八年级数学轴对称填空选择单元练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学轴对称填空选择单元练习(Word版含答案)
一、八年级数学全等三角形填空题(难)
1.如图,在△ABC中,AB=8,AC=5,AD是∠BAC的角平分线,点D在△ABC内部,连接AD、BD、CD,∠ADB=150°,∠DBC=30°,∠ABC+∠ADC=180°,则线段CD的长度为
________.
【答案】3
【解析】
【分析】
在AB上截取AE=AC,证明△ADE和△ADC全等,再证BDE是等腰三角形即可得出答案.【详解】
在AB上截取AE=AC
∵AD是∠BAC的角平分线
∴∠EAD=∠CAD
又AD=AD
∴△ADE≌△ADC(SAS)
∴ED=DC,∠ADE=∠ADC
∵∠ADB=150°
∴∠EDB+∠ADE=150°
又∵∠DBC=30°,∠ABC+∠ADC=180°
∴∠ABD+∠DBC+∠ADC=180°
即∠ABD +∠ADC=150°
∴∠ABD=∠EDB
∴BE=ED
即BE=CD
又AB=8,AC=5
CD=BE=AB-AE=AB-AC=3
故答案为3
【点睛】
本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.
2.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CDE=55°.如图,则∠EAB的度数为_________
【答案】35°
【解析】
【分析】
过点E作EF⊥AD于F,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出∠AEB,再根据直角三角形两锐角互余求解即可.
【详解】
过点E作EF⊥AD于F.
∵DE平分∠ADC,∴CE=EF.
∵E是BC的中点,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分线,∴∠EAB=∠FAE.
∵∠B=∠C=90°,∴∠CDA+∠DAB=180°,∴2∠CDE+2∠EAB=180°,
∴∠CDE+∠EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.
故答案为:35°.
【点睛】
本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的判定,熟记性质并
作辅助线是解题的关键.
3.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
【答案】217
【解析】
【分析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.
【详解】
作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,∴∠ABD+∠CBE=90°,
又∠DAB+∠ABD=90°,
∴∠BAD=∠CBE,
又AB=BC,∠ADB=∠BEC.
∴△ABD≌△BCE,∴BE=AD=3,
在Rt△BCE中,根据勾股定理,得34
在Rt△ABC中,根据勾股定理,
得22342217
+=⨯=
AB CB
故答案为17
【点睛】
本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.
4.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE
上一点,AF ⊥AE ,且C 是线段AF 的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
【分析】
由题意可证的△ABF ≌△ACE,可得△AEF 为等腰直角三角形,取AF 的中点O ,连接CO 交BE 与点G ,连接AG ,可得△AGF, △AGE,△CEG 均为等腰直角三角形,可得AG 平行等于CE ,可得四边形AGCE 为平行四边形,可得FD 的长.
【详解】
解:如图
Rt △ABC 中,AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE ⊥CE ,∠DAE 为∠BAC 与EAF 的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE ⊥CE ∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠ABF=∠ACE ,
在△ABF 与△ACE 中,有
AB AC BAF CAE ABF ACE =⎧⎪∠=∠⎨⎪∠=∠⎩
,∴△ABF ≌△ACE , ∴AE=AF, △AEF 为等腰直角三角形, 取AF 的中点O ,连接
CO 交BE 与点G ,连接AG, C 是线段AF 的垂直平分线上的点,易得△AGF, △AGE,△CEG 均为等腰直角三角形, 2 ∴AG=GE=CE=FG=2,
又AG ⊥BE,CE ⊥BE,可得AG ∥CE,
∴四边形AGCE 为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
5.已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,