人教版高中数学高一-A版必修3练习古典概型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[A 基础达标]
1.同时投掷两颗大小完全相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是( )
A .3
B .4
C .5
D .6
解析:选D.事件A 包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.
2.下列关于古典概型的说法中正确的是( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k n
. A .②④ B .①③④
C .①④
D .③④
解析:选B .根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B .
3.下列是古典概型的是( )
(1)从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小;(2)同时掷两颗骰子,点数和为7的概率;
(3)近三天中有一天降雨的概率;(4)10个人站成一排,其中甲、乙相邻的概率.
A .(1)(2)(3)(4)
B .(1)(2)(4)
C .(2)(3)(4)
D .(1)(3)(4)
解析:选B .(1)(2)(4)为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而(3)不适合等可能性,故不为古典概型.
4.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ∪B 中任取一个元素,则它是集合A ∩B 中的元素的概率是( )
A.23 B .35
C.37 D .25
解析:选 C.A ∪B ={2,3,4,5,6,7,9},A ∩B ={2,3,6},所以由古典概型的概
率公式得,所求的概率是37
. 5.把一枚骰子投掷两次,观察出现的点数,记第一次出现的点数为a ,第二次出现的
点数为b ,则方程组⎩
⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为( ) A.512 B .1112
C.513 D .913
解析:选B .点(a ,b )取值的集合共有36个元素.方程组只有一个解等价于直线ax +
by =3与x +2y =2相交,即a 1≠b 2
,即b ≠2a ,而满足b =2a 的点只有(1,2),(2,4),(3,6),共3个,故方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为3336=1112.
6.甲、乙两人随意入住三间空房,则甲、乙两人各住一间房的概率是________.
解析:设房间的编号分别为A 、B 、C ,事件甲、乙两人各住一间房包含的基本事件为:甲A 乙B ,甲B 乙A ,甲B 乙C ,甲C 乙B ,甲A 乙C ,甲C 乙A 共6个,基本事件总数
为3×3=9,所以所求的概率为69=23
. 答案:23
7.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙想的数字记为b ,且a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,则称“甲、乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.
解析:数字a ,b 的所有取法有36种,满足|a -b |≤1的取法有16种,所以其概率为P =1636=49
. 答案:49
8.(2016·石家庄检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.
解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13
. 答案:13
9.(2014·高考山东卷)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区
A B C 数量 50 150 100
(1)求这6件样品中来自A ,B ,C 各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解:(1)因为样本容量与总体中的个体数的比是
650+150+100=150
, 所以样本中包含三个地区的个体数量分别是:
50×150=1,150×150=3,100×150
=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.
(2)设6件来自A ,B ,C 三个地区的样品分别为:
A ;
B 1,B 2,B 3;
C 1,C 2.
则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,
B 3},{A ,
C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有: {B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.
所以P (D )=415,即这2件商品来自相同地区的概率为415
. 10.(2016·长沙联考)某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512
,求甲的停车费为6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.
解:(1)设“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .
由已知得P (B )=13,P (C +D )=512
. 又事件A ,B ,C ,D 互斥,所以P (A )=1-13-512=14
. 所以甲的停车费为6元的概率为14
. (2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;
而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,
所以所求概率为316
. [B 能力提升]
1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )
A .P 10=110P 1
B .P 10=19
P 1 C .P 10=0 D .P 10=P 1
解析:选D.摸球与抽签是一样的,虽然抽签的顺序有先后,但只需不让后人知道先抽的人抽出的结果,那么各个抽签者中签的概率是相等的,并不因抽签的顺序不同而影响到其公平性.所以P 10=P 1.
2.(2014·高考课标全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.
解析:两本不同的数学书用a 1,a 2表示,语文书用b 表示,由Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4
种,故所求概率为46=23
.