在放大电路处于放大状态且输出不失真的条件下才有意义。
基本放大电路
下限频率
BW fH fL
上限频率
5、最大不失真输出电压Vom:当输入电压再增大就会使输出
波形产生非线性失真时的输出电压
6、最大输出功率Pom和效率η:功率放大电路的参数
3.2 共发射极放大电路 3.2.1 共发射极组态基本放大电路的构成
C1
T
RS vi
vS
输出电阻的定义:
vo
=
RL Ro RL
vo
Ro
=
vo io
RL ,
vs 0
Ro
=
vo vo
1 RL
输出电阻是表明放大电路带负载能力的,Ro越小,
放大电路带负载的能力越强,反之则差。
将输出等效成有内阻的电压源,内阻就是输 出电阻。
4、通频带
衡量放大电路对不同频率信号的适应能力。 由于电容、电感及放大管P放大倍数数值下降,并产生相移。
2. 在输出特性曲线上确定两个特殊点,即可
画出直流负载线。
(VCC ,0) ,(0, VCC /Rc )
3. 在输入回路列方程式
I BQ
Vcc
VBEQ Rb
,确定IBQ。
4. 由直流负载线与iB=IBQ所对应的输出特性曲线的交点
确定ICQ和VCEQ。
3.3.4 放大电路的动态分析
动态分析有图解法和微变等效电路法两种。 图解法 微变等效电路法
VCEQ+ICQR’L
2、交流工作状态的图解分析
用图解法进行动态分析时需要进行的准备工作: 要有BJT管的输入和输出特性曲线; 对电路进行静态分析,在输出特性曲线上确定静态 工作点Q,并过Q点作出交流负载线; 作出输入信号vi的波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 放大电路的基础知识
放大的概念
3.1.1 放大电路的组成
3.1.2 放大电路的主要性能指标
放大的概念
放大电路的作用:不失真地放大电信号。
按用途分类:电压放大器、电流放大器、互阻放大器、
互导放大器、功率放大器。
放大电路放大的本质:能量的控制与转换,
放大电路本体
有源器件
直流偏置电路
信号耦合电路能量控制与转换
合适稳定的Q点
有效传递信号
放大电路本体
有源器件
直流偏置电路
信号耦合电路
直流电源、信号源和负载也会
对放大电路的工作和性能产生
影响。
放大电路的组成原则:
直流通路正常,能保证有源器件工作于放大区;
交流通路正常,能保证信号加到有源器件的输入端,
并能将放大后的信号耦合至负载。
3.1.2 放大电路的主要性能指标
一、放大电路的二端对网络表示
二、放大电路的主要性能指标
1. 放大倍数
输出信号与输入信号之比。
表示放大电路的放大能力
五种不同类型放大器及其放大倍数
(dB) = 20lg |A u|
电压增益A
u
(dB) = 20lg |A i|
电流增益A
i
(dB) = 10lg A p
功率增益A
p
2. 输入电阻
放大电路输入端所呈现的等效电阻
i
i i i u R =
⏹不同场合对R i 要求不同:
恒压输入R i >> R S 恒流输入R i << R S 最大功率输入R i =R S
相同u s 输入时,R i 越大,u i 越大。
i
S i
s
i R R R u u +=⏹
3. 输出电阻
放大电路输出端所等效的信号源内阻
R
o
反映了放大电
路带负载能力。
R
o
越小,带负载能力越强。
不同场合对R
o 要求不同:恒压输出时,R
o
越小越好
恒流输出时,R
o
越大越好。
输出电阻的计算
0L s o ∞===
R u i u R L
o
ot
o )1(R u u R -=⏹由电路计算
⏹由测量计算
测出空载时的输出电压u ot 测出有载时的输出电压u o
4. 通频带与频率失真
A u ( f ) —幅频特性
ϕ( f ) —相频特性
⏹幅频特性和相频特性
)
( )()j (f f A f A u u ϕ∠=f
A u (f )O
f
O
)
(f ϕA u m
2
/m u A f L f H
下限频率
上限频率中频段低频段高频段
BW 0.7
⏹通频带宽度
BW 0.7 = f H –f L
由于放大电路对不同频率的信号放大倍数不同或产生相移不同而引起的失真称为频率失真,由于它是由线性的电抗元件引起,故也称线性失真。
f
A u( f )
O
f
O
)
(f
由于放大电路对不同频率的信号放大倍数不同或产生相移不同而引起的失真称为频率失真,由于它是由线性的电抗元件引起,故也称线性失真。
线性失真的特征:不产生新的频率分量。
非线性失真特征:会产生新的频率分量。
饱和失真、截止失真是非线性失真。
放大电路通频带应不小于输入信号的频带,否则会引起频率失真某放大电路f
L
=50Hz,f
H
=2kHz,试问下列两种情况下,输出是否会产生频率失真:(1)输入5kHz单频正弦波;(2)输入
100Hz~4kHz的音频信号。
结论:(1)不会;(2)会
讨
论
5. 最大输出功率和效率
效率 =最大输出功率P
om 直流提供功率P
D
最大输出功率P
om :在输出信号基本不失真的情况下,能够向负载提供的最大信号功率。
作业:
3.1 复习要点
主要要求:
1.理解放大的概念和放大电路的组成。
2.掌握放大电路的主要性能指标。
重点:
放大电路主要性能指标的含义与要求。