天线下倾角与方向图的关系

合集下载

天线下倾角调测[精华]

天线下倾角调测[精华]

下倾角一般指天线向下和水平面之间的角度.一个合适的下倾角能加强本覆盖区域的信号强度,同时也能减少小区之间的信号盲区或弱区,也不会导致小区与小区之间交叉覆盖、相邻的关系混乱,一个合理的下倾角是保证整个移动通信网络质量的基本保证,所以目前天线下倾角的调整是我们网络优化中的一个非常重要的事情。

一般的天线下倾角共分为机械下倾角跟电子下倾角,机械下倾角是通过人工来调整天线物理下倾来实现,电子下倾角就是通过电子仪器来调整天线的阵子来实现。

在这里我再明确一下,就是我们在施工过程中必须严格按照设计图纸来调整下倾角,机械下倾角和电子下倾角设计是多少度就应该是多少度,包括在我们在验收文档里面,下倾角是不允许有偏差的,就算相差一度也是不行的!根据我们目前的设备,我主要就讲解下京信天线和安德鲁天线的电调仪使用方式。

目前我们使用的安德鲁电调仪仪再联接到天线来调整天线的电子下倾角,联接天线后,打开软件,点击面板上“Find Dcvices”按钮软件开始执行新的搜索任务,进度条显示搜索进程,界面下方状态栏显示伴随进程正在搜索的内容完成搜索后弹出对话框,检查已搜索出的设备,如果正确点击“YES”,反之点击“NO”。

经过搜索发现天线后,界面内会弹出一个对话框,显示目前发现驱动器的数量。

同时,软件界面内会显示出已搜索到的天线驱动器的基本信息,其数据显示结构。

点击选中需要配置的驱动器,在主界面下方找到并点击功能键“Edit Selected”进入编辑选择窗口。

在编辑窗口内填写所有的信息后,点击“Configure”,跳出对话框询问点击“YES”,再次跳出对话框点击’“OK”。

点击选中需要配置的驱动器,在主界面下方找到并点击功能键“Move Selected”进入编辑选择窗口。

在编辑窗口内填写所有的信息后,点击“Activate”,跳出对话框询问是否激活,点击“OK”。

批量修改天线电倾角的操作点击选中需要配置的驱动器,在主界面下方找到并点击功能键“Move Sector”进入编辑修改窗口。

天线方向角及下倾角测试方法

天线方向角及下倾角测试方法

天线方向角及下倾角测试天线方向角测试方法:使用仪器:指南针型号:DQY-1型指南针的工作环境要求:1.在使用指南针时应距离金属物体、金属管道、导线等2米以上,以免指南针自身磁场受其他磁场干扰,无法获取准确数据。

2.应在晴好天气使用,避免空气中过多的带电粒子对指南针造成影响。

3.使用时应在远离强磁场,如变压器、旋转电机、高压走廊等。

4.应避免在太阳黑子活跃期内使用,由于该期间地球磁场会发生偏转及磁暴现象,指南针获取数据与平时要存在较大差距。

5.在测试者使用指南针时,不要在其半径1米内使用手机通话,以免影响测试数据。

第一种测试方法1.测量者在待测天线正后方一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.视线从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

取得数据的平均值即第二种测试方法1.测量者在待测天线正前方一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针白针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

取得数据的平均值即第三种测试方法1.测量者在待测天线板面垂直方向一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板侧面水平,调节三脚架将指南针调至水平(或测量者手持);2.指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度加或减90度(在面向天线正面逆时针一侧加90度,顺时针减90度)就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

下倾角

下倾角

站置、天线方向角/下倾角及DT 覆盖诊断!下倾角用户可以单击对应的问题小区,查看当前天线下倾角Downtilt ,以及根据以上算法生成的天线下倾角Downtilt_Reference 优化建议的参考值11、站置、天线方向角/下倾角及DT 覆盖诊断1.天线方位角及性能诊断:主要是对通过天线反向(背向)切换性能分析来实现,可以帮助我们发现网络中的错覆盖,天线方向角标称错误问题,天线前后功率比性能差的问题,天线过覆盖问题其中错覆盖大都是由于天线方位角不正确引起,可能是由于施工原因引起,也可能是天线方位读取的人为问题引起天线前后功率比性能差则可能是由于天线的方向性能或建筑物的反射引起过覆盖则更多是由于基站之间的高度差引起2.基站位置诊断:利用天线的背向切换性能分析的最大特点,能很容易的发现基站经纬度问题因为在天向方位角正确的情况下,当经纬度发现较大的偏移时,原来对周边小区的正向关系切换,根据相对位置和反向切换性能分析,必然表现为天线的反向切换,因而都能在地图中分析出来3.工作原理及作用:以上应用都是根据天线的反向切换统计分析来实现菜单“ANT’s rearward HO audit base on HOstat”一个算法可以实现对基站经纬度,天线方位角,天线前后对性能,以及基站高度差过大引起的过覆盖问题进行全局性的把握;也避免了传统做法上,通过路测实施来发现问题的依赖性和局限性,大大的节约了资源的开销并提高了我们的工作效率和质量换个角度来考虑,也为频率规划和邻区规划的有效性提供了一个很好的保障,进而为改善网络C/I 比提供间接的支持4.HO 统计应用举例:以下面是在某运营商网络应用中,根据对天线反向切换分析后,对存在嫌疑的站点作实际勘查后的汇总表,除了5371~5373的反向切换是由于南面的高山站引起之外,其他站点都存在经纬度或方位角有较大出入的问题特别要说明的是,为了保护运营商的隐私,已对经纬度小数点前的数值做了必要的偏移处理5.基于天线物理参数的优化应用:除了以上的算法实现之外,我们还可以根据小区的物理参数:天线高度Height 、天线下倾角Downtilt 、垂直方向的波辨半功率角Vertical_Beamwidth 来作为天线优化的重要依据随着城市建设和网络建设的发展,城市基站的密度越来越高,频率干扰也日趋严重,为了迎制基站之间的无线干扰,天线系统的优化也就更加必要和重要可以注意到密集地域的站点地势都是平坦的开阔地域,且站距也就几百米,因而我们可以把复杂的传播问题简单化,以三角函数的计算方法来做天线系统的优化一般来说,俯仰角的大小可以由以下公式推算:Downtilt=arctg(Height/Distance)+Vertical_Beamwidth /2Downtilt --天线的俯倾角Height --天线的高度Vertical_Beamwidth --天线的垂直平面半功率角以上信息Downtilt 、Height 、Vertical_Beamwidth 为CELL 表中的缺省数据,这些信息在分析应用中缺一不可,且必需保证这些数据的准确性同时,这三个参数仅不能为0,否则工具将跳过当前小区的诊断分析Distance --小区的覆盖半径,是将天线的主瓣方向对准小区边缘时的参考距离值在批量除理时,工具将自动地对小区的覆盖范围半径Distance 进行预测,以此计算Downtilt_Reference 建议参考值执行“ANT’s Downtilt audit base on Cell Info.”,程序即自动完成此项检查,生成效果举例如下其中,每个小区的覆盖预测用一片叶子来表示,叶中段(也就是1/2叶长处)表示估D o c u C o m P D F T r i a l w w w .p d f w i z a r d .c o m算出来的天线主瓣方向垂青对准时的覆盖参考半径,叶尖表示估算出来的天线主瓣边缘(半功率角上缘)的覆盖参考半径叶子中央的那根线(在此可称之为:叶脉),表示当前的高度和下倾角情况下,天线垂直中线正对的距离点当这个距离点偏离叶中段参考位置越远,叶子就越红,叶子也越宽大,其下倾角就越需要优化如下图中的17386小区所示,它的当前Downtilt 为2度,建议的Downtilt_Reference 值为7度在实际的调整工作中,为了有效地抑制频率复用所产生的网内干扰,一般在由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地控制在本小区覆盖范围内备注:这一简便的应用,也可以为网络优化的初级从业人员,在实施天线下倾角优化时,提供有效的参考依据6.基于DT 路测的覆盖诊断策略:最后为了能直观地发现小区的过覆盖(越区)问题、和天线的反向覆盖问题、或经纬度错误问题,我们也开发了专项诊断应用模块下面就以某地的高速测试作为实例来说明这方面的应用:执行“ANT’s Coverage Audit base on DriveTest”,根据提示选定要分析的路测数据表,即自动完成小区覆盖的分析问题小区以与路测数据之间创建飞线来表示其中过覆盖问题用黄-->橙-->红三种颜色来警示,严重性依此颜色表示依次加入,如黄塘1、双阳阳江2、华大搬迁2、火车站2等都存在不同程度的越区覆盖问题,可以对天线系统的下倾角进行优化;同样地,反向覆盖问题用洋红色来表示,如下图所示的洛阳中学1、赤涂2存反覆盖,这也确切的反映出它们的经纬度存在错误,必需给予关注,可以安排额外的站点勘查工作D o c u C o m P D F T r i a l w w w .p d f w i z a r d .c o m。

天线下倾与覆盖的关系

天线下倾与覆盖的关系

1.1 天线下倾与覆盖的关系
控制覆盖范围的手段一般采用天线下倾技术,天线下倾带来的额外好处是可以提高覆盖区内的信号强度;天线下倾角大小与需控制的覆盖范围、基站天线的相对高度、天线垂直波瓣的宽度等有关;天线下倾的方法一般来说只适用于基站天线相对高度较高的情况,利用天线垂直波瓣尖锐的特性,通过使天线向下倾斜一定的角度,在控制覆盖区外的天线指向上的水平方向上取得一定的增益降低值,从而有效地控制覆盖范围及减少对远处同频基站的干扰。

理想情况下,应尽量使垂直波瓣增益最大处指向小区边沿。

使用垂直波瓣很尖锐的天线效果更为明显。

1.2 天线进行机械下倾和电子下倾对覆盖的影响
目前实现天线俯仰角的方法主要有两种:机械下倾和电子下倾,如下图所示,如果采用机械下倾的方法,当下倾角度比较大时,水平方向图严重变形,出现被压扁的现象。

这在实际网络中可能会带来不必要的越区覆盖或增加干扰。

而电下倾时,水平方向图基本保持不变,只是覆盖的范围有所缩小,有利于减少对周边小区的干扰。

图6 机械和电子下顷的对比情况
1.3 天线下倾角设置建议
调整天线下倾角的主要目的是控制基站的覆盖范围,减少移动通信网络中站与站之间的干扰。

天线探测距离公式4

天线探测距离公式4

天线探测距离公式4.12在介绍了天线的各类重要参数后,我们要进入更深层的领域,那就是与参数相关的计算公式。

每一个公式将会在安装前后带来很多方便。

本期的这些公式汇总起来,不仅能解决使用期间的各种疑问,也为后续的天线布局提供思路。

天线增益是衡量天线辐射方向图方向性程度的参数。

高增益天线将优先向特定方向辐射信号。

天线的增益是一种无源现象,功率不是由天线增加的,而是简单地重新分配,从而在某个方向提供比其他各向同性天线发射更多的辐射功率。

以下是关于天线增益的若干近似计算公式:一般天线G(dBi)= 10 Lg { 32000 /(2θ3dB,E ×2θ3dB,H)}公式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000是统计出来的经验数据。

抛物面天线G(dBi)=10Lg{4.5×(D/λ0)2}公式中,D为抛物面直径;λ0 为中心工作波长;4.5是统计出来的经验数据。

直立全向天线G(dBi)= 10 Lg { 2 L / λ0 }公式中,L为天线长度;λ0 为中心工作波长。

天线调整最主要的就是对其下倾角进行微调(能够解决弱覆盖重叠覆盖等问题)。

下面就对其最原始的天线下倾角计算方法进行介绍。

高话务地区(市区)天线计算公式:天线下倾角=arctag(H/D)+垂直半功率角/2低话务地区(农村、郊区等)天线计算公式:天线下倾角=arctag(H/D)参数说明:(1)天线下倾角:天线与垂直方向的夹角;(2)H:天线高度。

可以直接测量出来;(3)D:小区覆盖半径。

一般D值通过路测来确定,为了保证覆盖,在实际设计中一般D取得要大一些,以保证邻小区之间的覆盖重叠;(4)垂直半功率角:为天线的垂直半功率角,一般为10度。

方向图中,前后瓣最大值之比称为前后比,记为F / B 。

前后比越大,天线的后向辐射(或接收)越小。

前后比F / B 的计算十分简单:F / B = 10 Lg {(前向功率密度)/(后向功率密度)}参数说明:对天线的前后比F / B 有要求时,其典型值为(18 ~ 30)dB,特殊情况下则要求达(35 ~ 40)dB 。

参考文档-天线下倾角理覆盖理论

参考文档-天线下倾角理覆盖理论

一、基站天线的下倾角设置(一)下倾角概述基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。

基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例,而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。

这两个侧重方向分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

1.1.考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二含义如下图所示。

图二、基站天线控制信号强度时的下倾角应用图、下倾角设置的应用分析2.1.下倾角分类目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。

机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的调节方式。

预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。

电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续调节的调节方式。

移动通信天线下倾角设置

移动通信天线下倾角设置

比较有用的一点东西,特别是天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。

由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。

1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。

(1)为减少干扰,应选用水平半功率角接近于60度的天线。

这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。

如下图所示。

(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。

由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。

(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。

例如水平半功率角为65度的15dBi双极化天线。

2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。

但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。

此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。

所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。

3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。

(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。

天线方向角及下倾角测试方法

天线方向角及下倾角测试方法

天线方向角及下倾角测试天线方向角测试方法:使用仪器:指南针型号:DQY-1型指南针的工作环境要求:1.在使用指南针时应距离金属物体、金属管道、导线等2米以上,以免指南针自身磁场受其他磁场干扰,无法获取准确数据。

2.应在晴好天气使用,避免空气中过多的带电粒子对指南针造成影响。

3.使用时应在远离强磁场,如变压器、旋转电机、高压走廊等。

4.应避免在太阳黑子活跃期内使用,由于该期间地球磁场会发生偏转及磁暴现象,指南针获取数据与平时要存在较大差距。

5.在测试者使用指南针时,不要在其半径1米内使用手机通话,以免影响测试数据。

第一种测试方法1.测量者在待测天线正后方一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.视线从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

取得数据的平均值即第二种测试方法1.测量者在待测天线正前方一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持);2.从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针白针所指的刻度就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

取得数据的平均值即第三种测试方法1.测量者在待测天线板面垂直方向一定距离(根据实际情况,尽量远离天线),选择一适当位置。

安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板侧面水平,调节三脚架将指南针调至水平(或测量者手持);2.指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线;3.此时指南针黑针所指的刻度加或减90度(在面向天线正面逆时针一侧加90度,顺时针减90度)就是该天线的方位角;4.换另一名测试者重复上述步骤;或用另外一块表进行测量。

电调天线与内置倾角的天线的区别

电调天线与内置倾角的天线的区别

电调天线与内置下倾角天线的区别与应用电调天线:即指使用电子调整下倾角度的移动天线。

电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。

由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。

实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。

另外,电调天线允许系统在不停机的情况下对垂直方向性图下倾角进行调整,实时监测调整的效果,调整倾角的步进精度也较高(为0.1°),因此可以对网络实现精细调整;电调天线的三阶互调指标为-150dBc,较机械天线相差30dBc,有利于消除邻频干扰和杂散干扰。

电调天线是电子调谐的概念,通过调整功分器,分配各个振子(发射单元)的不同功率,而改变赋型。

常用的有内置电机和外置电机两种驱动方式。

一般有手动和遥控调节;在天线的电调口接上调谐机,就可以调整天线的下倾角,电调天线主要用于密集城区,网络优化比较困难的区域。

内置下倾角的天线是指天线在出厂后就已经内置了一定的下倾角,比如说3°、9°等,这种天线比较常见。

目前,国内电调天线做的最好是广州桑瑞通信设备有限公司。

但价格上,电调天线明显要高于内置下倾角天线,建议使用内置下倾角天线。

天线基础知识

天线基础知识

目录天线 (1)一、天线理论知识 (1)二、天线的选择原则 (18)三、常用天线的分类 (23)天线一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。

反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。

天线方向图的定义:天线辐射的电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

天线方向图

天线方向图
天线辐射电磁场在以天线为中心,某一距离为半径的球面上随空间角度(包括方位角和俯仰角)分布的图形, 称为辐射方向图,简称方向图。球面的半径,也就是场点到天线的距离必须满足远区条件。
因为天线方向图一般呈花瓣状,故又称为波瓣图,最大辐射方向两侧第一个零辐射方向线以内的波束称为主 瓣,与主瓣方向相反的波束称为背瓣,其余零辐射方向间的波束称为副瓣或旁瓣。
1.主瓣宽度:是衡量天线的最大辐射区域的尖锐程度的物理量。通常取天线方向图主瓣两个半功率点之间的 宽度。
2.旁瓣电平:是指离主瓣最近且电平最高的第一旁瓣的电平,一般以分贝表示。
3.前后比:是指最大辐射方向(前向)电平与其相反方向(后向)电平之比,通常以分贝为单位。
4.方向系数:在离天线某一距离处,天线在最大辐射方向上的辐射功率流密度与相同辐射功率的理想无方向 性天线在同一距离处的辐射功率流密度之比。
天线方向图
辐射方向图
01 定义
03 特性参数
目录
02 分类
基本信息
又叫辐射方向图(radiation pattern)、远场方向图(far-field pattern)。 所谓天线方向图,是指在离天线一定距离处,辐射场的相对场强(归一化模值)随方向变化的图形,通常采 用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。 天线方向图可分为水平面方向图和铅垂面方向图。
定义
定义
天线立体方向图所谓天线方向图,是指在离天线一定距离处,辐射场的相对场强(归一化模值)随方向变化 的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。
天线方向图是衡量天线性能的重要图形,可以从天线方向图中观察到天线的各项参数。 天线方向图是用来表示天线的方向性的图,所谓的“天线方向性”,就是指在远区相同距离R的条件下,天 线辐射场的相对值与空间方向的关系。

天线挂高低倾角方位角

天线挂高低倾角方位角

天线的覆盖范围要紧取决于天线高度、下倾、天线增益、天线口功率、无线链路等因素。

①天线挂高:是指不算地面只算天线悬空的长度或高度。

计算方式:算建筑物的高度加支撑架到天线的中点的距离。

②方位角:正北方向的平面顺时针旋转到和天线所在平面重合所经历的角度。

在实际的天线放置中,方位角通常有0度,120度和240度。

别离对应于A小区、B小区、C小区③下倾角是天线和竖直面的夹角。

天线下倾角的计算能够成立在如图1所示的模型下。

其中H表示天线的高度,D表示基站的覆盖半径,α就表示天线的下倾角,β/2 表示。

那么天线的下倾角α为(H/D)+β/2。

在实际中只要已知了基站的高度、覆盖半径和半功率角就能够够计算出天线的下倾角。

Andorid中的方位(antenna downtilt ):是Android平台下的一款测量和下倾角的软件。

依照软件自身的功能描述,只要将电话的反面对着天线,软件就能够够测量出天线的方位角和下倾角。

天线下倾角的调整是网络优化中的一个超级重要的情形。

选择适合的下倾角能够使天线至本小区边界的射线与天线至受干扰小区边界的射线之间处于天线垂直方向图中增益衰减转变最大的部份,从而使受干扰小区的同频及邻频干扰减至最小;另外,选择适合的覆盖范围,使基站实际覆盖范围与预期的设计范围相同,同时增强本覆盖区的信号强度。

天线方向角的调整对移动通信的网络质量超级重要。

一方面,准确的方向角能保证基站的实际覆盖与所预期的相同,保证整个网络的运行质量;另一方面,依据话务量或网络存在的具体情形对方向角进行适当的调整,能够更好地优化现有的移动通信网络。

依照理想的蜂窝移动通信模型,一个小区的交壤处,如此信号相对互补。

与此相对应,在现行的GSM系统(要紧指ERICSSON设备)中,定向站一样被分为三个小区,即:A小区:方向角度0度,天线指向正北;B小区:方向角度120度,天线指向东南;C小区:方向角度240度,天线指向西南。

在GSM建设及计划中,咱们一样严格依照上述的规定对天线的方位角进行安装及调整,这也是天线安装的重要标准之一,若是方位角设置与之存在误差,那么易致使基站的实际覆盖与所设计的不相符,致使基站的覆盖范围不合理,从而致使一些意想不到的同频及邻频干扰。

天线下倾角的确定

天线下倾角的确定

天线下倾角的确定天线倾角的确定已知条件--天线高度H,所希望得到的覆盖半径R,天线垂直平面的半功率角A。

需确定天线倾角B。

BHA/2CRtg(B-A/2)=H/R=>B=arctg(H/R)+A/2说明:不考虑路径损耗,D点功率电平是C点的一半,即小3dB。

由此计算覆盖半径不完全合理。

但是厂家只提供半功率角指标。

实际作天线倾角时,比B值大1-2度更合理些。

上式同样表明天线高度与小区覆盖半径的关系。

D例:设高度=15,距离=72,A为天线垂直面半功率角为8度(具体看天线型号),计算结果为:arctg(15/72)=0.2050.205*57.296=11.74arctg(15/72)+A/2=0.205+A/2=11.74+4=15.74度(计算式中的57.296=1弧度. 1角度=180/∏=57.296度,0.205为弧度值,转换为角度:0.205*57.296=11.74),arctg(15/72)=0.205(这个公式算出来的天线主瓣是覆盖在小区边缘的,即覆盖在72米处,为控制小区覆盖范围需加上天线垂直面半功率角/2,再加上1-2度才能把信号完全控制在小区覆盖范围内)自由空间损耗公式计算:LS(dB)=32.45+20lgf(MHZ)+20lgd(KM)900(MHZ)计算结果:=20lg(4∏/C)+20lgf(MHZ)+20lgd(KM)=20lg(4∏/3)-160+119.08+20lgd+60=12.44+20lgd+19.08=31.52+20lgd1800(MHZ)计算结果:=20lg(4∏/C)+20lgf(MHZ)+20lgd(KM)=20lg(4∏/3)-160+125.1+20lgd+60=12.44+ 25.1+20lgd=37.5+20lgd。

天线不同下倾角时的增益变化分析

天线不同下倾角时的增益变化分析
我们使用的Andrew天线工作频率为1900-2170MHz,其增益系数为18dBi,需要注意的是另有一个增益单位为dBd。两者区别是,dBi为天线与理想点源之比,dBd为天线与基本偶极阵子之比。天线水平方向主瓣宽度为65度,垂直方向主瓣宽度为6度。由于本文主要讨论天线接收与倾角的关系,因而我们更关心天线的垂直归一化方向函数 。
由(式1-3)可得,安德鲁天线的各方向增益由对数表达为:
(式3-1)
当Andrew天线机械倾角为3度时,小区覆盖情况如下图所示:
由上图可知,手机接收信号最好情况,即RSCP>-70dBm的区域在金鸡湖路,基站正北方向和附近的区域,该区域就是Andrew天线主瓣最强信号的覆盖范围。如图中红色圈示范围。此时的天线水平方向增益图如下所示。
(式1-7)
其中, 为天线2的有效接收面积,指接收天线在极化匹配和负载匹配条件下,接收负载平均功率与来波功率密度之比。根据福瑞斯定理:
(式1-8)
其中, 为天线的工作波长。代入(式1-7)得到:
(式1-8)
2.
我们知道小范围内调整天线倾角时,机械倾角和电子倾角的方向图大致相同,均无很大变化。当调整范围较大时,电调的方位图比机调有所改善,变形更小。如下图所示,当调整电顷时,会压缩天线水平方向图的旁瓣宽度,从而避免越区覆盖。而机调时天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,造成越区覆盖。
(式1-5)
天线接收
天线接收是天线发射的逆过程,根据互易定理,天线接收时的方向函数与其发射时相同;天线接收的输入阻抗与其发射时相同。
以天线1和天线2为例,相距r,分别位于对方远区。当天线1用作发射,天线2用作接收时,根据(式1-5),天线1辐射的电磁传播到达天线2的能流密度为:

天线下倾角设置参考表

天线下倾角设置参考表

天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。

由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。

1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。

(1)为减少干扰,应选用水平半功率角接近于60度的天线。

这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。

如下图所示。

(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。

由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。

(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。

例如水平半功率角为65度的15dBi双极化天线。

2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。

但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。

此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。

所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。

3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。

(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。

天线下倾角的计算方法

天线下倾角的计算方法

天线下倾角的计算方法一、基础理论1、定义天线下倾角=机械下倾角+电子下倾角机械下倾角:通过天线的上下安装件来调整的,这种方式是以安装抱杆为参照物,与天线形成夹角来计算的。

电子下倾角:通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾2、理论计算已知:H--天线的高度, D--小区的覆盖半径, β-天线的垂直平面半功率角, P—预制下倾角,为可选项,计算α--天线的俯仰角答:α=arctg(H/D)+β/2-{P}二、实例说明1、某县级市平均站间距为443米,本地区采购的天线水平半功率角为65°,垂直半功率为6°,内置电子下倾角分两类:0度,6度,采购原则如下:总下倾角小于等于9度的,采购电子下倾角为0度的天线,总下倾角大于9度的,采购电子下倾角为6度的天线。

假设本期新增的基站均为三扇区定向站,请分别计算站高为20米、30米、40米、50米的基站,天线下倾角分别是多少,机械下倾角分别是多少?答:(1)根据上图所示,且新增基站为三扇区定向站,小区半径R=站间距D/1.5=443÷1.5≈295(米)(2)通过《天线下倾角与覆盖距离计算》软件计算20米站高基站:总下倾角=7°,机械下倾角=总下倾角-电子下倾角=7°-0°=7°=9°40米站高基站:总下倾角=11°,机械下倾角=总下倾角-电子下倾角=11°-6°=5°-6°=7°总结:根据以上经验可以推算出,在该地区20米站高基站天线下倾角为7°,站高每增加5米,天线下倾角增加1°三、运行软件。

天线最佳下倾角度数、天线最佳高度计算方法

天线最佳下倾角度数、天线最佳高度计算方法

天线最佳下倾⾓度数、天线最佳⾼度计算⽅法
天线⾼度=TAN(下倾⾓度数*PI()/180)*覆盖业务中⼼距离度数计算⽤反正切函数
excel中(PI()/180)为弧度计算公式,所以⼀般⽂档⾥没有出现,导致EXCEL⾥直接⽤TAN(⾓度)×覆盖距离为负数
天线下倾⾓的设置
天线下倾⾓的预设主要利⽤⼏何光学的原理来估计。

我们要考虑到天线的垂直HPBW,天线挂⾼,天线到服务区的距离,天线附近的地形地貌等。

同时,下倾⾓对于接收和发射天线必须保持⼀致。

D A B C
如上图所⽰,如果天线的下倾⾓a⼩于HPBW/2,那么⼩区的覆盖范围由C点来决定。

下⾯的公式给出了这⼏个参数的关系:
DC= H/tan(a-HPBW/2)(最远距离)
转换过来就是:
a=arc tan(H/DC)+HPBW/2;
在实际应⽤中,我们可以考虑天线位置D到业务区中⼼B点的距离,这样⼀来,我们的下倾⾓计算公式可简化为:
a=arctan(H/DB); DB=H*ctan(a);
半功率⾓15度=天线垂直覆盖15°以外信号将会衰减。

⼴度覆盖:为了达到⽆缝隙覆盖,正确选择基站天线参数是⼗分重要的。

⽬前对于三扇区在话务量密集地区通常选⽤⽔平⽅向图,半功率
波束宽度为65o
的双极化定向天线。

由于基站间距离⼤约在300 ~
500⽶,此时天线的俯仰⾓(波束倾⾓):(式中是波束倾⾓,h为基站天线⾼度,r为站间距离)。

可由此式算出,α⼤约在10α
o~ 19o之间;对于话务量中密集区,基站间距离⼤于500⽶,此时a⼤约在6o~ 16o之间:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线下倾角与方向图的关系
首先概述天线的方向图的概念:严格意义上,天线的方向图是表征天线辐射特性的一个指标,一般情况下天线的方向图表示天线辐射电磁波的功率或者场强在空间各个方向的分布图形。

在实际的工程应用中,我们往往将方向图的概念理解为天线的实际覆盖效果。

从严格意义上的方向图概念来理解:电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。

由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。

从表征覆盖效果的方向图定义来理解的话,机械下倾的调整是在天线与地面垂直安装好以后,因网络优化的要求,需要调整天线背面支架的位置改变天线的物理倾角。

机械下倾角的变化导致天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线到地面的覆盖面积和覆盖强度都会发生较大的变化。

下图分别示意了三种情况的覆盖:1、垂直安装的天线正常情况下的覆盖情况2、调整天线电子下倾后的覆盖面积的变化较小3、调整机械下倾角后,地面的覆盖情况发生了较大的变化,图形由原有的椭圆形变成了纺锤形。

电子下倾在物理实现上比较容易,可以通过调整各天线阵子的相位进而实现下倾角的调整,同时电子下倾的步进精度较大,易于控制。

机械下倾就是通过调整安装倾斜度来实现,这种调整形式比较粗犷,靠手工
来调整下倾角度精度较差。

相关文档
最新文档