传热学第四版第5章汇总
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第四版 杨世铭 陶文铨 第五章2
0(1)、0()表示数量级为1和 ,
0 y :
2014-7-10
1>> 。“~” — 相当于
10
R
青岛科技大学热能与动力工程
对流换热微分方程组的简化
二维、稳态、无内热源、层流、忽略体积力
u v x y 0 u u p 2u 2u u ( u v ) Fx ( 2 2 ) x y x x y 2 2 v v v p v v ( u v ) Fy ( 2 2 ) x y y x y 2 2 t t t t t c ( u v ) ( 2) p 2 x y x y
表明:此情况下动量传递与热量传递规律相似 特别地:对于 = a 的流体(Pr=1),速度场与无量纲 温度场将完全相同 并且 =t
2014-7-10 17
R
青岛科技大学热能与动力工程
对于平板dp/dx = 0,解出温度场后可得层流条件下的表面传 热系数为
记 Pr = /a,为普朗特数,有
/a是动量扩散与热扩散能力之比
由于粘性作用,流体 流速在靠近壁面处随 离壁面的距离的减小 而逐渐降低;在贴壁 处被滞止,处于无滑 移状态
2014-7-10 4
R
青岛科技大学热能与动力工程
从 y=0、u=0 开始,u 随着 y 方向 离壁面距离的增加而迅速增大;经 过厚度为 的薄层,u 接近主流速 度 u
y = 薄层 —— 流动边界层 或 速度边界层
2014-7-10 9
R
青岛科技大学热能与动力工程
三、边界层换热微分方程组
边界层概念的引入可使换热微分方程组得以简化 数量级分析:比较方程中各量或各项的量级的相对大小;保留 量级较大的量或项;舍去那些量级小的项,方程大大简化 5个基本量的数量级: 主流速度: 温度: 壁面特征长度: 边界层厚度: x 与 l 相当:
传热学第四版杨世铭陶文铨第五章2
y = 薄层 —— 流动边界层
或 速度边界层
— 边界层厚度
定义:u/u=0.99 处离壁的距离为边界层厚度
小:空气外掠平板,u=10m/s
边界层内:平均速度梯度很大;y=0处的速度梯度最大
2020/3/19
5
R 青岛科技大学热能与动力工程
由牛顿粘性定律:
速度梯度大,粘滞应力大
边界层外: u 在 y 方向不变化, u/y=0
传热学
第五章 对流换热
§5-1 对流换热概述及其数学描述 §5-2 对流换热过程的边界层微分方程组 §5-3 比拟理论 §5-4 相似原理与量纲分析 §5-5 强制对流换热 §5-6 自然对流换热
2020/3/19
1
R 青岛科技大学热能与动力工程
§5-2 边界层微分方程
问题的提出 高度非线性
偏微分方程 ➢ 控制微分方程组 难以得到分 ➢ 边界条件
0 y :
2020/3/19
0(1)、0()表示数量级为1和 , 1>> 。“~” — 相当于
10
R 青岛科技大学热能与动力工程
对流换热微分方程组的简化
➢ 二维、稳态、无内热源、层流、忽略体积力
u
x
v y
0
( u
u
u x
v
u ) y
Fx
p x
(
2u x2
2u y 2
)
(
v
u
v x
v
v ) y
求解以上方程组可得到速度场和温度 T T 均匀温度
场,利用傅立叶定律可以得到壁面处
的热流密度。
2020/3/19
2
R 青岛科技大学热能与动力工程
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第五章 课后习题答案
车厢外表面温度为 20℃.试估算该火车所需的制冷负荷。
解:火车所需制冷热负荷 Q1 应等于车厢从外界吸收的热量 Q2,即 Q1= Q2
车厢表面换热面积 A = 12 × (9 × 3 + 9 × 2.5) × 2 = 11882
试计算 25℃的空气、水及 14 号润滑油达到的 Rec 数时所需的平板长度,取
u∞=1m/s。
解:由 Re =
∞
得 x=
Re
∞
(1)25℃的空气,v1 = 15.53 × 10−6 2 /,故
x1 =
Re 1 5 × 105 × 15.53 × 10−6
=
= 7.765m
=
= 156.85m
∞
1
5-11 试通过对外掠平板的边界层动量方程式,沿 y 方向做积分(从 y=0 到 y≥δ)
(如附图所示),导出下列边界层的动 + = 量积分方程。提示:在
边界层外边界上 vδ≠0。
∫ (∞ − )ຫໍສະໝຸດ = ( )传热学第五章答案
5-2 对于油、空气及液态金属,分别有 ≫ , ≅ , ≪ ,试就外标等温
平板的层流流动,画出三种流体边界层中速度分布和温度分布的大致图象(要
能显示出δ与 δx 的相对大小)。
解:三种流体边界层中速度和温度分布图像如下图所示
5-8 取外掠平板边界层的流动由层流转变为湍流的临界雷诺数(Rec)为 × ,
= 0.9375Pa
边界层中空气的物性温度取t =
20+120
2
= 70℃
传热学课件第5章
第五章 对流换热原理
传热学C Heat Transfer
§5-1 对流换热概述
一、对流换热的定义和机理
对流换热:流体流过固体壁面时所发生的热 量传递过程。
机理:既有热对流,也有导热,不是基本的热量传 热方式。
传热学C Heat Transfer
二、牛顿冷却公式
hx— 壁面x处局 系部 W 数 ( m 表 2C ) 面
由以上得:
hx
tw
t
t y
y0,x
它揭示了对流换热问题的 本质
传热学C Heat Transfer
五、局部对流换热系数与边界层的关系
传热学C Heat Transfer
平均对流传热系数:
h 1 At
AhxtxdAx
对于长度为 l 的平板:
1. 定义:当流体流过固体壁面时, 由于流体粘性的作用,使得在固 体壁面附近存在速度发生剧烈 变化的薄层称为流动边界层或 速度边界层。
2. 速度边界层厚度d 的规定:速度等于99%主流 速度。
传热学C Heat Transfer
3. 特点:通常情况下,边界层厚度d是比壁面尺度l 小一个数量级以上的小量。 d << l
传热学C Heat Transfer
例如,对于外掠平板的对流换热现象,可以得到雷
诺数Re、普朗特数Pr和努赛尔数Nu。如果是
两个相似的外掠平板的对流换热现象,则必有:
R'eR"e Pr ' Pr" N'uN"u
根据相似的这种性质,在实验中就只需测量各准 则所包括的量,避免了测量的盲目性,解决了实验 中测量那些量的问题。
Gr gtL3 2
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第四版课后题答案解析第五章
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v xy u ∂+-=∂∂+∂∂ρρ根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有 2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第5章
如果Pr =1,则
St x
Cf , x 2
Cf St 2
以上两式称为雷诺比拟式
根据动量传递与热量传递之间的类比性,通过 理论分析建立起描述这两个传递现象的物理量之间 的关系式(称为比拟关系式),再由已知或比较容 易获得的动量传递的规律推测出热量传递的规律, 这种分析方法称为动量传递与热量传递的比拟法。 比拟法曾被广泛用于紊流换热问题的研究。
x
4.64 Re
1/ 2 x
精确解: 4.92 Rex 1/ 2
x
由速度分布及牛顿公式还可求得距前缘 x 处平 板表面的局部切应力和局部摩擦系数 2 0.323 u w,x Rex
Cf , x
w, x 1/ 2 0.646 Rex 2 u / 2
精确解: Cf , x 0.664 Rex 1/ 2
hl 令 Nu Y Y 0 Nu Y Y 0
hl
Y 0
Nu称为平均努塞尔数,等于壁面法线方向上的平 均无量纲温度梯度,大小反映平均对流换热的强弱。
2
对于常物性、无内热源、不可压缩牛顿流体平行 外掠平板稳态对流换热,du //dx=0,方程组简化为 u v U V 0 无量纲化 0 X Y x y 2 U U 1 2U u u u U V u v 2 X Y Re Y 2 x y y 2 1 2 t t t U V u v a 2 X Y Re Pr Y 2 x y y 式中 Re
特征数关联式中变量个数大为减少,更突出地反映相 关物理量之间的依赖关系及其对对流换热的综合影响。 3 外掠平板层流边界层微分方程精确解 对于常物性、 u v 0 无内热源、不可压 x y y = 0, u=v=0, u u 2u 缩牛顿流体平行外 t = tw, u v 掠等壁温平板稳态 x y y 2 y =∞, u=u∞ , t = t∞, 2 层流换热,数学模 t t t u v a 2 型为: x y y 4
传热学-第五章-2汇总
注意:层流
1
1
hx
0.332
x
u
x
2
a
3
1
1
hx x
0.332
u x
2
a
3
Nu x
0.332
Re
1 x
2
Pr
1
3
第五章 对流换热
13
1
1
hx x
0.332
u x
2
a
3
Nux 0.332 Re1x 2 Pr1 3
一定要注意上面准则方程的适用条件:
外掠等温平板、无内热源、层流
特征数方程 或 准则方程
式中:
Nux
hx x
Re x
u x
Pr
a
努塞尔(Nusselt)数
雷诺(Reynolds)数
注意:特征尺 度为当地坐标
x 普朗特数
第五章 对流换热
14
与 t 之间的关系
对于外掠平板的层流流动: u const,
动量方程:
u
u x
v
u y
2u y 2
dp 0 dx
6
3 边界层换热微分方程组 边界层概念的引入可使换热微分方程组得以简化
数量级分析:比较方程中各量或各项的量级的相对大小;保留 量级较大的量或项;舍去那些量级小的项,方程大大简化 例:二维、稳态、强制对流、层流、忽略重力
5个基本量的数量级: 主流速度:u ~ 0(1); 温度:t ~ 0(1); 壁面特征长度:l ~ 0(1);
当壁面与流体间有温差时,会产生温度梯度很大的温 度边界层(热边界层)
第五章 对流换热
4
Tw
y 0, w T Tw 0
传热学【第四版】课后答案
第一章 导热理论基础1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
答:铜>铝>黄铜>碳钢;隔热保温材料导热系数最大值为0.12W/(m •K )膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m •K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m •K )软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m •K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。
3.(1)m k xt /2000=∂∂ , q=-2×105(w/m 2). (2)m k xt /2000-=∂∂, q=2×105(w/m 2). 4. (1),00==x q 3109⨯==δx q w/m 2 (2) 5108.1⨯=νq w/m 35. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。
答:2222211[()]t t t t a r r r r r zτφ∂∂∂∂∂=++∂∂∂∂∂ 6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。
答:2222222111[()(sin )]sin sin t t t ta r r r r r r θτθθθθϕ∂∂∂∂∂∂=++∂∂∂∂∂∂ 7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一温度恒定并等于t f 的液体槽内冷却。
已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。
答:2201[()],0,00,0,0,,()f r R r Rt t r r R c r r r r R t t tr R h t t rλττρττλ==∂∂∂=><<∂∂∂=≤≤=∂>=-=-∂0,0dtr dr== 8. 从宇宙飞船伸出一根细长散热棒,以辐射换热将热量散发到外部空间去,已知棒的发射率(黑度)为ε,导热系数为λ,棒的长度为l ,横截面面积为f ,截面周长为U,棒根部温度为T0。
传热学-第五章
E bλ =
e
c2 (λT )
c1λ − 5 −1
式中, 波长, 黑体温度, 式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 W⋅m2; 第一辐射常数,3.742× c2 — 第二辐射常数,1.4388×10-2 W⋅K; 第二辐射常数,1.4388× 图5-6是根据上式描绘的 黑体光谱辐射力随波长和 温度的依变关系。 温度的依变关系。 λm与 的关系由Wien Wien位移 λm与T 的关系由Wien位移 定律给出, 定律给出,
d Ac d Ω = 2 = sin θ d θ d ϕ r
图5-8
立体角定义图
图5-9
计算微元立体角的几何关系
(5) 定向辐射强度L(θ,ϕ ): 定义:单位时间内,物体在垂直发射方向的单位面积上, 定义:单位时间内,物体在垂直发射方向的单位面积上, 在单位立体角内发射的一切波长的能量,参见图5 10。 在单位立体角内发射的一切波长的能量,参见图5-10。 d Φ (θ , ϕ ) L (θ , ϕ ) = d A cos θ d Ω (6) Lambert 定律 黑体辐射的第 定律(黑体辐射的第
λ2
1
∆Eb =
∫λ
E bλ d λ
图5-7 特定波长区段内的 黑体辐射力
黑体辐射函数: 黑体辐射函数:
Fb(λ1 −λ2 )
∫λ E λ dλ = 1 λ E dλ = 1 λ E dλ − λ E dλ = ∫λ λ σT ∫ λ ∫ λ E λ dλ σT ∫
b
1 2 2 1
图5-12 几种金属导体在不同方向上的定向发射率 2 ε(θ )(t=150℃) ℃
前面讲过,黑体、灰体、 前面讲过,黑体、灰体、白体等都是 理想物体, 理想物体,而实际物体的辐射特性并 不完全与这些理想物体相同,比如, 不完全与这些理想物体相同,比如, (1) 实际物体的辐射力与黑体和灰体 的辐射力的差别见图5 的辐射力的差别见图5-13;(2) 实 际物体的辐射力并不完全与热力学温 度的四次方成正比; 度的四次方成正比;(3) 实际物体的 定向辐射强度也不严格遵守Lambert 定向辐射强度也不严格遵守 Lambert 定律,等等。 定律,等等。所有这些差别全部归于 上面的系数,因此, 上面的系数,因此,他们一般需要实 验来确定,形式也可能很复杂。 验来确定,形式也可能很复杂。在工 程上一般都将真实表面假设为漫发射 面。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘性耗散产生的耗散热可以忽略不计
除高速的气体流动及一部分化工用流体等情况的对流换热 外,对工程中常见的对流换热问题大都可以作上述假定
5-2对流换热问题的数学描写
微元体能量平衡分析
热力学第一定律
dU
d
qm
out
h
1 2
v2
gz out
qm
in
h
1 2
v2
gz in
表面换热系数的一般函数形式
单相强制对流换热,非高速流动时:
h f u,l, ,, , cp
5-1对流换热概说
对流换热的分类
对流换热
无相变
有相变
强制对流 自然对流 混合对流 沸腾换热 凝结换热
5-1对流换热概说
强制对流
内部流动
外部流动
圆管内强制对流
其他形状截面管 道内的对流换热
外掠单根圆 管的对流换热
U
c p dxdy
t
d
5-2对流换热问题的数学描写
微元体能量平衡分析
dτ时间内通过x、y方向各截面进出微元体的焓
x截面流入微元体的焓
qm
in
hin
x
Hx
cputdyd
x+dx截面流出微元体的焓
q m
out
hout
xdx
H xdx
cp
t
t x
dx
u
u x
dx
dyd
5-2对流换热问题的数学描写
实验法
通过实验获得表面传热系数的计算式仍是目前工程设 计的主要依据。为了减少实验次数、提高实验测定结 果的通用性,传热学的实验测定应当在相似原理指导 下进行
5-1对流换热概说
对流换热的研究方法
比拟法
通过研究动量传递及热量传递的共性或类似特性,以 建立起表面传热系数与阻力系数间的相互关系的方法。 应用比拟法,可通过比较容易用实验测定的阻力系数 来获得相应的表面传热系数的计算式
5-1对流换热概说
如何从解得的温度场计算表面传热系数
第一类边界条件时
壁温已知,分析求解的目的是求壁面法线方向的流 体的温度变化率
第二类边界条件时
壁面换热的热流密度已知,分析求解的目的是确定 壁温,从而能由流体主流区的温度,求出上式中的 Δt
第三类边界条件时
表面传热系数已知
3、5
复习题
方式只能是导热。因此,对流换热量就
等于贴壁流体的导热量。
u∞
y xv
δ
5-1对流换热概说
5-1对流换热概说
5-1对流换热概说
5-1对流换热概说
5-1对流换热概说
如何从解得的温度场计算表面传热系数
对流换热表面传热系数的计算式
q t
h t
y
t y
y0
y0
式中λ是流体的导热系数;yt 是流体的温度变化率。
Wnet
流体位能及动能变化小,不考虑摩擦功时的简化
y
dU
d
qm
h out out
qm
in hin
Φy+dy
dτ时间内导热进入微元体的热量
Φx dy
Φx+dx
d
2t x2
2t y2
dxdyd
dx
o
Φy
x
5-2对流换热问题的数学描写
微元体能量平衡分析
dτ时间内微元体的热力学能增量
外掠其他截面形状 柱体的对流换热
外掠平板的 对流换热
外掠圆管 管束的对流换热
射流冲击换热
5-1对流换热概说
自然对流
大空间自然 有限空间自
对流
然对流
5-1对流换热概说
沸腾换热
凝结换热
大容器沸腾 管内沸腾 管外凝结 管内凝结
5-1对流换热概说
对流换热的研究方法
分析法
指对描写某一类对流换热问题的偏微分方程及相应的 定解条件进行数学求解,从而获得速度场和温度场的 分析解方法
数值法
利用计算机求解
5-1对流换热概说
如何从解得的温度场计算表面传热系数
近壁区流体的速度分布和热量传递方式
当粘性流体在壁面上流动时,由于粘性作用,在靠近
壁面的地方流速逐渐减小,而在贴壁处流体将被滞止
而处于无滑移状态。贴壁处这一极薄的流体层相对于
壁面是不流动的,壁面与流体间的热量传递必须穿过
这个流体层,而穿过不流动的流体层的热量传递
5-2对流换热问题的数学描写
对流换热问题数学描写包括的内容
对流换热是通过流体流动进行热量传递的,需了解流体的 速度分布,因此流体力学的质量守恒,动量守恒关系应包 括在内。传热问题需计算温度场分布,能量守恒是其基本 定律,也必须包括在内。 这些守恒定律以微分方程组表达,还需包括定解条件。
5-2对流换热问题的数学描写
换热表面的几何因素
几何因素 指的是换热表面的形状、大小、换热表面与流体运动 方向的相对位置以及换热表面的状态(光滑或粗糙)
不同换热表面的图示
管内流动
横掠圆管流动
热面向上水平壁
热面向下水平壁
5-1对流换热概说
影响对流换热的因素
流体的物理性质
流体密度ρ、动力粘度η、导热系数λ、比定压热容cp都影 响流体的速度分布及热量的传递,因而影响对流换热
传热学
第五章 对流换热的理论基础
课件制作:尹华杰
5-1对流换热概说
定义
流体流过固体壁面情况下所发生的热量交换
影响对流换热的因素
流体流动的因素
自然对流 由于流体内部温度差引起的流体流动
强制对流 由于泵、风机或其他外部动力源造成的流体流动
5-1对流换热概说
影响对流换热的因素
流体有无相变
微元体能量平衡分析
x方向dτ时间内流体净带出微元体的热量
qm
out
houtBiblioteka qminhin x
H xdx
Hx
cp
u
t x
t
u x
dxdyd
y方向dτ时间内流体净带出微元体的热量
qm
out
hout
qm
in
hin y
H ydy
Hy
cp
v
t y
t
v y
dxdyd
5-2对流换热问题的数学描写
dτ时间内流体流动而带出微元体的净热量
qm
out
hout
qm
in
hin
cp
u
t x
v
t y
t
u x
v y
dxdyd
运动流体能量守恒方程的推导
问题简化假设
流动是二维的
流体为不可压缩的牛顿型流体
流体流动切应力与流体流动方向的速度梯度成正比的流体 为牛顿流体;空气、水以及许多工业用油类属牛顿流体
流体流动切应力与流体流动方向的速度梯度成非线性关系 的流体为非牛顿流体;少数高分子溶液如油漆、泥浆属非 牛顿流体
无相变 对流换热是由流体显热的变化实现
有相变 流体相变热的释放或吸收常常起主要作用
5-1对流换热概说
影响对流换热的因素
流体的流动状态
层流 流体微团沿主流方向作有规则的分层流动
湍流 流体各部分之间发生剧烈的混合,在其他条件相同 时湍流换热的强度自然要较层流强烈
5-1对流换热概说
影响对流换热的因素