心理统计知识点完整版整理
心理统计学提纲
心理统计学复习提纲一、解释概念抽样与样本随机化原则统计量与参数相关与相关系数集中量数差异量数随机事件的概率描述统计推断统计置信区间假设与假设检验第Ⅰ型错误第Ⅱ型错误等级相关点二列相关二列相关总体与个体参数的点估计统计分组统计图统计表二、简答题1.描述一个班的考试成绩,其主要统计指标是什么?试说明其理由。
2、心理统计学的主要内容是什么?3、心理统计学研究问题的基本步骤是什么?4、什么是集中量数,试述其种类与用途。
5、什么是差异量数,试述其种类与用途。
6、积差相关、等级相关、点二列相关、二列相关系数各自使用条件的条件是什么?试写出它们的计算公式。
7、统计假设检验的基本原理是什么?8、统计假设检验中可能存在的错误有哪些?如何使犯错误的风险减小?9、概率运算的基本法则是什么?写出它们的使用条件和公式。
10、什么是抽样误差,什么是均数的标准误,简述均数标准误与总体标准差之间的关系。
11、一个规范的统计表主要由哪几个部分组成?试对各部分的意义作说明。
12、一个规范的统计图主要由哪几个部分组成?试对各部分的意义作说明。
13、试述算术平均数的作用与优缺点。
14、试述方差与标准差的作用与优缺点。
15、卡方检验的主要用途是什么?16、方差分析的基本原理及其前提条件是什么?17、优良的点估计的标准是什么?18、回归分析的主要内容是什么?三、计算题1、某市为研究会考与高考成绩之间的关系,从全市随机抽取被试10人,得到英语的成绩如下: (1)求各次考试成绩的平均数; (2)求各次考试成绩的标准差: (3)求两次考试成绩之间的相关系数; (4)试对两次考试成绩之间的差异作显著性检验。
,33.19,86.17,66,67====Y X Y X σσN Y Y Y Y L N X X X X L YY XX2222222)()(,31901067048080)()(∑-∑=-∑==-=∑-∑=-∑==373810660472982=-28311066067047951))((=⨯-=∑∑-∑=--∑=NYX XY Y Y X X L XY 8198.0373831902831=⨯==YY XX XY XY L L L r 本题为相关小样本资料,用t 检验。
心理统计相关知识总结(9)
推论统计推论统计(inferential statistics):从总体中随机抽取样本,根据样本数据分析结果推论总体数量性质和特征的统计分析方法。
其理论基础主要是概率论。
主要内容包括:总体参数估计、假设检验、方差分析、回归分析和非参数检验方法等。
参数统计(parametric statistics):如果总体分布形态已知,根据样本信息对总体参数进行估计或假设检验的统计分析方法。
非参数统计(nonparametric statistics):如果总体分布形态未知或知之甚少,根据样本信息对总体性质和特征进行统计推断的统计分析方法。
主要特点有:(1)在利用样本资料对总体进行推断时,不必依赖于总体分布规律,故亦称“自由分布统计”;(2)通常不需对总体参数(如均值、标准差)进行估计或检验;(3)适用于不同测量水平的数据,可用于计数数据或测量数据。
统计规律性(statistical regularity):由大量同类随机现象所呈现出来的整体规律性。
概率论和数理统计就是研究此类规律性的数学分支学科。
在自然界,在生产、生活中,随机现象十分普遍。
同类随机现象大量重复出现时,其总体会呈现一定的统计规律性,这种规律性会随观测次数增多而愈加明显。
如掷硬币,每一次投掷很难判断是哪一面朝上,但是如果多次重复掷这枚硬币,就会越来越清楚地发现两面朝上的次数大体相同。
自由度(degree of freedom):在以样本的统计量估计总体参数时,样本中独立或能自由取值的变量个数。
用df表示。
通常df=n-h,其中n为样本含量,k为被限制的条件数或变量个数。
通常用于抽样分布。
如估计总体平均数时,由于样本中n个数据相互独立,从中抽取任何一个都不影响其他数据,所以其自由度为n;在估计总体方差时,使用样本离差平方和,样本均值就相当于一个限制条件,估计总体方差的自由度为n-1。
稳健统计1(robust statistics):研究当总体假设稍有变化、所采集数据存有一定程度错误或偏差时,统计方法的适应性问题的理论和方法。
心理学统计总结
心理与教育学统计第一章.绪论一.统计方法在心理和教育科学研究中的研究1.心理与教育统计的定义与性质(1)定义:是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
(2)数理统计学:分析这种随机变量的规律性,它的理论基础是专门研究随机现象的科学——概率论,侧重于基本原理与方法的科学证明。
心理与教育统计:侧重于数理统计方法如何在心理和教育科学研究中的应用,是心理与教育科学研究中最广泛应用的,也是最基本的一种定量化工具。
2.数据特点:多以数字形式呈现、随机性、规律性、研究目的是通过部分数据来推测总体特征。
二.心理与教育统计学的内容1.描述统计:主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质。
具体内容:数据如何分组(统计图表)、计算一组数据的特征值(集中量数、差异量数)、表示一事物两种或两种以上属性间相关关系的描述。
2.推论统计:研究如何透过局部数据所提供的信息,推论总体的情形。
推论统计的原理和理论包括:抽样理论、估计理论、统计检验理论。
3.实验设计三.心理与教育统计学基础概念1.数据类型:(测量方法和来源):计数数据和计量数据(测量水平)称名数据、顺序数据、等距数据、等比数据。
(连续性)离散数据:任何两个数据点之间所取得数值的个数是有限的。
连续数据:任何两个数据点之间都可以细分出无限多个大小不同的数值。
进一步细分,取决于:测量技术所允许的精确程度、测量所需要的精确程度。
2.变量、观测值、随机变量变量:在心理与教育实验、观察、调查中想要获得的数据,即为一个可以取不同数值的物体的属性或事件,其数值具有不确定性。
观测值:一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据。
随机变量:在统计上,把取值之前不能预料到取什么值的变量,就称为随机变量。
心理统计知识点完整版整理
心理统计知识点完整版整理1、描述统计:主要研究如何让整理心理与教育科学实验或调查得来的大量数据。
描述一组数据的全貌,表达一件事物的性质。
2、推论统计:主要研究如何通过局部数据提供的信息,推论总体的情形。
3、根据数据反映的测量水平,将数据分类:称名数据、顺序数据、等距数据、比率数据(书P16概念、举例)是否具有连续性离散数据、连续性数据。
4、连续数据:任意两个数据点之间都可以细分出无限个大小不同的数值。
5、统计量:样本的那些特征值,代表样本的特性。
6、参数:描述一个总体情况的统计指标,代表总体特性是一个常数。
7、组限:分组区间即一个组的起点值和终点值之间的距离;组下限:起点值;组下限:终点值。
组限分类:表述组限,精确组限8、散点图:用相同大小圆点的多少或疏密表示统计资料数量大小以及变化趋势的图。
9、算数平均数的使用原则:同质性原则,平均数与个体数值相结合的原则,平均数与标准差、方差相结合的原则。
10、中数:按顺序排列在一起的一组数据中居于中间位置的数。
11、众数:指在次数分布中出现次数最多的那个数的数值。
12、皮尔逊平均数、中数和众数三者间的关系:Mo=3Md-2M0(M平均数Md中数Mo众数)13、平均差:次数分布中所有原始数据平均数绝对离差的平均值。
14、方差、标准差公式:15、标准差:方差的平方根…..16、差异系数的使用情况:1、标准差的单位不同;2、虽然标注差的单位相同,但两样本的水平不同。
17、标准分数:又称基分数或Z分数,是以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数。
优点:标准分数从分数对平均数的相对低位。
该分组的离中趋势两个方面来表示原始分数的地位。
18、事物之间的相互关系:因果关系,共变关系,相关关系19、积差相关的公式:20、肯德尔W系数:适用于两列以上的等级变量;使用情况:A、原始数据资料的获得一半采用等级评定法,让K个被试对N件事物或N种作品进行等级评定,每个评价者都能对N件事物(或作品)的好坏、优劣、喜好、大小、高低登排出一个等级顺序。
心理统计学知识点完整版资料整理
心理统计学知识点完整版资料整理1.数据的概念:在心理统计学中,数据是指信息的收集和组织形式。
数据可以是数字,也可以是文字或符号。
数据的收集可以通过实验、调查、观察等方式进行。
2.数据的分布:在心理统计学中,数据的分布是指通过统计方法和图表来展示数据的特征和规律。
常用的数据分布包括正态分布、偏态分布、均匀分布等。
3.描述性统计:描述性统计是用来描述和总结数据的方法。
常见的描述性统计包括均值、中位数、众数、标准差、变异系数等。
4.推论统计:推论统计是根据样本数据来对总体进行推断的方法。
推论统计主要包括参数估计和假设检验两个方面。
5.参数估计:参数估计是用样本数据来估计总体参数的值。
常见的参数估计方法包括点估计和区间估计。
6.假设检验:假设检验是用来判断总体参数是否满足一些假设的方法。
其中包括设置原假设和备择假设、选择显著性水平、计算统计量、确定拒绝域等步骤。
7.相关分析:相关分析用来研究两个或多个变量之间的关系。
其中最常用的是皮尔逊相关系数,可以用来衡量变量之间的线性相关程度。
8.回归分析:回归分析用来研究一个或多个自变量和因变量之间的关系。
通过回归分析可以得到回归方程,进而预测因变量的值。
9.方差分析:方差分析是一种用来研究多个样本之间差异的方法。
方差分析可以判断不同组之间的均值是否存在显著差异。
10.非参数统计:非参数统计是一种不依赖于总体参数的方法。
非参数统计主要包括秩次统计和分布自由度较小的统计方法。
11.实验设计:实验设计在心理统计学中扮演着重要的角色。
良好的实验设计可以保证实验的可靠性和有效性,并排除干扰因素。
12.抽样方法:抽样方法是指如何从总体中选取样本的方法。
常见的抽样方法包括随机抽样、系统抽样、整群抽样等。
以上是心理统计学的一些主要知识点的简要整理。
了解这些知识点可以帮助我们更好地理解和应用统计方法来分析心理学中的数据。
当然,心理统计学的内容还非常广泛,还有更多的知识点值得深入学习和研究。
大一心理统计学知识点
大一心理统计学知识点心理统计学是心理学的一个重要分支,它研究了与心理学相关的统计方法和技术。
在大一的学习中,我们需要了解一些基本的心理统计学知识点,以帮助我们更好地理解心理学研究中所用到的数据和分析方法。
本文将介绍一些大一心理统计学的重要知识点。
一、数据类型在心理统计学中,数据可以分为两种类型:定性数据和定量数据。
定性数据是指在不进行数值化处理的情况下,仅仅根据属性进行分类的数据。
例如,性别、民族和学历等信息都属于定性数据。
定量数据则是用具体的数值表示的数据,可以进行数值计算和比较。
例如,身高、体重和考试成绩等数据都属于定量数据。
二、测量尺度根据数据的性质和可操作性,心理统计学中通常使用四种测量尺度:名义尺度、顺序尺度、间隔尺度和比率尺度。
名义尺度仅仅对数据进行分类,没有数值上的意义。
顺序尺度除了可以分类,还可以表示数据的大小顺序。
间隔尺度不仅可以分类和顺序排列,还可以比较数据之间的差距。
比率尺度是最完备的测量尺度,除了具备间隔尺度的特点外,还可以进行比率运算。
三、描述统计描述统计是对收集到的数据进行总结和描绘的方法。
常用的描述统计方法包括中心趋势和离散程度的度量。
中心趋势是用来反映一组数据的平均水平的指标,常用的有均值、中位数和众数。
离散程度则是用来反映一组数据的分散程度和差异性的指标,常用的有极差、方差和标准差。
四、正态分布正态分布是心理统计学中最重要的一种分布,也被称为高斯分布或钟形曲线。
它具有对称、单峰和连续的特点。
在心理学研究中,许多变量都呈现出正态分布的特性,因此,对正态分布的了解是非常重要的。
正态分布可以通过计算均值和标准差来描述,均值决定了曲线的中心位置,标准差决定了曲线的宽窄程度。
五、假设检验假设检验是统计推断的一种方法,用于检验对总体或群体特征作出的假设是否成立。
在心理学研究中,我们常常需要根据样本数据对总体特征进行推断和判断。
常见的假设检验方法有单样本t检验、独立样本t检验和相关样本t检验等。
心理统计学重点知识
心理统计学一.描述统计(一)统计图表 1、统计图次数分布图——①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。
②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。
③累加次数分布图:分为累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。
其他统计图:条形图:用于离散型数据资料; 圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。
散点图: 2、统计表①简单次数分布表 ②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。
④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。
(二)集中量数 1、算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数; 计算和运用平均数的原则: 同质性原则;平均数与个体数值相结合的原则; 平均数与标准差、方差相结合原则; 性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C ,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C ,所得的平均数为原来的平均数乘以常数C 2、中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。
注意计算方法;3、众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo 负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。
统计心理学主要知识点归纳
统计心理学主要知识点归纳统计心理学是一门综合应用统计方法于心理学研究中的学科,通过收集、整理和分析大量的数据,旨在揭示心理学现象的规律和关联性。
本文将对统计心理学的主要知识点进行归纳和总结。
一、概率与统计基础概率与统计是统计心理学的基石。
研究者需要了解概率理论和统计学基本概念,如随机变量、概率分布、假设检验等。
概率理论提供了对事件发生概率的量化描述,统计学则提供了对数据的分析和解释的方法。
二、标准化和测量在统计心理学中,测量是一个核心概念。
研究者需要了解不同测量尺度(如名义尺度、顺序尺度、间隔尺度、比例尺度)的特点及其应用。
此外,标准化也是一项重要技术,它可以将原始分数转化为具有标准分布特征的分数,以便进行比较和分析。
三、相关性分析相关性分析用于研究变量之间的关联程度。
研究者经常使用皮尔逊相关系数或斯皮尔曼等级相关系数来度量变量之间的相关性。
这项分析可以帮助研究者确定变量之间的关系,并进一步推断其之间可能存在的因果关系。
四、假设检验假设检验是统计心理学中最常用的方法之一。
它用于检验研究者对事物的某种假设是否成立。
在进行假设检验时,研究者需要明确研究假设、选择适当的统计检验方法,并进行显著性检验以确定结果的可靠性。
五、方差分析方差分析用于比较两个或更多组之间的均值差异,常用于处理实验数据。
研究者需要选择适当的方差分析方法,并进行后续的事后比较分析以确定组间差异是否显著。
六、回归分析回归分析是研究变量之间关系及其影响程度的重要方法。
通过回归分析,研究者可以确定自变量对因变量的解释程度,并进行预测。
常见的回归方法包括线性回归、多元回归和逐步回归等。
七、因子分析因子分析是一种用于研究多个变量之间共同性的方法。
通过因子分析,研究者可以探索变量之间的内在结构,并将其归纳为几个共同的因子,以简化变量的复杂性。
八、统计软件的应用在统计心理学研究中,统计软件的应用非常广泛。
研究者可以使用SPSS、R、Python等工具进行数据分析和处理。
心理统计学精髓知识点
第一节正态分布1 正态分布的特点首先,钟形对称分布其次,的概率是95%;的概率是99%;将称为决策水平0。
05上的小概率事件,将称为决策水平0。
01上的小概率事件。
其中,X是总体中的随机抽取的一个数值;μ为总体平均值,第三,曲线两端无限靠近横轴。
2 应用(1)某学校三年级学生的平均智商是100,其标准差为15。
那么,从中随机抽取一个学生,其智商大于等于130的概率是多少?其智商小于等于85的概率是多少?(2)某企业生产的产品重量均值为100,标准差为15。
质检人员从市场上随机抽取一件,发现其重量为115,仅从质量上看,如何用统计学视角来判断此产品是否属于这一企业(决策水平为0。
05).(3)在上题中,如果质检人员从市场上发现一个产品的重量为140,那么,仅从质量上判断,此产品是否属于这一企业(决策水平为0。
01).3 数据处理一让学生报告自己的身高、体重以及自己的肥胖感知(我认为自己很肥胖)、以及自己的性别。
数据处理任务包括:报告三个变量的茎叶图,并大致判断其分布形态;报告三个变量的平均值、中数以及中位数、标准差.第二节标准正态分布将总体的平均值记为μ,标准差记为σ,将其中的数据或个案记为X。
那么,使用公式,就可以将正态分布转化为标准正态分布。
标准正态分布是正态分布的一个特例,因此,第一节的内容皆可以标准正态分布进行直译。
思考题:标准正态分布的标准差是多少?其平均值又是多少?对于标准正态分布而言,为决策水平0.05上的小概率事件,将为决策水平0。
01上的小概率事件思考题:某地三年级学生的身高是一个总体,并且是正态分布,均值为160厘米,标准差为5厘米。
研究者随机抽取一个学生,其身高为170厘米.那么,此生在标准正态分布中的身高数值应该为多少?这次抽到他是一个小概率事件吗?为什么?练习:将“数据处理一”中三个变量转化为标准正态分布,并报告其茎叶图。
第三节样本均值的分布1 存在一个非常数总体,无论其为何种分布.并且此总体平均值μ与标准差σ已知。
心理统计知识点总结
心理统计知识点总结一、概率论基础1. 概率的概念概率是描述不确定事件发生的可能性大小的数学工具。
在心理统计学中,概率的概念是最为基础的,它是研究随机事件发生规律的重要工具。
对于心理学研究中的一些数据,比如随机实验结果、样本分布等,都可以用概率论的方法来进行研究和分析。
2. 随机变量和概率分布随机变量是描述随机试验结果的一种数学抽象,它是对可能的试验结果的一种量化描述。
概率分布则是用来描述随机变量可能取值的规律。
心理学研究中常见的随机变量有多种类型,比如二项分布、正态分布等,它们都可以用来描述心理学中一些随机试验的结果。
3. 样本空间和事件空间在概率论中,样本空间是指随机试验中所有可能结果的集合,而事件空间则是样本空间中的一个子集,表示某一特定事件发生的可能性。
在心理学研究中,样本空间和事件空间的概念是用来描述研究对象的各种可能结果和事件的可能发生的空间。
4. 条件概率和贝叶斯定理条件概率是指在某一事件发生的条件下,另一事件发生的概率。
贝叶斯定理则是用来描述两个事件之间的相互关系的定理。
在心理学研究中,条件概率和贝叶斯定理可以用来分析一些复杂的事件之间的概率关系,从而揭示心理学中一些复杂事件之间的规律。
二、描述统计学1. 中心趋势的度量中心趋势是用来描述一组数据集中趋向于集中的程度。
心理学研究中,常用的中心趋势度量有均值、中位数、众数等。
这些度量方法可以用来描述一组数据的集中趋势,从而揭示一组数据的集中程度。
2. 离散程度的度量离散程度是用来描述一组数据分散程度的度量。
心理学研究中,常用的离散程度度量有标准差、方差、极差等。
这些度量方法可以用来度量一组数据的分散程度,从而揭示一组数据的分散程度。
3. 正态分布和假设检验正态分布是一种最为常见的概率分布,它在心理学研究中有着重要的应用。
假设检验则是用来检验一组数据是否符合某种特定分布的方法。
在心理学研究中,正态分布和假设检验可以用来判断一组数据是否符合正态分布,从而进行后续的统计分析。
心理统计学
推断统计的方法有:
(1) 记数资料检验方法。包括:比例检验、卡方检验等; (2) 假设检验的各种方法。包括:大样本的检验方法(z检 验法);小样本的检验方法(t 检验法);方差分析; 回 归分析方法等; (3) 总体特征数(总体参数)的估计方法; (4) 各种非参数的统计方法。
理论统计学:
指统计学的数学原理。它主要研究 统计学的一般理论和统计方法的数学理 论。它是统计学的理论基础。
1.5.2总体、样本、个体
总体(Population):指具有某种特征 的一类事物的全体,又称母体。
个体(Element):构成总体的每个基 本单元。
样本(Sample):从总体中抽取的一
部分个体,即总体的一个子集。
1.5.3 次数、频率、百分比、概率
1、次数(Frequency):也叫频数,落在各类别中 的数据个数。 2、频率:也叫相对次数或比例,一个总体中各个部 分的数量占总体数量的比重。 3、百分比(Percentage):比例乘以100就是百分 比或百分数。 4、比率(Ratio):各不同类别的数量的比值。 5、概率:某一事件发生的可能性大小的量。
区别:
(1)数学研究的是抽象的数量规律,而统计学 是研究具体的、实际现象的数量规律;数学研 究的是没有量纲或单位的抽象的数,而统计学 研究的是有具体实物或计量单位的数据。
(2)二者使用的逻辑方法不同。数学是纯粹的 演绎,而统计学是演绎与归纳相结合。
1.3.2 统计学与其他学科的关系
统计方法可以帮助其他学科探索学科内 在的数量规律性,而对这种数量规律性的解 释并进而研究各学科内在的规律,只能由各 学科的研究来完成。统计方法仅仅是一种有 用的定量分析的工具,它不是万能的,不能 解决我们想要解决的所有问题。
心理统计学
第四章重点知识本章核心概念:1、差异量数分为:绝对差异量数和相对差异量数2、绝对差异量数:标准差:标准差是一组数据中每个数据与其算术平均数之差的平方和,除以总的数据个数,再求算术平方根。
方差:标准差是一组数据中每个数据与其算术平均数之差的平方和,除以总的数据个数四分差:四分差通常用符号Q来表示,指在一个次数分配中,中间50%的次数的全距之半,也就是上四分点与下四分点之差的一半。
3、相对差异量数:差异系数:差异系数,又称变异系数、相对标准差等,使一组数据标准差与平均数的比率。
通常用符号CV表示。
4、另外,本章还讲到相对地位量数:标准分数,百分等级。
标准分数:它是一个数与平均数之差除以标准差所得的商数,它无实际单位。
百分等级:指任意分数在整个分数分布中所处的百分位置。
本章重点难点:差异量数的概念及适用条件;各种差异量数的计算方法;标准分数及百分等级的概念、适用条件及计算方法。
知识要点详情:一、标准差1、概念及计算公式方差的平方根,用s或SD表示,若用σ表示,是指总体的标准差。
方差与标准差是最常用的描述次数分布离散程度的差异量数。
2、标准差的适用条件(1)与算术平均数配合使用,与算术平均数的适用条件相同。
即一组数据的一般水平适合(2)用算术平均数描述时,其离散程度宜用标准差描述;(3)计算其他统计量时,如差异系数,标准分数,相关系数等,需要用到标准差;(4)在推论统计中,尤其是进行方差分析时,常用方差表示数据的离散程度。
3、标准差的计算方法(1)基本公式法(2)原始数据法(3)分组资料标准差的计算方法(4)由各部分的标准差合成总标准差的计算方法4、方差和标准差的意义方差与标准差是表示一组数据离散程度的最好的指标。
其值越大,说明离散程度大,其值小说明数据比较集中,它是统计描述与统计分析中最常应用的差异量数。
它基本具备一个良好的差异量数应具备的条件:①反应灵敏;②有一定的计算公式严密确定;③容易计算;④适合代数运算;⑤受抽样变动的影响小;⑥简单明了。
《心理统计学》重要知识点
《心理统计学》重要知识点《心理统计学》重要知识点第二章统计图表简单次数分布表的编制:Excel数据透视表列联表(交叉表):两个类别变量或等级变量的交叉次数分布,Excel数据透视表直方图(histogram):直观描述连续变量分组次数分布情况,可用Excel图表向导的柱形图来绘制散点图(Scatter plot):主要用于直观描述两个连续性变量的关系状况和变化趋向。
条形图(Bar chart):用于直观描述称名数据、类别数据、等级数据的次数分布情况。
简单条形图:用于描述一个样组的类别(或等级)数据变量次数分布。
复式条形图:用于描述和比较两个或多个样组的类别(或等级)数据的次数分布。
圆形图(circle graph)、饼图(pie graph):用于直观描述类别数据或等级数据的分布情况。
线形图(line graph):用于直观描述不同时期的发展成就的变化趋势;第三章集中量数● 集中趋势和离中趋势是数据分布的两个基本特征。
● 集中趋势:就是数据分布中大量数据向某个数据点集中的趋势。
● 集中量数:描述数据分布集中趋势的统计量数。
● 离中趋势:是指数据分布中数据分散的程度。
● 差异量数:描述数据分布离中趋势(离散程度)的统计量数● 常用的集中量数有:算术平均数、众数(M O )、中位数(M d )1.算术平均数(简称平均数,M 、X 、Y ):n x X i∑= Excel 统计函数AVERAGE算术平均数的重要特性:(1)一组数据的离均差(离差)总和为0,即0)(=-∑x x i(2)如果变量X 的平均数为X ,将变量X 按照公式bx a y +=转换为Y 变量后,那么,变量Y 的平均数X b a Y +=2.中位数(median ,M d ):在一组有序排列的数据中,处于中间位置的数值。
中位数上下的数据出现次数各占50%。
3.众数(mode ,M O ):一组数据中出现次数最多的数据。
4.算术平均数、中数、众数之间的关系。
心理统计重点
1、心理统计学以大量的心理随机现象的数量表现和数量关系作为自身的研究对象,包括统计设计、统
计描述和统计推断。
2、统计资料分为称名资料(不能加减乘除)、等级资料(归类)、等距资料(加减)、比率资料(加
减乘除)
3、资料的来源:原始记录、统计报表、抽样调查、实际观察
4、审查资料的程序:初步检查、逻辑检查、抽样复核
5、集中量数是用来描述暑假分布规律的集中趋势或集中程度的特征量数,分为平均数、中位数、众数、
百分数和几何平均数
6、强度(率)、结构相对数(构成比)、比较相对数(相对比)、动态相对数(发展率)五种相对数。
【注意构成比和率的区别:构成比只能说明比重或分布,不能说明发生的频率或强度】
7、以均数为中心,中间频数众多,两侧逐渐减少左右基本对称频数或频率分布,称之为(近似)正态
分布
8、σ越小,曲线就越“高而瘦”,σ越大,曲线就越“矮而胖”;μ越小,曲线沿横轴越向左平行
移动;μ越大,曲线沿横轴越向右平行移动
9、差度的概念Z=X-μ/σ
10、标准差与标准误的区别(由于符号难打,请参考课本P183)
11、回归分析和相关分析的异同:都是研究两个或两个以上变量的统计分析方法,但相关分析是研究变量之间是否存在相关关系及其关系的变化方向和密切程度,而回归分析则是研究变量之间依存变化的数量关系,解决以下问题:建立数学表达式;进行预测或控制;进行因素分析。
12、统计设计的原则(科学设计的原则也差不多):目的性、再现性、可行性、经济性
13、非参数检验都有:符号检验(检验相关样本差异)、秩和检验(两总体或多总体的观测值有无倾向性不同)、等级方差分析(多组计量资料的差异比较)。
心理统计学常用概念总结
1.描述统计:是对成组数据概括的描述。
描述统计的指标有三类:数据的集中趋势,数据的离中趋势,数据间的相关。
2.推论统计:方法包括从样本的数量特性推测总体数量特性的一系列问题:推论假设,推论的各种方法和步骤,以及检验推测可靠性的各种方法。
3.组距:每一组上限和下限的差。
(组距习惯上常用2,3,5,10,20)4.中点:在某一组的下限和上限当中的那一点。
5.集中趋势:是代表一系列数据的典型水平的数字指标,代表集中趋势的指标有平均数,中数和众数。
6.平均数(x):是一组数据总和的平均值。
7.中数(mdn):一系列按大小顺序排列的数据中的一个点,在这个系列中有一半数据在这个点以上,有一半数据在这个点以下。
8.众数(mo):在一系列数据中出现次数最多的那个数。
9.全距:一个分布中最大的数值的上限减去最小数值的下限,就得到全距。
(全距大,说明这组数据分散;全距小,则较集中。
使用时注意:1、无极端值;2、比较两个分布的全距时,当两个分布所包含数据的数目相等或差不多时才能使用)10.离中趋势:是表示一组数据分散程度的指标,常用的指标有:全距,四分差,平均差和标准差。
(如果离中趋势很小,说明数据分布都在平均数附近变动,因此平均数的代表性很大;如果离中趋势太大,说明数据分布太分散)11.四分差(q):是数据的离中趋势的指标之一,四分差说明按大小顺序排列的一系列数据中间50%个数据的分散程度。
(如果一个分布中间部分的数据比较集中,则两个四分点q3与q1就离得近些,q的值就小些。
)12.百分点:某次数分布中处于某百分等级的数值。
13.百分等级:某数值在某次数分布中所处的位置。
14.平均差(ad):一个分布中每个变量和平均数的差的绝对值的平均值。
15.标准差:s2开方后的正值就叫标准差,是数据的离中趋势的指标之一。
16.离中系数(cv):用相对量来表示数据分散程度的数字指标。
17.相关程度:指相关是否密切,可分为无相关;部分相关;完全相关。
现代心理与教育统计学知识点
现代心理与教育统计学知识点心理统计学第一章概述描述统计定义:研究如何把心理与教育科学实验或调查得来的大量数据科学的科学的加以整理概括和表述作用:使杂乱无章的数字更好的显示出事物的某些特征,有助于说明问题的实质。
具体内容:1数据分组:采用图与表的形式。
2计算数据的特征值:集中量数(平均数中数)离散量数(方差)3计算量事物间的相关关系:积差相关(2列 3列多列)推断统计定义:主要研究如何利用局部数据(样本数据)所提供的信息,依据数理统计提供的理论和方法,推论总体情形。
作用:用样本推论总体。
具体内容:1如何对假设进行检验。
2如何对总体参数特征值进行估计。
3各种非参数的统计方法。
心理与教育统计基础概念数据类型一从数据来来划分 1计数数据:计算个数或次数而获得的数据。
(都是离散数据)2测量数据:借助一定测量工具或测量标准而获得的数据。
(连续数据)二根据数据所反映的测量水平 1称名数据(分类)定义:指用数字代表事物或数字对事物进行分类的数据。
特点:数字只是事物的符号,而没有任何数量意义。
统计方法:百分数次数众数列联相关卡方检验等。
(非参检验)2顺序数据(分类排序)定义:指代事物类别,能够表明不同食物的大小等级或事物具有的某种特征的程度的数据。
(年级)特点:没有相等单位没有绝对零点。
不表示事物特征的真正数量。
统计方法:中位数百分位数等级相关肯德尔和谐系数以及常规的非参数检验方法。
3等距数据(分类排序加减(相等单位))(真正应用最广泛的数据)定义:不仅能够指代物体的类别等级,而且具有相等的单位的数据。
(成绩温度)特点:真正的数量,能进行加减运算,没有绝对零点,不能进行乘除计算。
统计方法:平均数标准差积差相关 Z检验 t检验 F检验等。
4比率数据(分类排序加减法乘除法(绝对零点))定义:表明量的大小,也具有相等单位,同时具有绝对零点。
(身高反应时)特点:真正的数字,有绝对零点,可以进行加减乘除运算。
在统计中处理的数据大多是顺序数据和等距数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、描述统计:主要研究如何让整理心理与教育科学实验或调查得来的大量数据。
描述一组数据的全貌,表达一件事物的性质。
2、推论统计:主要研究如何通过局部数据提供的信息,推论总体的情形。
3、根据数据反映的测量水平,将数据分类:称名数据、顺序数据、等距数据、比率数据(书P16概念、举例)是否具有连续性离散数据、连续性数据。
4、连续数据:任意两个数据点之间都可以细分出无限个大小不同的数值。
5、统计量:样本的那些特征值,代表样本的特性。
6、参数:描述一个总体情况的统计指标,代表总体特性是一个常数。
7、组限:分组区间即一个组的起点值和终点值之间的距离;组下限:起点值;组下限:终点值。
组限分类:表述组限,精确组限
8、散点图:用相同大小圆点的多少或疏密表示统计资料数量大小以及变化趋势的图。
9、算数平均数的使用原则:同质性原则,平均数与个体数值相结合的原则,平均数与标准差、方差相结合的原则。
10、中数:按顺序排列在一起的一组数据中居于中间位置的数。
11、众数:指在次数分布中出现次数最多的那个数的数值。
12、皮尔逊平均数、中数和众数三者间的关系:Mo=3Md-2M0(M平均数Md中数Mo众数)
13、平均差:次数分布中所有原始数据平均数绝对离差的平均值。
14、方差、标准差公式:
15、标准差:方差的平方根…..
16、差异系数的使用情况:1、标准差的单位不同;2、虽然标注差的单位相同,但两样本的水平不同。
17、标准分数:又称基分数或Z分数,是以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数。
优点:标准分数从分数对平均数的相对低位。
该分组的离中趋势两个方面来表示原始分数的地位。
18、事物之间的相互关系:因果关系,共变关系,相关关系
19、积差相关的公式:
20、肯德尔W系数:适用于两列以上的等级变量;使用情况:A、原始数据资料的获得一半采用等级评定法,让K个被试对N件事物或N种作品进行等级评定,每个评价者都能对N件事物(或作品)的好坏、优劣、喜好、大小、高低登排出一个等级顺序。
因此,最小等级序数为1,最大等级数据为N,这样K个评价者便可得到K列从1至N的等级变量资料;B、一个评价者先后K次评价N件事物或N件作品,也是采用等级评定法,这样也可得到K列从1至N的等级变量资料。
21、肯德尔U系数适用:评价者对偶比较的方法,即将N件事物两两配对,可配成……..对,然后对每一对中两事物进行比较,择优选择,优者记1,非优者记0,最后整理所有评价者的评价结果。
公式:
22、点二列相关:多用于评价由是非类测验题目组成的测验的内部一致性等问题。
23、二列相关适用条件:两列数据均属于正太分布,其中一列变量为等距或等比的测量数据,另一列变量为人为划分的二分变量。
(二列相关系数的取值在-1.00~1.00之间。
绝对值越接近1.00,其相关程度越高。
)
24、概率:表明随机事件出现可能性大小的客观指标。
25、二项分布:试验仅有两种不同性质结果的概率分布。
26、二项分布(书P179)
27、样本分布:指样本统计量的分布,它是统计推论的重要依据。
(重点:Z分布t分布P184)
28、置信区间:指在某一置信度时,总体参数所在的区域距离或区域长度。
置信区间的上下二端点值称为置信界限。
29、计算自由度:书P268
30、方差分析的基本假定:1、总体正态分布2、变异的相互独立性3、各试验处理内的方差要一致。
31、事后检验:书P285
32、x2检验的原理:书P292(有大题)
33、X^2检验的假设:1、分类相互排斥,互不包容;2、观测值相互独立;3、期望次数的大小。