Fe-C合金平衡结晶过程分析

合集下载

结晶与相图铁碳合金工程材料基础知识

结晶与相图铁碳合金工程材料基础知识
2.晶粒大小与控制措施
20钢
F+P基体+G球
(1)增加过冷度 随着过冷度的增加,形核率和长大速度都会增加,但形核率增加比长大速度增加要快,所以产生的晶核数目增加。因此,通过加快冷却速度,即增加过冷度,可使晶粒细化。 (2)变质处理 在金属液中加入变质剂(高熔点的固体微粒),以增加结晶核心的数目,从而细化晶粒,这种方法称变质处理,变质处理在生产中应用广泛,特别对体积大的金属很难获得大的过冷度时,采用变质处理可有效地细化晶粒。 (3)附加振动等 在金属结晶时、施以机械振动、电磁振动、超声波振动等方法,可使金属在结晶初期形成的晶粒破碎,以增加晶核数目,起到细化晶粒的目的。
三、金属铸锭的组织
[合金]:由两种或两种以上的金属元素或金属与非金属元素组成的、具有金属特征的物质称为合金。 [组元]:组成合金最基本的、独立的单元称为组元。根据组元数目的多少,可将合金分为二元合金、三元合金等。 [相]:合金中的相是指有相同的结构,相同的物理、化学性能,并与该系统中其余部分有明显界面分开的均匀部分。固态下只有一个相的合金称为单相合金;由两个或两个以上相组成的合金称为多相合金。合金的的相结构主要有固溶体和金属化合物。 [显微组织]:在显微镜下观察到的组成相的种类、大小、形态和分布称为显微组织,简称组织,因此相是组成组织的基本物质。
(2)金属化合物 [金属化合物]:是合金中各组元间发生相互作用而形成的具有金属特性的一种新相,其晶体结构一般比较复杂,而且不同于任一组成元素的晶体类型。它的组成一般可用分子式来表示,如铁碳合金中的Fe3C(渗碳体)。 [金属化合物性能]:一般熔点高,性能硬而脆。当它呈细小颗粒均匀分布于固溶体基体上时,能使合金的强度、硬度、耐磨性等提高,这一现象称为弥散强化,因此,合金中的金属化合物是不可缺少的强化相;但由于金属化合物的塑性、韧性差,当合金中的金属化合物数量多或呈粗大、不均匀分布时,会降低合金的力学性能。 合金的组织可以是单相固溶体,但由于其强度不够高,其应用具有局限性;绝大多数合金的组织是固溶体与少量金属化合物组成的混合物。

铁碳合金相图分析

铁碳合金相图分析

成P点成分的铁素体和渗碳体,即γS=αP+Fe3C。

所得到的共析体αP+Fe3C称为珠光体,用P表示。
3. 铁碳合金的平衡结晶和组织转变
1)铁碳合金的分类 工业纯铁:碳含量小于0.022%的铁碳合金称为工业纯铁, 其特点是在冷却过程中不发生共析反应。
钢:碳含量在0.022~2.14%之间的铁碳合金称为钢,其特 点是结晶过程不发生共晶反应。根据室温组织的不同,钢又 分为:
是2.25g/cm3。

碳的原子半径为0.34nm。碳有两种存在
形式:石墨和金刚石,石墨较为广泛。

石墨是由碳原子层组成,层内原子呈正六
边形。层内原子由共价键结合,原子间距为
0.142nm。层间原子由弱金属键结合,间距为
0.34nm。

石墨的晶体结构属于六方晶系,其中a=
0.46nm,c=0.670nm,每个晶胞含有四个原子。
PK
6.690.022
亚共析钢的室温平衡组织是先共析铁素体和珠光体。
亚共析钢中的先共析铁素体可能呈现不同的形态:先共 析铁素体在奥氏体晶界上形核后,可形成沿原奥氏体晶界的 网状先共析铁素体;也可沿奥氏体晶内某特定晶面生长成相 互平行的片状,即魏氏组织。
❖ 过共析钢
d1 d2
d3 P S d4
当合金从液相开始冷却:
%=c5S100% 0.76- 0.3 100%62.2%
PS
0.760.022
P%Pc5100%0.30.022100%37.8%
PS
0.760.022
此时,合金中α与Fe3C两相的相对量为:
%=c5K100% 6.69- 0.3100%95.8%
PK
6.690.022

铁碳合金相图及结晶组织变化

铁碳合金相图及结晶组织变化

铁碳合⾦相图及结晶组织变化铁碳合⾦相图及结晶组织变化铁碳合⾦的组元和相⼀、基本概念铁碳合⾦:碳钢和铸铁的统称,都是以铁和碳为基本组元的合⾦碳钢:含碳量为0.0218%~2.11%的铁碳合⾦铸铁:含碳量⼤于2.11%的铁碳合⾦铁碳合⾦相图:研究铁碳合⾦的⼯具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加⼯⼯艺的依据。

注:由于含碳量⼤于Fe3C的含碳量(6.69%)时,合⾦太脆,⽆实⽤价值,因此所讨论的铁碳合⾦相图实际上是F e-Fe3C⼆、组元1.纯铁纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。

2.碳碳是⾮⾦属元素,⾃然界存在的游离的碳有⾦刚⽯和⽯墨,它们是同素异构体。

3.碳在铁碳合⾦中的存在形式有三种:C与Fe形成⾦属化合物,即渗碳体;C以游离态的⽯墨存在于合⾦中。

C溶于Fe的不同晶格中形成固溶体;A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体⼼⽴⽅晶格,⽤符号“F”或“α”表⽰,铁素体是⼀种强度和硬度低,⽽塑性和韧性好的相,铁素体在室温下可稳定存在。

B. 奥⽒体:C溶于γ-Fe中所形成的间隙固溶体,⾯⼼⽴⽅晶格,⽤符号“A”或“γ”表⽰,奥⽒体强度低、塑性好,钢材的热加⼯都在奥⽒体相区进⾏,奥⽒体在⾼温下可稳定存在。

C. C与Fe形成⾦属化合物:即渗碳体Fe3C,Fe与C组成的⾦属化合物,Fe与C组成的⾦属化合物,含碳量为6. 69%。

以“Fe3C”或“Cm”符号表⽰,渗碳体的熔点为1227℃,硬度很⾼(HB=800)⽽脆,塑性⼏乎等于零。

渗碳体在钢和铸铁中,⼀般呈⽚状、⽹状或球状存在。

它的形状和分布对钢的性能影响很⼤,是铁碳合⾦的重要强化相。

碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或⽯墨的形式存在。

铁碳合⾦相图的分析1.铁碳合⾦相图由三个相图组成:包晶相图、共晶相图和共析相图;2.相图中有五个单相区:液相L、⾼温铁素体δ、铁素体α、奥⽒体γ、渗碳体Fe3C;3.相图中有三条⽔平线:HJB⽔平线(1495℃):包晶线,发⽣包晶反应,反应产物为奥⽒体。

铁碳相图简介

铁碳相图简介

精选可编辑ppt
48
钢锭的内部缺陷
激冷结晶区(细小等轴结晶区)
没问题
柱状结晶区
没多大问题
树枝状结晶区
多产生负V型偏析,因此这部分多产生偏析线、夹渣、气泡等缺陷
自由结晶区(粗大等轴结晶区)
多产生V型偏析,常产生偏析线、夹渣、金属夹杂物、渣孔、气泡等缺陷,呈
所谓疏松组织
淀淀结晶区
常产生夹渣类缺陷
精选可编辑ppt
精选可编辑ppt
40
实例
▪ Elliptical head ▪ Upper shell (Ⅰ、 Ⅱ) ▪ Conical shell ▪ Intermediate shell (lower)
(Ⅰ、Ⅱ、Ⅲ) ▪ Tube sheet ▪ Primary head (channel
head)
精选可编辑ppt
精选可编辑ppt
13
Fe—C合金中的基本相
(3) 奥氏体(austenite)
奥氏体(γ或A)是C溶解于γ—Fe形成的间隙固
溶体称为奥氏体(austenite)。
精选可编辑ppt
14
Fe—C合金中的基本相
(4)铁素体(ferrite) 铁素体(α或F)是C溶于α-Fe形成的间隙
固溶体称为铁素体(ferrite)。
③ PQ线: 碳在α中的溶解度 线.。冷却时从α中 开 始 析 出 Fe3CⅢ 或 加 热 时 Fe3CⅢ 全 部 溶入α中的转变线.
精选可编辑ppt
25
(3)Fe—Fe3C相图中的区
Fe—Fe3C相图中的区: ·5个单相区:L、δ、γ、 α、Fe3C · 7个两相区:L+δ、L+γ、
L+Fe3C、δ+γ、γ+Fe3C、 γ+α、α+ Fe3C ·3个三相共存区: L+γ+ Fe3C(ECF线)、 L+δ+γ(HJB线)、 γ+α+ Fe3C(PSK线)

铁碳合金相图解析

铁碳合金相图解析

b
14
三、过共析钢的结晶过程分析
图1-36 过共析钢结晶过程示意图
图1-37 过亚 共析钢的显 微组织
b
15
四、共晶白口铸铁的结晶过程分析
图1-38 共晶白口铸铁结晶过程示意图
图 1-39 共 晶 白 口 铸铁的显微组织
b
16
五、亚共晶白口铸铁的结晶过程分析
图1-40 亚共晶白口铸铁结晶过程示意图
b
5
知识点二 Fe- Fe3C相图分析
b
6
图1-30 Fe- Fe3C相图
简化的Fe- Fe3C相图
b
7
1、主要特性点
表1-4简化Fe- Fe3C相图中的特性点
特性点 符号
A
温度/℃ ωc(%)
1538
0
含义 熔点:纯铁的熔点
C
1148
4.3 共晶点:发生共晶转变L4.3—→Ld(A2.11%+Fe3C共晶)
四个单相区。
(2)两相区 简化的Fe- Fe3C相图中有五个两相区,即
L+A两相区、L+Fe3C两相区、A+Fe3C两相区、A+F两相
区和F+ Fe3C两相区。
每个两相区都与相应的两个单相区相邻;两条三相共存线,
即共晶线ECF,L、A和Fe3C三相共存,共析线PSK,A、F
和Fe3C三相共存。
b
10
图1-46 铁碳相图与铸锻 工艺间的关系
b
22
3、在锻压生产上的应用
钢在室温时组织为两相混合物,塑性较差,变形困难。而奥氏体的强 度较低,塑性较好,便于塑性变形。因此在进行锻压和热轧加工时, 要把坯料加热到奥氏体状态。加热温度不宜过高,以免钢材氧化烧损 严重,但变形的终止温度也不宜过低,过低的温度除了增加能量的消 耗和设备的负担外,还会因塑性的降低而导致开裂。所以,各种碳钢 较合适的锻轧加热温度范围是:始锻轧温度为固相线以下100~200℃; 终锻轧温度为750~850℃。对过共析钢,则选择在PSK线以上某一温 度,以便打碎网状二次渗碳体。

Fe-C相图解析

Fe-C相图解析
物,含碳量为6.69%。
铁碳合金中的根本组织
含碳量小于2.11%的合金为碳钢,含碳量大于2.11% 的合金为白口铸铁。全部碳钢和白口铸铁在室温下的 组织均有铁素体〔F〕和渗碳体〔Fe3C〕这两个根本 相所组成。只是因含碳量不同,铁素体和渗碳体的相 对数量及分布形态有所不同,因而呈不同的组织形态。
✓ 在铁碳合金中,当wc=0.77%,温度在727℃时,会 产生共析转变。所共析转变是指在某一恒定温度时,
合金⑤是碳的质量分数为共晶成分〔wc=4.3%〕的共晶铁碳合金。从相图上可 看到当温度在1点〔1148 C〕之上是均匀的液相状态,当温度降到1点之后发 生恒温共晶转变。即 L4.3→(A2.11+Fe3C)≡Ld。液相全部以共晶转变的方式结 晶成高温莱氏体〔Ld〕。组成高温莱氏体的奥氏体和渗碳体分别被称为共晶奥 氏体和共晶渗碳体。共晶奥氏体通常以树枝状分布在共晶渗碳体的基体上。但 当温度降到1点以下,随温度的下降,碳在奥氏体中溶解度的下降,Ld中的共晶 奥氏体也同样会析出Fe3CⅡ,并与Ld中作为基体的共晶渗碳体混成一体。在 1~2点之间合金⑤的显微组织是Ld。当Ld中的共晶奥氏体析出Fe3CⅡ,时其 本身的碳的质量分数也不断下降,当温度降到2点〔727℃〕时共晶奥氏体的wc =0.77%,随即发生共析转变,共晶奥氏体转变成珠光体,从2点直到室温,合 金⑤的显微组织是在渗碳体的基体上分布着树枝状的珠光体。这种显微组织称 为低温莱氏体,也称为变态莱氏体,符号是Fe3CⅡ+Ld` 。
室温组织 过共析钢其组织由珠光体和先共析渗碳体〔即二次渗碳体〕组 成。钢中含碳量越多,二次渗碳体数量就越多。图为含碳量1.2 %的过共析钢的显微组织。组织中存在片状珠光体和网络状二 次渗碳体,经浸蚀后珠光体成暗黑色,而二次渗碳体则呈白色 网络状。

Fe-C相图--2016解析

Fe-C相图--2016解析
工业纯铁的显微组织
工业纯铁的显微组织:
铁素体+三次渗碳体 F+ Fe3CIII
工业纯铁的退火组织 400× 显微组织:铁素体+三次渗碳体
三个重要的点:
共晶EUTECTIC点C
共析EUTECTOID点S
包晶PERITECTIC点J
铁碳合金相图中重要的线:
液相线ABCD,固相线AHJECF
水平线HJB
水平线ECF
水平线PSK
GS线、ES线、PQ线
包晶点J和包晶线HJB
包晶点J和包晶线HJB
温度: 1495℃;成分: 0.17%C。
ES
PQ
HJB ECF MO PSK 230 ℃线

分界线,也表示碳在-Fe铁中的溶解 度和过共析钢的上临界点Acm 分界线,也表示温度低于共析温度时 碳在-Fe中的溶解度 包晶反应平衡线 共晶反应平衡线 -Fe磁性转变线 共析反应平衡线,也表示下临界点A1 Fe3C的磁性转变线A0
铁碳合金的分类
铁碳合金的分类
S 727 0.000 共析点
8
0.77
Fe-Fe3C相图中特性线及含义
特性线
说明
ABCD AHJECF HN
JN GP
GOS
液相线
固相线
相与( +)相区分界线也是碳在 -Fe中的溶解度曲线
( +)相区与相区分界线
相区与( +)相区的分界线,也 表示高于A1温度时碳在-Fe中的溶 解度
( +)相区与相区分界线,也表 示亚共析钢的上临界温度A3
包晶反应
LB+ H AJ 即 L0.53+ 0.09A0.17 水平线HJB为包晶反应
线。
共晶点C和共晶线ECF

铁碳相图详解

铁碳相图详解

三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴ 工业纯铁(〈0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。

⑵ 碳钢(0.0218%~2。

11%C ),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0。

77%C)、共析钢(0.77%C )和过共析钢(0。

77%~2.11%C )。

⑶ 白口铸铁(2。

11%~6。

69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2。

11%~4。

3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3-6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化.图3—26 七种典型合金在铁碳合金相图中的位置㈠ 工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体.继续降温时,在2~3点之间,不发生组织转变。

温度降低到3点以后,开始从d 铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,d 铁素体全部转变为奥氏体。

在4~5点之间,不发生组织转变。

冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。

在6-7点之间冷却,不发生组织转变.温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。

7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q .图3—27为工业纯铁的冷却曲线及组织转变示意图。

工业纯铁的室温组织为a+Fe 3C III ,如图3—28所示,图中个别部位的双晶界内是Fe 3C III 。

图3-27 工业纯铁的冷却曲线及组织转变示意图 图3-28 工业纯铁的显微组织 400× ㈡ 共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0。

典型铁碳合金结晶过程分析 (2)

典型铁碳合金结晶过程分析 (2)

第二章碳钢C相图第3节Fe-Fe3第5讲典型铁碳合金结晶过程分析2典型铁碳合金的结晶过程分析-4共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%1交点:液相开始发生共晶转变1~2之间:共晶奥氏体中会出现二次渗碳体2交点:γ发生共析转变→P (珠光体)共晶渗碳体不发生变化2 以下:组织低温莱氏体(L′d )L 4.31148∘C(γ2.11+Fe 3C)共晶转变生成莱氏体(Ld )奥氏体为共晶奥氏体,渗碳体为共晶渗碳体w c=4.3%的铁碳合金结晶过程示意图低温莱氏体金相照片(黑斑区为珠光体,白色为渗碳体)室温组织:(L′d )室温相:α+ Fe 3Cw c =4.3%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w α=6.69−4.36.69−0.0008×100%≈?w Fe 3C =1−w α≈?%100='d L w典型铁碳合金的结晶过程分析-5亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%3以下2交点:存在两相L +γ2~3:奥氏体中会出现二次渗碳体3交点:γ发生共析转变→P (珠光体)二次渗碳体+ Ld 不发生变化3 以下:组织低温莱氏体(L′d + Fe 3C II + P )L 4.31148∘C(γ2.11+Fe 3C)1交点:液相开始发生匀晶转变L →γ其中的室温组织:(L'd + P + Fe 3C Ⅱ)室温相:α+ Fe 3Cw c =3.0%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w Fe 3C =1−w α≈?w α= 6.69−3.06.69−0.0008×100%≈?w L ′d=3.0−2.114.3−2.11×100%≈?w P = 4.3−3.04.3−2.11×6.69−2.116.69−0.77×100%≈?w Fe 3C II =1−w L ′d −w P ≈?结晶过程示意图亚共晶白口铸铁的金相照片亚共晶白口铸铁w c =3%铁碳合金3以下典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K123典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K1231~2:一次渗碳体形成的温度高,故其形貌为粗大的片状结构2交点:共晶转变3交点:γ发生共析转变3 以下:组织低温莱氏体(L′d + Fe 3C I )1交点:液相开始发生匀晶转变L →Fe 3C I过共晶白口铸铁w c=5.3%铁碳合金L'd+Fe3CⅠ过共晶白口铸铁的室温组织典型铁碳合金的结晶过程分析-7工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q1234567工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q12345671~2:L 减少δ增加1以上:液相1交点:匀晶转变L →δ2点:单相δ (0.01%)2~3:单相δ (0.01%)3点开始:δ →γ3~4:δ减少γ增加4~5:单相γ(0.01%)5点开始:γ→α5~6:γ减少α增加6点,6~7:单相α (0.01%)7点:α析出Fe 3C ⅡI工业纯铁w c<0.01%铁碳合金室温下的相:F+Fe3C 室温组织: F + Fe3CⅢ工业纯铁室温组织金相照片。

第8章 相平衡与相图原理(Fe-C合金平衡结晶过程)-1精品PPT课件

第8章 相平衡与相图原理(Fe-C合金平衡结晶过程)-1精品PPT课件

F+ Fe3CⅢ。
室温下Fe3CⅢ
最大量为:
0 . 0 2 1 8 0 . 0 0 0 8 Q F e 3 C I I I 6 . 6 9 0 . 0 0 0 8 1 0 0 % 0 . 3 %
㈡ 共析钢的结晶过程
合金液体在 1-2点间转变
为g。到S点
发生共析转 变:
gS→aP+Fe3C, g 全部转变
共晶转变结束时,两相的相对重量百分比为:
Qg
6 .6 9 4 .3 1 0 0 % 6 .6 9 2 .1 1
5 2 .2 % ,
Q F e3C
4 7 .8 %
C点以下, g 成分沿ES线变化,共晶g 将析出Fe3CⅡ。
Fe3CⅡ与共晶Fe3C 结合,不易分辨。
1’
g
Fe3C
2
温度降到2点, g 成分达到0.77%, 此时, 相的相对重量:
过共晶白口铁 共晶白口铁 亚共晶白口铁
过共析钢 共析钢 亚共析钢
工业纯铁
⑶ 白口铸铁 (2.11~6.69%C) 铸造性能好, 硬而脆
① 亚共晶白口铸铁 (2.11~4.3%C)
② 共晶白口铸铁 (4.3%C)
③ 过共晶白口铸铁 (4.3~6.69%C)
㈠工业纯铁的 结晶过程
合金液体在1-2
冷却时发生包晶反应.

A
H
B
J
以0.45%C的钢为例 合金在4点以前通过匀
晶—包晶—匀晶反应全
G S
P
a+Fe3C
部转变为g。到4点,由
g 中析出a 。到5点, g 成分沿GS线变到S点,g 发生
共析反应转变为珠光体。温度继续下降,a 中析出

铁碳合金状态图

铁碳合金状态图

② 亚共析钢
③ 过共析钢
3)白口铸铁
2.11% < WC ≤ 6.69%
按室温组织不同,又可分为以下三种: ① 共晶白口铸铁 WC = 4.3% 室温组织:低温莱氏体 ② 亚共晶白口铸铁 2.11% < WC < 4.3% 室温组织:低温莱氏体 + 珠光体 + 二次渗碳体 ③过共晶白口铸铁 4.3% < WC ≤ 6.69% 室温组织:低温莱氏体 + 一次渗碳体。
渗碳体是强化相,其形状有条状、网状、
片状、粒状等,它的形状、大小和分布对 钢的性能起重要作用。
四、珠光体

珠光体(P)

定义:F与 Fe3C 所形成的机械混合物
(平均含碳量:0.77%)

性能组织:介于F 和 Fe3C之间具有良好的综合力学性能
层片状
颗粒状
五、莱氏体

莱氏体(Ld)

定义:A与 Fe3C 所形成的机械混合物
727
共晶相图
共析相图
0.0218
0.77
2.11
4.3
Fe — Fe3C状态图
第一节 铁碳合金的基本相
一、铁素体

铁素体(F 或α):碳溶于α-Fe中所形成的间隙固溶体

晶格结构:体心立方晶格


最大溶解度:0.0218%(727℃)
性能组织:强度低、硬度低而塑性好。
二、奥氏体
奥氏体(A

2、制定铸、锻、热处理工艺的重要依据
1)铸造方面: 浇注温度一般在液相线以上50~100°C 铸造生产中,共晶成分附近的铸铁应用最多在此范围的钢, 其结晶温度范围小,铸造性能好
2)锻造方面: 锻造时,将其温度加热到A体区域, 能获得良好的塑性,易于锻造成形 白口铸铁中有大量硬而脆的渗碳体, 故不能锻造

铁碳相图结晶过程

铁碳相图结晶过程

三条水平线
§2 典型铁碳合金结晶过程分析

一、铁碳合金按其含碳量及室温组织分类 ①纯铁 :wc <0.0218%

②钢

亚共析钢: wc= 0.0218~0.77%
共析钢: wc= 0.77% 过共析钢: wc= 0.77~2.11% 亚共晶白口铁: wc= 2.11~4.3% 共晶白口铁: wc= 4.3%
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相线间距离估计
铸造性能的好坏.
对于锻造:确定锻造温度。 对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来
减轻或消除组织不均匀性。
对热处理:相图更为重要,这在下面一章中详细介绍。
§3 碳 钢


一、钢中常存杂质元素对钢的性能的影响


4.含碳1.2%的过共析钢(合金④)
5.含碳4.3%的共晶白口铁(合金⑤) 6.含碳3.0%的亚共晶白口铁(合金⑥)

7.含碳5.0%的过共晶白口铁(合金⑦)
1.含碳0.01%的工业纯铁
图4-3 工业纯铁结晶过程
2. 0.77%共析钢结晶过程
图4-5 共析钢结晶过程示意图
3.亚共析钢结晶过程


二、碳钢的分类、编号和用途


1.碳钢的分类
(1)按含碳量分类 低碳钢:wc=0.01~0.25% 中碳钢:wc= 0.25~0.6% 高碳钢:wc= 0.6~1.3% (2)按质量分类 普通碳素钢:ws≤0.055% wp≤0.045% 优质碳素钢:ws、wp ≤0.035~0.040% 高级优质碳素钢:ws ≤0.02~0.03%;wp ≤ 0.03~0.035% (3)按用途分类 碳素结构钢:用于制造各种工程构件,如桥梁、船舶、建筑构件 等,及机器零件,如齿轮、轴、连杆、螺钉、螺母等。 碳素工具钢:用于制造各种刀具、量具、模具等,一般为高碳钢。

典型铁碳合金的结晶过程

典型铁碳合金的结晶过程

一、共析钢的结晶过程图中Ⅰ表示共析钢(Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。

温度降到2点时,液体全部结晶为奥氏体。

2~S点之间,合金是单一奥氏体相。

继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。

727℃以下,P基本上不发生变化。

故室温下共析钢的组织为P。

共析钢的结晶过程如下图。

二、亚共析钢的结晶过程图3-6中合金Ⅱ表示亚共析钢。

合金在1点以上为液体。

缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。

在2~3点区间,合金为单一的奥氏体组织,当冷却到与GS线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。

沿着GS线变化。

当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了Wc=0.77%,具备了共析转变的条件,转变为珠光体。

原铁素体不变保留了在基体中。

4点以下不再发生组织变化。

故亚共析钢的室温组织为铁素体+珠光体。

亚共析钢的结晶过程如图3-8所示。

三、过共析钢的结晶过程图3-6中合金Ⅲ表示过共析钢。

合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。

在2~3点之间是含碳时为合金Ⅲ奥氏组织。

缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。

随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着ES线变化。

3~4点之间的组织为奥氏体+二次渗碳体。

降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。

在4点以下,合金的组织不再发生变化。

故室温组织为珠光体+二次渗碳体。

过共析钢结晶过程如图3-9。

图3-6中合金Ⅲ表示过共析钢。

合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。

在2~3点之间是含碳时为合金Ⅲ奥氏组织。

铁—碳平衡图的基本知识

铁—碳平衡图的基本知识

铁—碳平衡图的基本知识提要:铸铁的合金与熔炼与铁—碳合金相图关系密切,它是铸铁合金与熔炼的理论基础。

将合金与熔炼中发生的现象与铁—碳合金相图联系分析,可知其然并知其所以然。

从基础的理论上去分析实际问题,避免在指导与解决生产中技术问题中犯基本的错误。

铸造看似简单,实则相当复杂,大量事实证明,铸造工程师即有丰富的生产经验又有厚实的理论基础,在解决像迷阵一样的铸造缺陷中,往往思路清晰,判断准确,措施有力。

一、看懂铁—碳合金相图1、铁—碳合金相图的4个概念(1)合金相图:表示合金状态与温度、成分之间关系的图形称为合金相图,是研究合金结晶过程中组织形成与变化规律的工具。

(2)铁—碳合金相图:在极缓慢冷却条件下,不同成分的铁碳合金在不同温度下形成各类组织的图形。

(3)铁—碳双重相图:铸铁中的碳能以石墨或渗碳体两种独立相存在,因此铁—碳合金相图存在两重性,即Fe—C(石墨)相图与Fe—Fe3C相图。

(4)稳定系与亚稳定型铁碳相图:在一定的条件下,Fe—Fe3C系相图可以向Fe—C(石墨)转化,故称Fe—C(石墨)为稳定系相图(用虚线表示),Fe—Fe3C为亚稳定系相图(用实线表示),如图1所示。

C%图1 Fe—C(石墨)、Fe—Fe3C双重相图1)铸铁的性能是由铸铁中的组织决定的要保证铸铁的性能,就必须控制组织,合金相图就是研究合金组织是如何形成的,在形成的过程中,它的变化规律是怎样的,铸造工程师必须了解这些规律,才能有效地控制组织,达到满足铸铁性能的目的。

这就是我们为什么要研究铁碳合金相图的目的,其中对(2)(3)(4)概念的理解尤为重要。

2)铁-碳合金相图概念阐明了三点:在极缓慢的冷却条件下、在不同的成分下、在不同的温度下形成的各类组织。

铁—碳相图是在极缓慢冷却下形成的,实际生产中冷却速度远大于合金相图中的冷却速度铸型材料不同,导致冷却速度各异,所形成的组织大相径庭。

因此我们必须研究冷却速度对铸铁组织的影响。

Fe-C相图解析

Fe-C相图解析

铁碳合金中的基本组织
含碳量小于2.11%的合金为碳钢,含碳量大于2.11% 的合金为白口铸铁。所有碳钢和白口铸铁在室温下的 组织均有铁素体(F)和渗碳体(Fe3C)这两个基本 相所组成。只是因含碳量不同,铁素体和渗碳体的相 对数量及分布形态有所不同,因而呈不同的组织形态。
在铁碳合金中,当 wc=0.77 %,温度在 727℃时,会 产生共析转变。所共析转变是指在某一恒定温度时, 一定成分的固相又重新结晶成两个不同的机械混合物。 这种两相的机械混合物称为共析体。铁碳合金中的共 析转变是指碳的质量分数为 0.77%的奥氏体在 727℃ 时发生重结晶,形成铁素体和渗碳体的两相机械混合 物。这种机械混合物的共析体命名为珠光体。代号为P 铁 碳 合 金 中 的 共 析 转 变 可 以 表 示 为 A0.77←→ ( F+Fe3C ) ≡ P 。珠光体和渗碳体以相间片层形式机 械混合在一起。
温 度
Fe
Fe3C Fe2C (6.69%C)
FeC
C
Fe-Fe3C合金中的相
铁的固溶体 碳溶解于铁或δ铁中形成的固溶体为铁素体 ( F或 );最大溶解度0.0218%. 碳溶解于铁中形成的固溶体为奥氏体( A或 );最大溶解度2.11%. Fe3C(渗碳体) 渗碳体(Fe3C)是铁与碳形成的一种化合物, 含碳量为6.69%。
室温组织 含钢量在0.0218%~0.77%范围内的碳钢合金其组织由先共析 铁素体和珠光体所组成,随着含碳量的增加,铁素体的数量逐 渐减少,而珠光体的数量则相应地增多;亮白色为铁素体,暗 黑色为珠光体。Biblioteka 20钢室温显微组织(250×)
60钢室温显微组织(250×)
过共析钢
在平衡态下的相变过程
当温度在1点以上合金④是均匀的液相状态。在1~ 2 点之间是该 合金的结晶温度区间,是A和L两相共存区。即当温度降到1点以 下从L相中按成核长大方式结晶出A相,当温度降到2点则L相全部 结晶成单相A。2~3点之间A单相区只有A的简单冷却,无相变。 3~4点之间是A和Fe3CⅡ的两相区。即温度降到3点以下,由于 碳在奥氏作中的溶解度下降,因而从奥氏体中以二次渗碳体 (Fe3CⅡ)的形式析出多余的碳。这种渗碳体也称先共析渗碳体。 随温度下降Fe3CⅡ的相对质量百分数逐渐增加,而A的相对质量 百分数逐渐减少,并且二次渗碳体沿着A的晶界呈网状分布。与 此同时A中碳的质量分数沿ES线也不断的减少。当温度降到4点 (727C)时A的Wc≈0.77%。于是A就发生恒温的共析转变,全 部A转变成P。这时合金④的显微组织是P+网状Fe3CⅡ;直到室 温这个显微组织保持不变。

第四章 铁碳合金的平衡组织

第四章 铁碳合金的平衡组织

高温莱氏体
低温莱氏体
共晶白口铁金相
6.亚共晶白口铸铁,2.11%<C%<4.3% 相组成物:F,Fe3C 组织组成物:P,Le’,Fe3CII
亚共晶白口铁金相
7.过共晶白口铸铁 相组成物:F, Fe3C 组织组成物:Le’,Fe3C
过共晶白口铁金相
二、Fe-C合金的成分-组织-性能关系
[思考题 思考题] 思考题
• 1. 什么叫冷脆、热脆?引起这些现象的原 因是什么?如何防止? 2. 现有四块形状尺寸完全相同的平衡状态 的铁碳合金,其含碳量分别为0.2%、 0.40%、1.2%、3.5%, • 根据学过的理论,有哪些方法可以区分它 们?
“铁碳合金” 练习题 参考答案 铁碳合金” 参考答案1 铁碳合金
4.2 Fe-C合金平衡结晶过程
• • • • • • (一)Fe-C合金平衡结晶过程分析 1.工业纯铁 2.共析钢 3.亚共析钢 4.过共析钢 5.共晶白口铁 6.亚共晶白口铸铁 7.过共晶白口铸铁 (二)Fe-C合金的成分-组织-性能关系
1.工业纯铁(C%≤0.0218%)
• L--->L+A--->A-->A+F--->F+Fe3CIII • 相组成物:F+Fe3C C%>0.0008% • F C%<0.0008% • 组织组成物:F和 Fe3CIII
45钢金相
4.过共析钢
• L--->L+A--->A-->A+Fe3CII-->A+P+Fe3CII-->P+Fe3CII • 相组成物:F, Fe3C • 组织组成物:P, Fe3CII
T12钢金相

典型铁碳合金结晶过程分析

典型铁碳合金结晶过程分析
共析钢在室温时的组织是珠光体,合金的 组织按下列顺序变化:
2.亚共析钢
亚共析钢的室温组织由珠光体和铁素体组 成合金的组织按下列顺序变化:
3.过共析钢
室温下为珠光体 和网状二次渗碳 体组织。钢中含 碳量越多,二次 渗碳体也越多。
4.白口铸铁
• 亚共晶白口铸铁 • 共晶白口铸铁 • 过共晶白口铸铁
亚共析钢亚共析钢的室温组织由珠光体和铁素体组成合金的组织按下列顺序变化
典型铁碳合金结晶过程分析
一、铁碳合金的分类
纯铁——含碳量小于0.0218%的铁碳合铁 碳合金。 铸铁——含碳量大于2.11%的铁碳合金。
二、典型铁碳合金结晶过程分析
1.共析钢
三、铁碳合金的成份、组织与性能的关系
随含碳量的不同,其组织顺序: F→F+P→P→P+ Fe3 C→P+ Fe3 C+ L'd →L'd →L'd+ Fe3 CⅠ
含碳量越高,钢的强度、硬度越高,而塑性、韧性 越低,这在钢经过热处理后表现尤为明显。

fec合金相图[整理版]

fec合金相图[整理版]

铁碳合金的结晶一.铁碳相图☆提示:重点内容铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。

铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图, 此时相图的组元为Fe 和Fe3C。

Fe-Fe3C相图Fe-Fe3C相图中各点的温度、碳含量及含义1. 铁碳合金的组元(1)Fe 铁是过渡族元素, 熔点或凝固点为1538℃, 相对密度是7.87g/cm3。

纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。

(见2-1-2)纯铁是如何结晶的工业纯铁的机械性能特点是强度低、硬度低、塑性好。

主要机械性能如下:抗拉强度极限σb180MPa~230MPa抗拉屈服极限σ0.2100MPa~170MPa延伸率δ 30%~50%断面收缩率ψ 70%~80%冲击韧性 a k 1.6×106J/m2~2×106 J/m2硬度 50HB~80HB(2) Fe3C Fe3C是Fe与C的一种具有复杂结构的间隙化合物, 通常称为渗碳体, 用Cm表示。

渗碳体的机械性能特点是硬而脆, 大致性能如下:2. 铁碳合金中的相Fe-Fe3C相图中存在五种相。

①液相L 液相L是铁与碳的液溶体。

②δ相δ相又称高温铁素体, 是碳在δ-Fe中的间隙固溶体, 呈体心立方晶格, 在1394℃以上存在, 在1495℃时溶碳量最大, 为0.09%。

③α相α相也称铁素体, 用符号F或α表示, 是碳在α-Fe 中的间隙固溶体, 呈体心立方晶格。

铁素体中碳的固溶度极小, 室温时约为0.0008%, 600℃时为 0.0057%, 在727℃时溶碳量最大, 为0.0218%。

铁素体的性能特点是强度低、硬度低、塑性好。

其机械性能与工业纯铁大致相同。

④γ相相常称奥氏体, 用符号A或γ表示, 是碳在γ-Fe中的间隙固溶体, 呈面心立方晶格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100%
3
6.69-0.0218
F%1FeC% 3
组织组成物:变态莱氏体 Ld‘(Fe3C共晶、Fe3CII和P的混合物)
变态莱氏体的含10量0%:
2 钢和白口铸铁的平衡结晶过程分析
(5)亚共晶白口铸铁的平衡冷却曲线平衡结晶过程
2 钢和白口铸铁的平衡结晶过程分析
(5)亚共晶白口铸铁的平衡冷却曲线平衡结晶过程
生共析转变,生成珠光体 ; 当冷却至4以下时,珠光体P中的α开始发生脱溶
转变,从α中脱出三次渗碳体(Fe3CIII),在此 过程中,α的成分沿着P-Q线变化 。
2 钢和白口铸铁的平衡结晶过程分Fe3C析II
(3)过共析钢的平衡结晶过P程 T12钢金
L 1 L 2 3 F C 4 e P F C e 相
(6)过共晶白口铸铁的平衡冷却曲线平衡结晶过程
在1温度点以上,合金处于液态;
当冷却至1温度点时,合金开始发生L→Fe3C匀 晶转变,生成初晶渗碳体( Fe3C 初) 。
在1→2的冷却过程中,一直发生L→Fe3C匀晶 转变,不断生成初晶渗碳体( Fe3C 初); 在匀晶转变过程中,液相成分沿着液相线DC变化。
F3 C e % 0 6 ..7 6 7 9 0 0 ..0 02 2 1 1 1% 0 8 8 0 1% 2
珠光体形貌 500×
组织组成物 : P (层片状)
含量: 100%
珠光体形貌800×
2 钢和白口铸铁的平衡结晶过程分析 (2)亚共析钢的平衡冷却曲线平衡结晶
2 钢和白口铸铁的平衡结晶过程分析
2 钢和白口铸铁的平衡结晶过程分析
(4)共晶白口铸铁的平衡冷却曲线平衡结晶过程
在1温度点以上,合金处于液态;
当冷却至1温度点时,合金开始发生 L4.3→γ2.11+Fe3C共晶转变,生成莱氏体(即: γ2.11+Fe3C的混合组织),并且在此温度点完成 组织转变;
在1→2的冷却过程中,共晶体中的γ2.11发生 脱溶转变,生成二次渗碳体;在脱溶转变过 程中, γ 的成分沿着E-S线变化;
到5温度点时,剩余γ的成分与S点相同,此时剩 余的γ发生共析转变,生成珠光体P;
当冷却至5温度以下时,珠光体P中的α和α先开始 发生脱溶转变,从α和α先中脱出三次渗碳体 (Fe3CIII);
在转变过程中,α的成分沿着P-Q线变化 。
2 钢和白口铸铁的平衡结晶过程分析
F
(2)亚共析钢的平衡结晶过程
到2温度点时,匀晶转变结束,并且有液相剩 余,剩余液相的成分与C点相同;在此温度下, 剩余的液相发生共晶转变,生成莱氏体。
2 钢和白口铸铁的平衡结晶过程分析
(6)过共晶白口铸铁的平衡冷却曲线平衡结晶过程
在2→3的冷却过程中,莱氏体中的γ2.11发 生脱溶转变,生成二次渗碳体;
在脱溶转变过程中,莱氏体中γ的成分沿着 E-S线变化。
当冷却至2温度点时, γ 的成分与S点相同, 此时剩余的γ 发生共析转变,生成珠光体。
2 钢和白口铸铁的平衡结晶过程分析
(4)共晶白口铸铁的平衡冷却曲线平衡结晶过程
L 1 L L 1 ` d L 2 d L ` d
相组成物:F+Fe3C 相得相对含量:
4.3-0.0218
FeC%
3
6.69-0.0218
F%1FeC% 3
组织组成物:Ld‘(Fe3C共晶、 Fe3CII和P的混合物)+ Fe3CII+P
2 钢和白口铸铁的平衡结晶过程分析
(5)亚共晶白口铸铁的平衡冷却曲线平衡结晶过程
组织组成物:Ld‘(Fe3C共晶、Fe3CII和P的混 合物)+ Fe3CII+P
Ld`% X2.1110% 0 4.32.11
白口铸铁(C以
铸铁
Fe3C形式存在)
亚共晶铸铁(2.11%-4.3%)
(C%>2.11%)
过共晶铸铁(4.3%-6.69%)
灰铸铁(C以G
形式存在)
2 Fe-C合金的分类 Fe-C合金分类
2 钢和白口铸铁的平衡结晶过程分析
(1)共析钢的冷却曲线及平衡结晶过程
2 钢和白口铸铁的平衡结晶过程分析
45钢金相
L 1 L 2 ( L ) L 3 4 5 P P
相组成物:F+ Fe3C
相的相对 F% 含 6.6量 9 X1: 10% 0 6.69
FC e%1F% 3
组织组成物:F、P
X-0.0218
P% 1
10% 0
0.770.0218
F%1P%
2 钢和白口铸铁的平衡结晶过程分析 (3)过共析钢的平衡冷却曲线平衡结晶过
4-2 Fe-C合金平衡结晶过程分 析
江西理工大学应科院材料教研室 钟涛生
1 Fe-C合金的分类
工业纯铁
(C%<0.0128%)
共析钢(C%=0.77%)
铁 钢(0.0128%-

2.11%)
亚共析钢(0.0218%-0.77%) 过共析钢(0.77%-2.11%)

共晶铸铁(C%=4.3%)

相组成物:F+Fe3C
相得相对含量:
X-0.0218
FeC%
Байду номын сангаас
100%
3
6.69-0.0218
F%1FeC% 3
2 钢和白口铸铁的平衡结晶过程分析
(6)过共晶白口铸铁的平衡冷却曲线平衡结晶过程
组织组成物:Ld‘(Fe3C共晶、 Fe3CII和P的混合物)+ Fe3C初
过共晶白 口铸铁金

Ld`% 6.69X 10% 0 6.694.3
(1)共析钢的冷却曲线及平衡结晶 过程
在1温度点以上,合金处于液态;
当冷却至1温度点时,合金开始发生L→γ匀晶转变, 生成γ ;
在1→2的冷却过程中,一直发生L→ γ匀晶转变,不 断生成γ ,直到2温度点时匀晶转变结束,液相消 失全部转变成γ ;
在2→3的冷却过程中,一直保持单相的γ状态,其成 分不发生变化;
(PFeC )%1Ld`% 3 II
亚共晶白 口铸铁金

P% (1L`d% 6.)6 92.11 6.6 90.77
2.1 1 0.77
FC e% (1L`d% )
3 II
6.6 9 0.77
X500
2 钢和白口铸铁的平衡结晶过程分析
(6)过共晶白口铸铁的平衡冷却曲线平衡结晶过程
2 钢和白口铸铁的平衡结晶过程分析
Fe3C初%1Ld`%
X1000
当冷却至2温度点时,莱氏体中γ的成分与S 点相同,此时剩余的γ 发生共析转变,生 成珠光体。
2 钢和白口铸铁的平衡结晶过程分析
(6)过共晶白口铸铁的平衡冷却曲线平衡结晶过程
L 1 L F3 C e 初 2 L L d F3 C e 初 2` L d F3 C e 初 F3 C e II 3 L` d F3 C 初 e
在1温度点以上,合金处于液态;
当冷却至1温度点时,合金开始发生L→γ匀晶转变, 生成γ 。
在1→2的冷却过程中,一直发生L→γ匀晶转变, 不断生成初晶奥氏体(γ初);
在转变过程中, γ的量不断增多,液相的量不断 减少,且液相和固相γ的成分分别沿着液相线B-C 和固相线J-E变化。
到2温度点时,匀晶转变结束,有液相剩余,剩余液 相的成分与C点相同,γ初的成分与E点相同,在此温 度下,剩余的液相发生共晶转变,生成莱氏体。
相线B-C和固相线J-E变化。 在2→3的冷却过程中,一直保持单相的γ状态,其成
分不发生变化。
2 钢和白口铸铁的平衡结晶过程分析 (3)过共析钢的平衡结晶过程
在3到4的冷却过程中, γ 发生脱溶转变,析出 二次渗碳体(Fe3CII又叫做先共析渗碳体);
在脱溶过程中,γ的成分沿着E-S线变化; 当冷至4时,剩余γ的成分与S点相同,此时γ发

2 钢和白口铸铁的平衡结晶过程分析 (3)过共析钢的平衡结晶过程
在1温度点以上,合金处于液态; 当冷却至1温度点时,合金开始发生L→γ匀晶转变,
生成γ 。 在1→2的冷却过程中,一直发生L→γ匀晶转变,γ的
量不断增多,L的量不断减少。 直到2温度点时匀晶转变结束,液相消失全部转变成
γ; 在匀晶转变过程中,液相和固相γ的成分分别沿着液
在2→3的冷却过程中,剩余的液相发生L→γ匀晶转变,生 成γ ,
在匀晶转变过程中,液相和固相γ的成分分别沿着B-C线和 J-E线变化;
到3温度点时,液相消失。
2 钢和白口铸铁的平衡结晶过程分析 (2)亚共析钢的平衡结晶过程
在3→4的冷却过程中,一直保持单相的γ ,其 成分不发生变化;
在4→5的冷却过程中, γ发生γ→α异晶转变, 生成先共析铁素体α先,在转变过程中, γ和α 成分分别沿着G-S线和G-P线变化;
2 钢和白口铸铁的平衡结晶过程分析
(5)亚共晶白口铸铁的平衡冷却曲线平衡结晶过程
L 1 L 2 L L d 2 ` L d
2 ` ` L d FC e 3 L` d P FC e
3 II
3 II
相组成物:F+Fe3C 相得相对含量:
FeC% X-0.0218100%
(2)亚共析钢的平衡结晶过程
在1温度点以上,合金处于液态;
当冷却至1温度点时,合金开始发生L→δ匀晶转变,生成δ。
在1→2的冷却过程中,一直发生L→δ匀晶转变,不断生成δ, δ的量↗, L的量↘ ;
在匀晶转变过程中,液相和固相的成分分别沿着液相线A-B 和固相线A-H变化;
到2温度点时,B点成分的液相和H点成分的δ相发生包晶反 应,生成γ ,包晶转变结束后有液相剩余;
在当冷至3温度点时, γ发生共析转变,全部生成珠 光体(Fe3C和α 的机械混合物);
相关文档
最新文档