八年级上实数复习教案
初中实数复习课教案
初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。
2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。
3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。
4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。
5. 能运用实数的概念和性质解决实际问题。
二、教学重难点1. 实数的分类和实数与数轴的关系。
2. 相反数和绝对值的性质。
3. 实数的四则运算。
三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。
四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。
2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。
通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。
(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。
(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。
3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。
4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。
5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。
五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。
六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。
通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
八年级数学上学期第二章实数复习课教案
八年级数学上学期第二章实数复习课教案教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点教学重难点重点:系统的掌握第二章的知识(掌握实数的意义、分类、混和运算以及比较大小、估算、在数轴上表示无理数)。
难点:1.实数的混和运算;2.在数轴上表示无理数。
教学过程一、出示教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点二、概述本章内容引导学生系统地回顾本章所学的所有内容:本章我们分别学习了6节内容:第一节,数怎么又不够用了。
在这一节中我们引入了无理数,并学习了无理数的概念(问:无理数的概念世什么?)。
第二节,平方根。
在这一节中我们学习了无理数的表示方法、平方根的意义(问:平方根的意义世什么?怎样求一个正数和0的平方根?负数有平方根吗?)。
第三节,立方根。
在这一节中我们学习了一个任意数的立方根(问:立方根与平方根有什么区别?)。
第四节,公园有多宽。
在这一节中我们学习了平方根和立方根的实际运用(问:怎样对一个无理数进行估值?比较大小的方法?)。
第五节,用计算器开方。
在这一节中我们进一步学习了计算器的用法。
第六节,实数。
在这一节中我们学习了实数的意义和分类,以及实数的混合运算(实数怎样分类?)。
三、分类完成目标(一)问题导学一1、理解无理数的意义;2、会区分无理数和有理数练一练1.在实数0.3 ,,0 ,,0.123456 … 中,其中无理数的个数是()A.2B.3C.4D.52.边长为1的正方形的对角线长是()A. 整数B. 分数C. 有理数D. 不是有理数3、下列说法中正确的是( )A.和数轴上的点一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都是无理数4、下列说法正确的是( )A.两个无理数的和是无理数B.有理数与无理数的差都是有理数C.带分数线的数一定是有理数D.开方开不尽 的数是无理数(二) 问题导学二1、理解平方根和立方根的意义 ;2、会运用平方根和立方根的意义解题。
(完整版)《实数》复习课教案
《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
实数复习教案
实数复习教案教案标题:实数复习教案教学目标:1. 复习实数的基本概念和性质;2. 强化学生对实数运算规则的理解和应用能力;3. 提高学生解决实际问题时运用实数的能力。
教学内容:1. 实数的基本概念回顾:a. 整数、有理数和无理数的定义;b. 实数的分类和表示方法;c. 实数在数轴上的位置表示。
2. 实数的性质复习:a. 实数的比较和大小关系;b. 实数的加法、减法、乘法和除法规则;c. 实数的绝对值和相反数的性质;d. 实数的乘方和开方运算。
3. 实数运算的应用:a. 实际问题的建模和解决方法;b. 利用实数进行计算和推理;c. 实数在几何问题中的应用。
教学步骤:Step 1: 概念回顾和讲解(约10分钟)a. 复习整数、有理数和无理数的定义;b. 引导学生回顾实数的分类和表示方法;c. 通过示例,帮助学生理解实数在数轴上的位置表示。
Step 2: 性质复习和讲解(约15分钟)a. 复习实数的比较和大小关系,引导学生掌握比较运算的规则;b. 强化实数的加法、减法、乘法和除法规则,通过练习题提高学生的运算能力;c. 复习实数的绝对值和相反数的性质,帮助学生理解和应用;d. 复习实数的乘方和开方运算,解释运算规则和性质。
Step 3: 实数运算的应用(约20分钟)a. 引导学生分析实际问题,建立数学模型;b. 通过例题和练习题,让学生应用实数进行计算和推理;c. 引导学生将实数运用于几何问题,加深对实数在几何中的理解。
Step 4: 练习与巩固(约15分钟)a. 给学生一些练习题,巩固所学的实数知识和运算规则;b. 鼓励学生解答问题时进行思考和讨论;c. 对学生的答案进行讲解和指导。
Step 5: 总结与反思(约5分钟)a. 总结本节课的重点内容和要点;b. 鼓励学生提出问题和疑惑;c. 引导学生思考如何将实数知识应用到实际生活中。
教学资源:1. 实数的定义和性质的讲解材料;2. 数轴和实数的图示工具;3. 实际问题的应用练习题。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。
2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。
二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。
三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。
2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。
五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。
六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。
2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。
八年级实数复习课教案
八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
八年级实数复习课教案
八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解和掌握实数的概念,能够正确运用实数进行运算。
(2)了解实数在数轴上的表示方法,能够根据实数的大小关系进行排序。
(3)掌握实数的性质,如相反数、倒数等,并能运用性质解决实际问题。
2. 过程与方法:(1)通过复习实数的概念,加深对实数体系的理解。
(2)借助数轴,直观地理解实数的大小关系。
(3)运用实数的性质,解决实际问题,提高解决问题的能力。
3. 情感态度与价值观:(1)培养学生的数学思维能力,提高对实数的认识。
(2)激发学生学习数学的兴趣,培养学生的自主学习能力。
二、教学内容1. 实数的概念及其分类:有理数、无理数、实数。
2. 实数的运算:加法、减法、乘法、除法。
3. 实数在数轴上的表示:数轴的概念、实数与数轴的关系、实数的大小比较。
4. 实数的性质:相反数、倒数、绝对值。
5. 实数与实际问题的结合:运用实数解决实际问题。
三、教学重点与难点1. 教学重点:(1)实数的概念及其分类。
(2)实数的运算规则。
(3)实数在数轴上的表示方法。
(4)实数的性质及其应用。
2. 教学难点:(1)实数的大小比较。
(2)实数的性质的理解与运用。
四、教学过程1. 复习导入:(1)回顾实数的概念,引导学生复习实数的分类:有理数、无理数、实数。
(2)通过实例,让学生回顾实数的运算规则。
2. 课堂讲解:(1)讲解实数在数轴上的表示方法,引导学生理解实数与数轴的关系。
(2)讲解实数的性质,如相反数、倒数、绝对值,并通过实例演示性质的应用。
3. 练习与讨论:(1)布置练习题,让学生巩固实数的运算规则。
(2)分组讨论,让学生合作解决实际问题,培养学生的团队合作能力。
五、课后作业1. 完成练习册上的相关题目。
教学反思:本节课通过复习导入、课堂讲解、练习与讨论等环节,使学生对实数的概念、分类、运算、数轴表示、性质等有了更深入的理解。
在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,培养学生的自主学习能力。
八年级上实数复习教案
教学目标:通过对实数的复习,让学生掌握实数的基本概念及运算规则,培养学生的实际问题解决能力。
一、知识要点:1.实数的定义及分类2.实数的运算规则3.实数的性质及应用二、教学过程:1.导入新知,复习实数的定义及分类(10分钟)2.复习实数的运算规则(20分钟)(1)基本运算法则教师以例题的形式讲解实数的加减乘除运算,引导学生回忆实数的运算规则。
学生可以根据需要,借助白板或课本进行演算,完整记录计算过程。
(2)混合运算教师布置一些综合运算的习题,要求学生独立完成,同时要求学生在解题过程中,标注并运用实数的运算规则。
学生可以自主选择解题方法,也可以创新解题方法,拓展解题思路。
3.复习实数的性质及应用(20分钟)(1)稀疏性、比较关系和无穷性教师以例题的形式复习实数的稀疏性、比较关系和无穷性,并引导学生深入思考这些性质在实际问题中的应用。
(2)表示和运用实数教师提供一些实际问题,要求学生通过画图、列式等方式表示和运用实数,并给出解决问题的详细步骤和答案。
同时,教师可以让学生互相交换问题并尝试解答,以增加答题的多样性。
4.深化学习,拓展应用(30分钟)教师设计一些探究性问题或案例分析,要求学生通过调查、研究等方式深化学习,并拓展实数在不同学科中的应用。
学生可以选择合适的方法和工具,进行数据收集、分析和总结,最终呈现研究结果。
5.温故知新,评价反思(10分钟)教师设计一些简单的选择题或应用题,要求学生回答并解释自己的答案。
同时,教师还可以就本节课的教学过程和内容,引导学生分享自己的学习感悟和体会。
教师可以根据学生的表现和回答情况,进行针对性的评价和建议。
三、教学反思及延伸本节课通过复习实数的定义、分类、运算规则、性质及应用,让学生巩固和拓展对实数的理解和应用能力。
教师通过灵活运用多种教学手段和方法,引导学生主动思考和解决问题,提高学生的实践能力和创新意识。
同时,教师鼓励学生积极参与学习,加强合作交流,提高学生的团队协作和沟通能力。
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类1.1 实数的定义与性质理解实数的定义:实数是包括有理数和无理数的所有数。
掌握实数的性质:实数具有加法、减法、乘法、除法等运算性质,以及相反数、绝对值等概念。
1.2 实数的分类掌握有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数。
理解无理数:不能表示为两个整数比的数,如π和√2等。
第二章:实数的运算2.1 实数的加减法掌握加减法的运算规则:同号相加减去绝对值,异号相加减去绝对值较大的数。
能够熟练进行实数的加减法运算。
2.2 实数的乘除法掌握乘除法的运算规则:同号相乘除为正,异号相乘除为负。
能够熟练进行实数的乘除法运算。
第三章:实数的倒数与绝对值3.1 实数的倒数理解倒数的概念:一个数的倒数是1除以该数。
能够求出一个实数的倒数。
3.2 实数的绝对值理解绝对值的概念:一个数的绝对值是该数到原点的距离。
能够求出一个实数的绝对值。
第四章:实数的大小比较4.1 实数的大小比较法则掌握实数的大小比较法则:正实数大于负实数,负实数大于正实数,两个正实数比较大小按数值大小比较。
能够判断两个实数的大小关系。
4.2 实数的排序理解实数排序的方法:按数值大小进行排序。
能够对给定的实数进行排序。
第五章:实数的应用5.1 实数在几何中的应用理解实数在几何中的应用:坐标系中点的坐标表示。
能够利用实数表示几何图形中的点、线、面等。
5.2 实数在生活中的应用理解实数在生活中中的应用:长度、面积、体积等量的表示。
能够运用实数解决实际问题。
第六章:实数的乘方与开方6.1 实数的乘方理解乘方的概念:一个数的乘方是该数自乘的结果。
能够计算实数的乘方。
6.2 实数的开方理解开方的概念:一个数的开方是该数的平方根。
能够计算实数的开方。
第七章:实数与代数式的运算7.1 实数与代数式的加减法掌握实数与代数式加减法的运算规则:同类项相加减,不同类项不能直接相加减。
能够熟练进行实数与代数式的加减法运算。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
北师大版八年级上册第二章实数复习培优教案
一、教学内容
北师大版八年级上册第二章实数复习培优教案:
1.实数的定义及其分类;
2.有理数的性质与运算法则;
3.无理数的理解与估算;
4.实数的数轴表示及大小比较;
5.实数的混合运算;
6.实数在实际问题中的应用。
二、核心素养目标
1.理解实数的概念,培养学生的数学抽象素养,使其能够把握数的本质属性;
-实数的概念及其分类:理解实数的定义,掌握有理数与无理数的区别,明确实数的包含关系。
-举例:解释有理数的有限小数和无限循环小数特性,以及无理数的无限不循环特性,如π和√2等。
-实数的数轴表示:能够准确地在数轴上表示实数,并进行大小比较。
-举例:在数轴上标出√3和2的位置,并比较它们的大小。
-实数的混合运算:掌握实数的加减乘除运算法则,特别是带根号的运算。
2.通过实数的性质与运算,提升学生的逻辑推理能力和数学运算能力;
3.利用数轴和估算无理数,增强学生的直观想象和数学建模能力;
4.在解决实际问题时,提高学生的数据分析能力和数学应用意识;
5.通过实数的学习,引导学生形成严谨的科学态度和良好的数学学习习惯,培养其终身学习的素养。
三、教学难点与重点
1.教学重点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾实数的基本概念。实数是包含有理数和无理数的数集,它们在数轴上有着广泛的应用。实数的重要性在于它们可以精确地描述自然界中的各种量。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个边长为√2的正方形,我们如何计算它的面积?通过这个案例,我们可以看到实数在实际问题中的应用。
-实数的运算规则:特别是无理数的运算,学生容易混淆运算规则,导致计算错误。
八年级(上)第二章实数复习教案
一•实数的组成有理数八年级(上)第二章复习实数1)数轴法:数轴上右边的点表示的数总大于左边的点表示的数2)比差法:若a-b>0 则a>b;若a-b<0 则a<b;若a-b=0 贝U a=b3)比商法:A.两个数均为正数时,a/b>1则a>b;a/b<1则a<bB.两个数均为负数时,a/b>1则a<b ;a/b<1则a>bC.一正一负时,正数 >负数4)平方法:a、b均为正数时,若a2>b2,则有a>b;均为负数时相反5)倒数法:两个实数,倒数大的反而小(不论正负)正整数「整数[零〔负整数〔分数冇限小数或循环小数正分数负分数■[正无理外无眼不循环小数负无理数J实数又可分为正实数,零,负实数2•数轴:数轴的三要素一一原点、正方向和单位长度。
数轴上的点与实数一一对应二•相反数、绝对值、倒数1.相反数:只有符号不同的两个数称为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零.性质:互为相反数的两个数之和为2•绝对值:表示点到原点的距离,数a的绝对值为| a | 3. 倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为a .0没有倒数。
4. 相反数是它本身的数只有0,;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是土1.三、平方根与立方根1•平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作.a (a> 0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2•立方根:如果一个数的立方等于a,则称这个数为a立方根。
数a的立方根用3a表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
北师大版 八年级上册 第二章《实数复习》 教学设计
第二章《实数复习》教学设计
议
22
23
33(0)x a x a x a x a x a x a a x
x a x a x a x a x a a a ⎧⎧⎨
⎪⎪⎩⎨
⎧⎪⎨⎪⎩⎩
⎧=⎪⎪==±⎨⎪=⎪⎩
⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式
二次根式最简二次223333()(0)()(0,0)(0,0)
a a a a a a a a a a
b ab a b a
a a
b b b ⎧⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎧⎨⎪⎨
⎪⎪⎩⎪
⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪
⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪
⎪⎪=≥≥⎪⎪⎩⎪
⎪⎩
根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用
梳理本章知识结构,建立知识网络,回顾本章知识点
实数分类及其相关概念
无理数的倒数化成最简二次根式
分类讨论的思想
数形结合
在数轴上表示无理数,会
比较无理数的大小,表示
无理数的整数部分和小
数部分
比较平方根、算数平方
根、立方根,进一步理解
它们的本质
通过对平方根、算数平方
根、立方根的练习,掌握练
易错点,提升能力。
八年级实数复习课教案
八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,包括有理数和无理数。
(2)掌握实数的性质,如整数、分数、正数、负数、相反数、绝对值等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,加深对实数概念的理解。
(2)通过例题讲解和练习,提高学生解决实数运算问题的能力。
(3)培养学生的逻辑思维能力和数学表达能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的学习态度。
(2)培养学生的团队合作精神,学会与他人交流和讨论。
二、教学内容1. 实数的定义及分类:有理数和无理数。
2. 实数的性质:整数、分数、正数、负数、相反数、绝对值等。
3. 实数的运算方法:加、减、乘、除、乘方等。
三、教学重点与难点1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)无理数的概念及其与有理数的区别。
(2)实数运算的复杂问题解决方法。
四、教学过程1. 导入新课:(1)复习实数的定义及分类,引导学生回顾已学知识。
(2)提问学生实数的性质和运算方法,检查学生的掌握情况。
2. 教学实数的定义及分类:(1)通过讲解和示例,引导学生理解实数的定义。
(2)介绍有理数和无理数的分类,并举例说明。
3. 教学实数的性质:(1)通过讲解和示例,引导学生掌握实数的性质。
(2)进行实数性质的练习,巩固学生的理解。
4. 教学实数的运算方法:(1)通过讲解和示例,引导学生学会实数的运算方法。
(2)进行实数运算的练习,提高学生的运算能力。
五、作业布置2. 完成课后练习题,巩固所学知识。
3. 准备课堂小测验,测试学生对实数的掌握程度。
六、教学评估1. 课堂问答:通过提问学生实数的定义、性质和运算方法,评估学生对知识的掌握程度。
2. 课后作业:检查学生完成的课后练习题,评估学生对实数运算的掌握情况。
3. 课堂小测验:进行课堂小测验,评估学生对实数的整体掌握程度。
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。
二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。
三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。
四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。
五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。
第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。
二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。
三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。
四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。
五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。
第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。
二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。
(八年级数学教案)实数复习
实数复习八年级数学教案〖教学目标〗(-)知识目标1用对比的方法复习概念2•熟练实数的运算(二)能力目标1•引导学生梳理和归纳本章内容,把本章的学习内容纳入学生自己的知识体系2•通过典型问题的分析,对重点知识有进一步的认识.(三)情感目标通过介绍我国古代数学家刘徽及祖冲之关于圆周率n的研究成果,对学生进行爱国主义教育.〖教学重点〗1. 无理数、实数概念的理解2. 实数的运算K教学难点〗无理数的概念的理解〖教学过程〗一、课前布置1.阅读P121~P122回顾与反思,自己尝试着归纳本章的内容.整理出本章的难点、重点,找出自己的疑点,盲点,出错点.2•查阅"圆周率n有关资料圆周率n趣闻在日常生活中,人们经常与n打交道。
自行车、汽车的轮胎是圆的,茶杯口是圆的,天上的月亮看起来也是圆的,圆的周长与直径之比是一个常数,这个常数就是n当代数学大师、着名的美籍华裔数学家陈省身教授感慨道:"n这个数渗透了整个数学!"有的数学家甚至说:"历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一面旗帜。
"中华民族历史上对圆周率n的研究,有着卓越的成就,曾一度领先于世。
根据历史学家的考证,早在夏代以前原始部落时期,我国就有圆形的建筑物和器皿。
在中国最早的算书《周髀算经》(公元前2世纪理,已经指出了"圆径一而周三"(即n =3)西汉末年、王莽命刘歆(公元前50-23年)制定度量的新标准根据推算,他所用的圆周率有3.1547,3.1992,3.1498,3.2031等几个值,而没有统一的标准,但已经比径一周三更进一步了。
东汉张衡(公元78-139年)认为n = =3.162比印度、阿拉伯数学家算出同样结果约早500年。
三国魏景元四年(公元263年),数学家刘徽在整理《九章算术》一书时,提出了"割圆术"。
他从圆内接六边形算边,令边数一倍一倍地增加,逐个算出六边形、十二边形、二十四边形、四十八边形、九十六边形、一百九十二边形周长与直径的比值,得到了n的近似值为3.14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上实数复习教案 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】
八年级(上)第二章复习 实数 一·实数的组成
实数又可分为正实数,零,负实数
2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应
二·相反数、绝对值、倒数
1. 相反数:只有符号不同的两个数称为相反数。
数a 的相反数是-a 。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a 的绝对值为
3.倒数:乘积为1的两个数互为倒数。
非0实数a 的倒数为a
1.0没有倒数。
4.相反数是它本身的数只有0,;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1.
三、平方根与立方根
1.平方根:如果一个数的平方等于a ,这个数叫做a 的平方根。
数a 的平方根记作 (a ≥0) 特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a 的正的平方根也叫做a 的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a ,则称这个数为a 立方根 。
数a 的立方根用 表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根(三次方根)的运算,叫做开立方。
正确理解: 、 、 、 几个性质: 、 、
、 四·实数的运算 1. 有理数的加法法则:
a )同号两数相加,取相同的符号,并把绝对值相加;
b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法则:减去一个数等于加上这个数的相反数。
3.乘法法则:
a )两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.
b )几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正
c )几个数相乘,只要有一个因数为0,积就为0
4.有理数除法法则:
a )两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。
0除以任何非0实数都得0。
b )除以一个数等于乘以这个数的倒数。
5.有理数的乘方:
在a n 中,a 叫底数,n 叫指数
a )正数的任何次幂都是正数;负数的偶次幂是正数,奇次幂是负数;0的任何次幂都是0
b )a 0=1(a 不等于0)
6.有理数的运算顺序:
a )同级运算,先左后右
b )混合运算,先算括号内的,再乘方、开方,接着算乘除,最后是加减
五·实数大小比较的方法
1)数轴法:数轴上右边的点表示的数总大于左边的点表示的数
2)比差法:若a-b>0则a>b ;若a-b<0则a<b ;若a-b=0则a=b
3)比商法:A.两个数均为正数时,a/b>1则a>b ;a/b<1则a<b
B.两个数均为负数时,a/b>1则a<b ;a/b<1则a>b
C.一正一负时,正数>负数
4)平方法:a 、b 均为正数时,若a 2>b 2,则有a>b ;均为负数时相反
5)倒数法:两个实数,倒数大的反而小(不论正负) 二次根式知识点归纳
定义:一般的,式子
a ( a ≥ 0 ) 叫做二次根式。
其中“”叫做二次根号,二次根号下的
a 叫做被开方数。
a
±a a -a ±3a | |a a =a =3a a =()
0≥a
性质:1、a (a ≥0)是一个非负数。
即a ≥0
2、()a a =2(a ≥0) 4、 (a ≥0,b ≥0) 反过来: (a ≥0,b ≥0) 5、 (a ≥0,b >0) 反过来, (a ≥0,b >0) 一、选择题
1. 如在实数0,- , ,|-2|中,最小的是( ).
A .32
- B . -3 C .0 D .|-2|
2. 四个数-5,-,12
,3中为无理数的是( ). A. -5 B. - C. 12 D. 3
3. (-2)2的算术平方根是( ).
A . 2
B . ±2
C .-2
D . 2
4. 12x +有意义,则x 的取值范围为( )
≥12 B. x≤12 ≥12- ≤12
- 5. 已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 ( )
(A)0>m (B)0<n
(C)0<mn (D)0>-n m
6. 下列运算正确的是( )
A .(1)1x x --+=+
B 954=
C 3223=.222()a b a b -=-
7.若0)3(12=++-+y y x ,则y x -的值为 ( )
A .1
B .-1
C .7
D .-7
b a ab •=6、最简二次根式:
1.被开方数不含分母;
2.被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式.
7、同类二次根式:几个二次根次化成最简二次根式以后
如果被开数相同,这几个二次根式就叫做同类二次根式
8、数的平方根与二次根式的区别:①4的平方根为±2,
算术平方根为2;②=2,二次根式即是算术平方根
9、二次根式化运算及化简:①先化成最简 ②合并同类项
8.下面计算正确的是( ) A.3333+= B.2733÷= C.2+3= 5 D.2(2)2-=-
9. 下列计算正确的是( )
(A ) ()088=-- (B ) (C )011--=() (D ) 10. 下列说法正确的是( )
A.0
)2(π是无理数 B.33是有理数 C.4是无理数
D.38-是有理数
11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,O A 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
(A ) (B )2 2 (C ) 3 (D ) 5
12. 对于实数a 、b ,给出以下三个判断:( )
①若b a =,则 b a =. ②若b a <,则 b a <.
③若b a -=,则 22)(b a =-.其中正确的判断的个数是( )
A .3
B .2
C .1
D .0
13. 设a =19-1,a 在两个相邻整数之间,则这两个整数是( )
A .1和2
B .2和3
C .3和4
D .4和5
二、填空题
14. 已知a 、b 为两个连续的整数,且28a b <<,则a b += .
15.一个正数的平方根为m -2与63+m ,则=m ,这个正数是 .
16. 比较下列实数的大小:①140 12 ② 5.0;
17.按下面程序计算:输入x=3,则输出的答案是___ .
1221=⨯)()(--2
2-|-|=215-
18. 如图,是一个数值转换机.若输入数为3,则输出数是______.
19. 规定一种新的运算: ,则=⊗21____.
三、解答题
20、计算:(1) (2)
21. 计算:(1) (2) (3)
22. 计算:(1)|-1|-128-(5-π)0 (2).
23.计算:(1) 2
1418122
-+- (2) 2)352(- 1451081125328
4)23()21(01--+-⨯- 24. 已知:3x 22x y --+-=,求:4y x )(+的值。
25.解方程 (1)27)1(32=-x ; (2)0125
8133=+x 第一课件网系列资料 . 输入数 ( )2-1 ( )2+1 输出数 减去5 016|-4|+20113
0)2(4)2011(2
3-÷+---。