常用有源功率因数校正电路分类及工作原理分析

合集下载

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。

PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。

PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。

线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。

前一个原因人们是比较熟悉的。

而后者在电工学等书籍中却从未涉及。

功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。

对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。

由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。

这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。

为提高负载功率因数,往往采取补偿措施。

最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。

PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。

长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。

由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。

滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。

根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。

有源功率因数校正

有源功率因数校正

有源功率因数校正(APFC)原理说明本次设计采用boost升压式电路,并采用平均电流控制法(CCM),基于功率因数校正芯片UC3854设计的。

首先看下流程图:这个电路的主要部分是在元件UC3854和BOOST电路。

上图是UC3854的内部结构图。

其主要参数是它的乘法器。

乘法器是功率因素校正器的核心电路。

乘法器电路同时具有三个输入信号:控制电流,输入端电压,输出端电压。

最后,乘法器会输出一个电流。

BOOST电路:有储能电感,高频功率开关管,二极管和电容组成。

Boost 升压型变换器具有电感电流连续、储能电感能抑制RFI 和E.MI 噪声、流波形失真小、输出功率大及驱动电路简单等优点,因此常被用来作为有源功率因数正主电路拓扑。

工作原理:主电路由二极管桥式整流电路与Boost升压型DC-DC变换器组成,控制电路主要由UC3854芯片组成,包括基准电压Ur、电压误差放大器V A、电路误差放大器CA、乘法器M、脉宽调制器PWM及驱动器。

首先,交流电通过全波整流后变成直流电,为双半波正弦信号。

其次,输入电压Uo与基准电压Ur比较后,误差信号经过误差发达器放大后送入乘法器,与全波整流电压取样信号共同送到乘法器输入端,相乘后形成基波电流信号输出,基波电流信号与电流反馈信号经电流误差放大器CA相比较后输出信号,再与锯齿波信号相比较后形成PWM信号驱动功率开关管VT工作。

由于全波整流电压信号Udc为双半波正弦信号,稳定时电压误差放大器输出信号恒定,所以乘法器输出的基准电流信号波形和二极管桥式整流输出电压信号一致,也是双半波正弦信号,与高频的锯齿波信号比较后形成高频的PWM信号驱动开关管VT,可以迫使电感电流信号即输入电流信号在每个周期内按正弦规律变化,且与电路输入电压信号同相位,从而使输入电流跟踪输入电压,尽可能消除电流与电压的相位差,从而实现功率校正,提高功率因数,使功率因数近似为1。

本次设计参照原理图。

有源功率因数校正的分类

有源功率因数校正的分类

有源功率因数校正的分类一、引言有源功率因数校正是一种电力质量控制技术,它可以通过控制电网中的电流和电压来实现功率因数的校正。

在现代工业生产中,有源功率因数校正已经成为了一项重要的技术手段。

本文将介绍有源功率因数校正的分类。

二、静态有源功率因数校正静态有源功率因数校正是通过使用静态电子元器件来实现的。

其主要原理是利用晶闸管等器件对电网中的电流进行调节,从而达到调整功率因数的目的。

静态有源功率因数校正具有响应速度快、效果稳定等优点,但是其缺点也很明显,即成本较高。

三、动态有源功率因数校正动态有源功率因数校正则是通过使用交流电机等动力设备来实现的。

其主要原理是利用交流电机等设备对电网中的电流进行调节,从而达到调整功率因数的目的。

动态有源功率因数校正具有响应速度快、效果稳定等优点,并且成本相对较低。

四、混合型有源功率因数校正混合型有源功率因数校正是将静态有源功率因数校正和动态有源功率因数校正相结合的一种方式。

其主要原理是在电网中同时使用静态电子元器件和交流电机等设备,从而达到调整功率因数的目的。

混合型有源功率因数校正具有响应速度快、效果稳定、成本相对较低等优点,但是其实现难度也相对较大。

五、无刷直流电机型有源功率因数校正无刷直流电机型有源功率因数校正是一种新兴的技术手段。

其主要原理是利用无刷直流电机对电网中的电流进行调节,从而达到调整功率因数的目的。

无刷直流电机型有源功率因数校正具有响应速度快、效果稳定、成本相对较低等优点,并且能够实现高效能转换。

六、总结本文介绍了几种常见的有源功率因数校正分类方法,包括静态有源功率因数校正、动态有源功率因数校正、混合型有源功率因数校正和无刷直流电机型有源功率因数校正。

每种方法都有其特点和适用范围,需要根据具体情况选择合适的方法进行应用。

有源功率因数校正电路(APFC)分析

有源功率因数校正电路(APFC)分析

有源功率因数校正电路(APFC)
2. 功率因数
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
设基波电流i1落后Vi,相位差为α,如下图所示。
Vi 、Ii 波形
有源功率因数校正电路(APFC) AC-DC电路输入功率因数与谐波的关系: 定义总谐波畸变(THD):
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
由此可见,大量应
用整流电路,要求电网 供给严重畸变的非正弦 电流,造成严重的后果, 谐波电流对电网有危害 作用,并且输入端功率 因数下降。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
谐波电流对电网的危害 脉冲状的输入电流,含 有大量谐波。右图给出了输 入电流波形及电流谐波频谱 分析,其中电流的三次谐波 分量达77.5%,五次谐波分 量达50.3%,……总的谐波 分量(或称总谐波失真Total Harmonic Distortion,用 THD表示)为95.6%,输入 端功率因数仅有0.683,非常 的低。
输入电流波形及其谐波分量频谱分析
有源功率因数校正电路(APFC)
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
对AC-DC电路输入端谐波电流的限制 为了减小AC-DC交流电路输入端谐波电流造成的噪 声和对电网产生的谐波“污染”,以保证电网供电质量, 提高电网的可靠性;同时也为了提高输入端功率因数, 已达到节能的效果;必须限制AC-DC电路的输入端谐 波电流分量。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
1. 平均电流模式 2. 峰值电流模式

第8章 功率因数校正电路

第8章 功率因数校正电路

电压模式控制方法: 电压模式控制方法:
而电压模式是与振荡电路产生的固定三角波状电压 斜波比较, 斜波比较,
电流模式控制是一种固定时钟开启、 电流模式控制是一种固定时钟开启、峰 值电流关断的控制方法。 值电流关断的控制方法。
(峰值)电流模式控制不是用电压误差 峰值) 信号直接控制PWM脉冲宽度,而是直接 脉冲宽度,而是直接 信号直接控制 脉冲宽度 控制峰值输出侧的电感电流大小 峰值输出侧的电感电流大小, 控制峰值输出侧的电感电流大小,然后 间接地控制PWM脉冲宽度。 脉冲宽度。 间接地控制 脉冲宽度
将 乘 法 器 的 输 出 作 为 电 流 环 的 给 定 信 号 I s∗, 才 能 保 证 被 控 制 的 电 感 电 流 iL 与 电 压 波 形 ud 一 致 。 I s∗的 幅 值 与 输 出 电 压 u C同 给 定 电
∗ 压 U c 的 差 值 有 关 , 也 与 ud的 幅 值 有 关 。 L1中 的 电 流 检 测 信 号 i F
中的电流有连续和断续两种工作模式, 由于升压电感L1中的电流有连续和断续两种工作模式,因此 可以得到电流环中的PWM信号即开关V 可以得到电流环中的PWM信号即开关V的驱动信号有两种产生 PWM信号即开关 方式: 方式: 一种是电感电流临界连续的控制方式( 一种是电感电流临界连续的控制方式(峰值电流控制方式); 另一种是电感电流连续的控制方式(平均值控制方式) 。 )
6.1.3 有源功率因数校正的电路结构
(a) 双级式
(b) 单级式
图6-5 有源功率因数校正的电路结构
L1 ii ui EMI 滤滤滤 + ud - iF
电流给定
VD Uo V C uC
C1
PWM 形形形形
采采 滤滤

采用UC3854的有源功率因数校正电路工作原理与应用

采用UC3854的有源功率因数校正电路工作原理与应用

采用UC3854的有源功率因数校正电路工作原理与应用北京信息职业技术学院 100031 路秋生简介:本文主要介绍了有源功率因数校正(APFC)的工作原理、电路分类。

并对在国内得到广泛应用的UC3854集成电路的典型应用电路、工作原理做了介绍、分析。

关键词:功率因数(PF)有源功率因数校正乘法器除法器一.功率因数校正原理1.功率因数(PF)的定义功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。

即所以功率因数可以定义为输入电流失真系数()与相移因数()的乘积。

可见功率因数(PF)由电流失真系数()和基波电压、基波电流相移因数()决定。

低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。

同时,值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,对三相四线制供电,还会造成中线电位偏移,致使用电电器设备损坏。

由于常规整流装置常使用非线性器件(如可控硅、二极管),整流器件的导通角小于180o,从而产生大量谐波电流成份,而谐波电流成份不做功,只有基波电流成份做功。

所以相移因数()和电流失真系数()相比,输入电流失真系数()对供电线路功率因数(PF)的影响更大。

为了提高供电线路功率因数,保护用电设备,世界上许多国家和相关国际组织制定出相应的技术标准,以限制谐波电流含量。

如:IEC555-2, IEC61000-3-2,EN 60555-2等标准,它们规定了允许产生的最大谐波电流。

我国于1994年也颁布了《电能质量公用电网谐波》标准(GB/T14549-93)。

传统的功率因数概念是假定输入电流无谐波电流(即I1=I rms或=1)的条件下得到的,这样功率因数的定义就变成了PF =。

二.PF与总谐波失真系数(THD:The Total Harmonic Distortion)的关系三.功率因数校正实现方法由功率因数可知,要提高功率因数,有两个途径:1.使输入电压、输入电流同相位。

基础科普 有源功率因数校正技术该怎么分类

基础科普 有源功率因数校正技术该怎么分类

基础科普有源功率因数校正技术该怎么分类有源PFC技术是目前常见的功率因数校正技术,在很多电路系统的设计过程中都得到了充分的应用。

目前业内通常按照PFC技术的应用方向和电路拓扑形式对其进行分类,除此之外,还有一些别的分类方法,也同样可以对PFC技术进行分类。

今天主要针对PFC相关技术的分类为大家提供一些基础性的讲解,下面就让我们一起来看看吧。

 在多数情况下,在开关电源中通常会对PFC电路按照拓扑结果进行分类,目前常见的有源功率因数校正变换电路有升压Boost、降压Buck、升降压和回扫四种类型,其中尤其以升压型的PFC电路结构最为流行。

在应用过程中,它的优点有很多。

第一,这种升压型的PFC电路能有效地抑制输入电源电流的谐波失真,完全可以达到甚至低于谐波电流畸变指标要求。

其次,升压型的PFC电路能将系统功率因数提高到几乎等于1的水平,完全能够满足世界各国对功率因数和总谐波含量的技术标准要求。

第三,输出低纹波含量的直流电压,能确保开关电源的电流波峰系数低于1.5。

第四,当输入交流电压在较大的范围内波动时,实现电压宽带输入,而输出电压可得到稳定的直流电压,能够延长使用寿命。

 以上几种便是几个比较主要的有源PFC技术的分类,而在这些分类当中,我们要把握好有关于他们之间的区别与不同,这样才能够针对具体情况,进行实际操作当中的具体分析。

除了上面提及的按拓扑分类的方法外,有源PFC技术还可以采用其他的方法进行分类。

从变换电路的工作频率分为固定频率和可变频率两种;从电流控制方法上分有峰值电流控制、平均电流控制和滞环电流控制三种;按电感扼流圈有无存储电流分,有连续传导模式,即CCM模式和不连续传导模式(DCM)两种,前者用于输出功率较大的场合,。

有源功率因数校正的原理

有源功率因数校正的原理

有源功率因数校正的原理
有源功率因数校正的工作原理是:
1. 电网侧的电压和电流通过检测电路采集后,进入控制电路。

2. 控制电路计算出功率因数PF的值。

3. 将检测到的功率因数与设置的目标功率因数值进行比较。

4. 根据两者的差异,控制电路产生对应的控制信号,驱动IGBT开关管。

5. IGBT开关管向电网放入一定幅值和相位的反相电压。

6. 反相电压与电网电压叠加,改变电网电流的相位角,从而校正电网的功率因数。

7. 不断检测反馈和校正,使功率因数稳定在目标值附近。

8. 达到预设的功率因数时,停止校正,待功率因数再次变化则重新启动。

通过快速的数字控制实现校正,有源功率因数校正器效果好、速度快、可靠性高。

但装置价格较贵。

功率因素校正(PFC)电路 PFC的工作原理

功率因素校正(PFC)电路 PFC的工作原理

PFC 的工作原理
功率因数定义:
(1)交流电源输入有功功率与其视在功率之比。
电力电子中常用

PF

P S
有功功率 视在功率
(2)若交流输入电压为无畸变的正弦波,则只有输入中 的基波电流形成有功功率。由于功率传输只在基波频 率上发生,开关变换器的输入整流电路中含有大量不 能传递功率的高次谐波。在真正意义上,电源输入端 存在的是电流的谐波失真,通常可以用近似的功率因 数来代替。总谐波失真THD -Total Harmonic Distortion
BOOST电路的工作模式
从CCM到CRM和DCM 的电流变化波形
BOOST电路拓扑
电流连续模式(CCM)
BOOST电路拓扑
BOOST电路拓扑
1)当开关管导通,电源Ui对电感L充电储能, 同时电容C对负载R放电,二极管承受反 向电压。
2)当开关管S关断时,由于电感L中的电流 不能突变,将继续有电流流过,电感L上的 感应电势UL与输入电压Ui 串联通过二极 管D对输出电容C充电.
BOOST电感的设计步骤
1)基于已知参数先求出周期:
T
1 f
2)最大的占空比的计算: 3)设定初始的纹波电流: 4)确定电感量:
Duty
1
Vinmin Vo
ILP
2 2 Po Vinmin Eff
DeltaI= 0.1*I.pk
Lmin
Vimin 2Ton DeltaI
BOOST电感的设计步骤
4
功率因数的提高可节省发电,传输的功率,与电源效率是两个概念,反而 增加电源成本,降低效率
PFC 的工作原理
电压电流波形
ii
ui ii ii ui

有源功率因数校正电路的研究和应用

有源功率因数校正电路的研究和应用

有源功率因数校正电路的研究和应用摘要:本文将全面介绍有源功率因数校正电路的研究与应用。

首先,我们将阐述什么是功率因数及其重要性。

然后,介绍有源功率因数校正电路的原理和工作方式。

接着,我们将详细探讨该电路在工业和家庭领域的应用。

最后,我们将讨论该技术的未来发展趋势和面临的挑战。

一、引言1.1背景介绍1.2研究目的和意义1.3文章结构二、功率因数的概念及意义2.1功率因数的定义2.2功率因数的重要性2.3功率因数改善的方法三、有源功率因数校正电路的原理和工作方式3.1有源功率因数校正电路的基本原理3.2有源功率因数校正电路的拓扑结构3.3有源功率因数校正电路的工作过程3.4有源功率因数校正电路的参数设计四、有源功率因数校正电路的工业应用4.1电力系统的功率因数校正4.2高效变频器的应用4.3电动机的功率因数校正五、有源功率因数校正电路的家庭应用5.1家用电器的功率因数校正5.2分布式发电系统的应用5.3太阳能发电系统的应用六、有源功率因数校正电路的未来发展趋势6.1基于无线通信技术的控制策略6.2智能电网中的应用6.3电动车充电桩的功率因数校正七、挑战与展望7.1技术挑战和限制7.2电力市场变革对有源功率因数校正的影响7.3未来研究方向八、结论本文将从不同角度全面论述有源功率因数校正电路的研究与应用,介绍功率因数的重要性和改善方法,深入解析有源功率因数校正电路的原理和工作方式,并探究其在工业和家庭领域的应用。

此外,本文还对有源功率因数校正电路的未来发展趋势和面临的挑战进行展望,以期为相关领域的研究人员和工程师提供有价值的参考。

常用有源功率因数校正电路分类及工作原理分析

常用有源功率因数校正电路分类及工作原理分析

常用有源功率因数校正电路分类及工作原理分析
常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。

其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。

1.升压型PFC 电路
升压型PFC 主电路如
这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的
正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输
入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适
用于电网电压变化特别大的场合。

主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。

2.降压型PFC 电路
降压型PFC 电路如
(1)这种电路的主要优点是:开关管所受的最大电压为输人电压的最
大值,因此开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。

(2)该电路的主要缺点是:由于只有在输人电压高于输出电压时,该
电路才能工作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC 变换器电流应力较大;开关管门极驱动信号地与输出地不同,驱动较复杂,加之输人电流断续,。

有源功率因数校正技术及控制方式分析

有源功率因数校正技术及控制方式分析
置使用晶闸管或二极管,整流器件的导通角远小 于1800,从而产生大量谐波电流.而谐波电流不 做功,只有基波电流做功,因此功率因数很低.
个电流控制环,它是一个2型控制系统.按照控制
理论,2型系统可以无差地跟踪斜坡信号,由于正 弦波信号变化比斜坡信号慢,所以2型系统也可 以无差地跟踪正弦波信号. 电流控制环的作用是使输入电流无差地跟踪 输入电压的波形,让输人电流与输人电压具有同 相的正弦波波形,以达到功率因数校正的目的.双
即有源功率因数校正电路工作原理有源功率因数校正电路流器和负载之间接入一个开关变换器应用电压电流反馈技术使输入端电流波形跟随输入正弦电压波形从而使输入电流的波形也接近正弦波以达到提高功率因数的目的由于在此电路中使用了有源器件所以称为有源功率因数校正电路该电路的基本思想是交流输入电压经全波整流后对所得的全波整流电压进行变换通过适当控制使输入电流波形自动跟随全波整流后的电压波形达到输入电流的正弦化同时保持输出电压稳定是在整有源功率因数校正电路一般都是一个双闭环控制系统外环是一个电压控制环它是一个型控制系统按照控制理论型系统可以无差地跟踪阶跃信号只要输入一个不变的参考电压就可以得到一个稳定不变的输出电压电压控制环的作用是使输出保持一个高于输入电压最高峰值的稳定电压这是功率因数校正所必需的内环是一个电流控制环它是一个型控制系统按照控制理论型系统可以无差地跟踪斜坡信号由于正弦波信号变化比斜坡信号慢所以型系统也可以无差地跟踪正弦波信号电流控制环的作用是使输入电流无差地跟踪输入电压的波形让输入电流与输入电压具有同相的正弦波波形以达到功率因数校正的目的双上海电力学院学报年闭环控制的效果是使输入电流与输入电压呈同相的正弦波输出一个高于输入电压最大峰值的稳定直流电压这个稳定的直流为后级变换电路提供直流能量有源功率因数校正原理如图所示图有源功率因数校正原理图中主电路采用变换电路外环是一个电压误差放大器和一个模拟乘法器内环是驱动电路和电流比较器调节器采用电压电流双闭环控制方式电流反馈网络的取样信号是升压变换器的电感电流电压反馈网络的取样信号是调节器的输出电压该电路的工作原理如下单相交流电经过整流后得到单相双半波正弦电压信号此电压波形作为功率因数校正控制器的输入电流的参考波形输入到模拟乘法器为了保证输出电压恒定将输出电压通过电压反馈网络也引入乘法器经过乘法器运算后其结果作为电流波形的参考值并与实际取样的电流值进行比较然后通过驱动电路产生的驱动信号控制变换器的输出电流和电压由于采用了闭环控制将变换器的实际电流通过反馈网络引入电流比较器从而保证了变换器的电流能够准确跟踪乘法运算所规定的电流值有源功率因数校正方法分类根据有源功率因数校正拓扑分类有源功率因数校正电路按照其校正拓扑可分为降压式升降压式反激式和升压式其中降压式因噪音大滤波难以及功率开关管上电压应力大控制驱动电平浮动而极少被采用升降压式需要有一个功率开关管的驱动控制信号浮动电路复杂因而也

有源功率因数校正原理

有源功率因数校正原理

有源功率因数校正PFC电路主要有升压型、降压型、升压--降压型和回扫型等基本电路形式,其中升压型有源PFC电路在一定输出功率下可减小输出电流,减小输出滤波电容的容值和体积,故在电子镇流器中广泛应用。

升压型有源PFC电路在控制方法上,有电感电流断续传导模式和峰值电流控制模式。

其电路原理图如图2所示。

电路工作原理如下:Q1导通时,D5截止,电容C1向负载放电;Q1截止,电感L1储能经D5对电容C1充电。

由于Q1和D5交替导通,使整流器输出电流经电感L1连续。

这样输入电流也连续。

图中,R1取样输入电压,保证通过电感L1的电流跟随输入电压按正弦规律变化,通过L1的高频电流包络正比于输入电压,其平均电流呈正弦波形,使输入电流呈正弦波;R2取样输出电压,控制APFC控制器的输出占空比,稳定输出电压。

目前,APFC专用芯片很多,在电子镇流器中应用广泛,具体电路不做详细介绍,可参阅参考文献。

4 利用自振荡半桥PWM驱动器设计的APFC电路在某些自振荡半桥PWM驱动器电路中,可以利用PWM驱动器输出固定频率的脉冲来作APFC控制,这里介绍两种典型电路。

4.1利用自振荡输出波形控制的APFC电路电路原理图如图3所示。

升压电感L1、二极管D5、电容C2和开关管Q3等组成APFC电路。

由于PWM驱动器U1输出脉冲的频率和占空比都是固定的,Q3导通时,D5截止,C2向负载放电;Q3截止时,电感L1产生的突变电势使D5正向偏置而导通,电感L1通过D5向C2和负载释放储能,此时整流二极管电流经电感L1连续,使输入电流波形连续,呈正弦波形,可将线路功率因数提高到0.95以上,使输入电流总谐波失真度(THD)降低到10%以下。

4.2 利用自振荡PWM驱动器的定时电路图3利用自振荡PWM驱动器输出波形控制的APFC原理电路图图4利用自振荡PWM驱动器的定时器设计的APFC原理电路图和波形图设计的APFC电路自振荡半桥PWM驱动器的振荡器是一个类似555的定时振荡器,CT端为锯齿波,可以用一电路产生同频、占空比可调的APFC电路。

有源功率因数校正技术原理及应用

有源功率因数校正技术原理及应用

收稿日期:20020719有源功率因数校正技术原理及应用APFC Technology Pr i nc iple and Appl ica tion朱方明ZHU Fangm ing余建刚YU J iangang (总参通信部驻宝鸡地区军代室 宝鸡 721006) (总参三部12局 上海 200072) (General Staff Signal m an m inistry Bao ji D elegate Secti on,Bao ji,721006,Ch ina)(General Staff12th bureau3rd m inistry,Shanghai,200072,Ch ina)摘 要:介绍功率因数校正定义、原理及A PFC控制方法,并进行实例分析。

关键词:PFC;A PFC;U C3854 目前国际上推行的IEC555-2,EN60555-2, IEEE-159等标准对电子生产厂家入网电气设备的电流谐波值进行了限制,因此,采用功率因素校准方法来实现“绿色能源”革命已势在必行。

本文将简要介绍有关功率因数的概念及应用实例。

1 谐波电流对电网的危害脉冲状的输入电流,含有大量谐波,一方面使谐波噪声水平提高,同时在A C-DC整流电路的输入端必需增加滤波器,既贵,体积、重量又庞大、笨重。

而且大量电流谐波分量倒流入电网,还会造成对电网的谐波“污染”。

一方面产生“二次效应”,即电流流过线路阻抗造成谐波电压降,反过来使电网电压(原来是正弦波)也发生畸变;另一方面,会造成电路故障,使变电设备损坏。

例如线路和配电变压器过热;谐波电流会引起电网L C谐振,或高次谐波电流流过电网的高压电容,使之过流、过热而爆炸;在三相电路中,中线流过三相三次谐波电流的叠加,使中线过流而损坏等等。

所以对电子设备进行功率因素校正已成必然趋势。

2 功率因数的定义及校正原理功率因数P F(Pow er Facto r)的定义是指:交流输入有功功率与输入视在功率之比值,其表达式为: P F=P实 P视=P (V RM S×I RM S)=V R×I1co sΩ (V R×I R)=I1co sΩ I R=Χco sΩ式中,V R是电网电压有效值,I R是电网电流有效值,I1是基波电流有效值,Χ=I1 I R是电网电流交流失真因数(又称基波因数),co sΩ是基波电压和基波电流的相移因数。

有源功率因数校正技术简介

有源功率因数校正技术简介

有源功率因数校正技术简介摘要:随着电力电子装置的使用,电网中的谐波含量越来越多,功率因数校正技术在近些年来成为研究热点,可分为有源功率校正和无源功率校正。

其中,有源功率校正装置具有体积小、效率高等优点,本文对有源功率校正技术在buck、boost、buck-boost、flyback以及软开关等电路拓扑中的应用做了简单的介绍。

关键词:有源功率因数校正、buck、boost、buck-boost、软开关1引言近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。

电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。

电力电子装置已成为电网最主要的谐波源之一。

20世纪90年代以来,世界上许多国家和国际组织都对电力电子产品的功率因数及谐波成分作了限制。

为了使电力电子产品的功率因数及谐波成分满足上述的规定和标准,可在整流桥和滤波电容之间加一级用于功率因数校正的功率变换电路,使输入电流为正弦波,从而提高功率因数,这就是有源功率因数校正技术。

有源功率因数校正(Active Power Factor Correction,简称APFC)技术由于变换器工作在高频开关状态,而具有体积小、重量轻、效率较高、输人电压范围宽、THD小和功率因数高等优点,因此在现代电力电子技术中得到了广泛的应用。

2 有源功率因数校正的基本原理APFC又称为有源开关型补偿法,现今得到推广的APFC是DC/DC变换型电流整形方法,由于其主体为高频DC/DC变换器,所以也称为高频APFC。

高频APFC的基本思想是:将输入交流电压进行全波整流,然后对全波直流电压进行DC/DC变换,通过适当控制,使输入电流平均值自动跟踪全波直流电压的基准,且保持输出电压稳定,从而实现恒压输出和单位功率因数。

图1有源功率因数校正原理框图图1为这种电路的原理框图,其中,整流器为单相桥式不可控整流器,主电路采用DC/DC 变换电路,控制电路内部包含有一个电压误差放大器、一个电流误差放大器、一个模拟乘法器和一个固定频率的PWM控制器。

采用uc3854的有源功率因数校正电路工作原理与应用

采用uc3854的有源功率因数校正电路工作原理与应用

采用uc3854的有源功率因数校正电路工作原理与应用
UC3854是一款可编程高效能电源因数校正控制器,是由德州仪器公司(Texas Instruments,TI)生产的一款专业电源管理IC。

它是一种高效、可靠、智能化的功率因数校正控制器,常用于交流电源的功率因数校正应用中,可实现高精度的电源因数校正,并且具有较高的应用灵活性和可靠性。

UC3854采用的是有源功率因数校正技术,即通过对输入电流调节来控制输出电流的大小,从而达到功率因数校正的目的。

有源功率因数校正电路主要由电源电路、控制电路、采样电路和校正电路等部分组成。

其中,电源电路提供了稳定的工作电压和电流,控制电路通过控制开关管的导通和截止,实现对输出电流的控制。

采样电路采集输入电压和电流的信息,并将其转化为数字信号,校正电路根据采集到的信号,控制开关管的导通和截止,实现功率因数的校正。

UC3854的应用场景非常广泛,主要应用于交流电源的功率因数校正。

它可以实现交流电源的输入电压和电流的采样和测量,计算出功率因数的值,然后对输出电流进行调节,从而实现功率因数的校正。

同时,该芯片还具有多种保护功能,如过电流保护、过电压保护、过温保护等,能够保证电路的可靠性和安全性。

总之,UC3854是一款功能强大、性能稳定、可靠性高的有源功率因数校正控制器,对于交流电源的功率因数校正具有重要的作用。

它的应用广泛,可以满足不同场合和需求的功率因数校正要求,是一款非常优秀的电源管理IC。

自己总结有源功率因数校正apfc

自己总结有源功率因数校正apfc

自己总结有源功率因数校正A P F C-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII有源功率因数校正一、功率因数的定义功率因数PF 定义为:功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值。

PF =S P =R L L I U I U φcos 1=RI I 1cos φ= γcos φ (1) 式中:γ:基波因数,即基波电流有效值I 1与电网电流有效值I R 之比。

I R :电网电流有效值I 1:基波电流有效值U L :电网电压有效值cos Φ:基波电流与基波电压的位移因数在线性电路中,无谐波电流,电网电流有效值I R 与基波电流有效值I 1相等,基波因数γ=1,所以PF =γ·cos Φ=1·cos Φ=cos Φ。

当线性电路且为纯电阻性负载时,PF =γ·cos Φ=1·1=1。

二、有源功率因数校正技术1.有源功率因数校正分类(1)按电路结构分为:降压式、升/降压式、反激式、升压式(boost )。

其中升压式为简单电流型控制,PF 值高,总谐波失真(THD :Total Harmonic Distortion )小,效率高,适用于75W~2000W 功率范围的应用场合,应用最为广泛。

它具有以下优点:● 电路中的电感L 适用于电流型控制● 由于升压型APFC 的预调整作用在输出电容器C 上保持高电压,所以电容器C 体积小、储能大● 在整个交流输入电压变化范围内能保持很高的功率因数●输入电流连续,并且在APFC开关瞬间输入电流小,易于EMI滤波●升压电感L能阻止快速的电压、电流瞬变,提高了电路工作可靠性(2)按输入电流的控制原理分为:平均电流型(工作频率固定,输入电流连续)、滞后电流型、峰值电流型、电压控制型。

图1 输入电流波形图其中平均电流型的主要有点如下:●恒频控制●工作在电感电流连续状态,开关管电流有效值小、EMI滤波器体积小。

有源功率因数校正电路

有源功率因数校正电路

有源功率因数校正电路的设计摘要将交流220V电网电压经整流后再提供直流是现实单相电源应用中较为广泛的变流方案,由于传统的二极管或晶闸管整流器会对电网产生谐波电流而危害电网,引起输入端功率因数下降,对电网造成污染;因此有源功率因数校正(APFC)技术得到了迅速的发展.它是在桥式整流器与输出电容器之间加入一个功率因数校正变换电路,它将整流器的输入电流校正成为与电网电压同相位的正弦波,消除了谐波和无功电流,因而能将电网功率因数提高到近似为 1.交流输入电压经桥式整流后,得到全波整流电压,经DC/DC变换后,再经过控制器使线路电流的平均值能自动跟随全波整流电压基准的变化,并获得稳压的直流高电压输出,最终给负载提供直流电压源.本文通过对功率因数校正电路的现状与发展进行简单的介绍,然后讨论了什么是功率因数以及功率因数的计算、功率因数校正的原理、功率因数校正电路的种类、有源功率因数校正电路的原理以及元器件L6562的简单介绍;最后设计出基于L6562升压式有源功率因数校正电路.关键词:有源功率,升压式,L6562Active power factor correction circuit designAuthor:Wei DongLiangTutor:Pang BaoTangAbstractWill ac 220 V power grid voltage after rectifying the to provide dc is one single phase power application in reality a wide range of variable current solution because the traditional thyristor rectifier diode or will to power produce harmonic current and harm power grid, cause the input power factor drops, to power cause pollution; So active power factor correction (APFC) technology obtained a rapid development. It is in the bridge rectifiers and output capacitors to join a power transformation between circuit, it will become the input current correction rectifier voltage and the sine wave with phase, eliminate the harmonic and reactive current, so the power grid power factor improvement to approximate to 1. Exchange the input voltage bridge rectifier, have the rectifier voltage wave, then the DC/DC transform, after controller make the average of the current line can automatically follow all the wave rectifier voltage change of benchmark, and won the high voltage DC voltage output, eventually provide DC voltage source to load.This article through to power factor correction circuit of the current situation and development of simply introduced, and then discuss what the power factor and power factor of calculation, power factor correction, the principle of the power factor correction circuit, the kinds of active power factor correction circuit principle and L6562 components of simple introduction; Finally designed based on L6562 booster type active power factor correction circuit.Keywords: Active power, Boost type, L6562目录1 绪论 (1)1.1背景课题及意义 (1)1.2功率因数校正的现状及发展 (2)1.2.1功率因数校正的现状 (2)1.2.2无桥PFC电路 (2)1.2.3软开关功率因数校正电路 (3)1.3论文主要安排 (3)2 设计原理 (4)2.1功率因数 (4)2.2有源功率因数校正电路 (5)2.2.1有源功率因数校正电路的原理 (5)2.2.2有源功率因数校正电路的分类 (6)2.2.3升压式有源功率因数校正电路的分析 (10)3.元器件的选择 (14)3.1L6562简介 (14)3.2L6562芯片电路图 (16)4.电路的设计 (17)4.1基于L6562的B OOST-APFC电源电路 (17)4.2B OOST-APFC电感的设计 (18)结论 (20)致谢 (21)参考文献 (22)1 绪论1.1背景课题及意义伴随着我国经济的发展,现代工业得到快速发展,各种各样的换电流设备使用越来越多、容量也越来越大,再加上一些非线性电设备也接入到电网,将其产生的谐波电流注入到电网中,使公用电网的电压波形发生畸变,严重地污染了电网的环境,造成电能质量下降,也严重地威胁着电网中各种电气设备的安全运行,因此必须限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布GB/T14549-93电能质量公用电网谐波,国际电工委员会1998年也制定了IEC6100-3-2标准.目前常用的解决电力电子设备谐波污染问题的方法有两种:1.对电网采用滤波补偿;2.对电力电子设备本身进行改造,即进行功率因数校正.两者相比较,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一个重要的研究方向.谐波对电网的影响:1、谐波会导致电源的有功功率降低,功率因数会降低,负载上的实际功率也会随着降低;2、谐波会引起电磁干扰和射频干扰,导致一些精密电子设备(包括电子式电能表),不能正常工作,甚至会毁坏;3、谐波将引起线路欧姆热,导致整流器过热效率下降,也会引起设备老化,缩短设备使用寿命,甚至损坏设备;4、谐波电流的存在会引起电网电压的畸变,并可能引发振荡,引起电网和用电设备的安全;5、谐波将会引起继电保护装置误动或拒动,从而直接危及电网的安全运行;6、为了弥补谐波的存在造成的附加损耗,必须增加电器、导线等的容量,从而增加了投资费用;为了减少谐波的污染,提高功率因数,设计基于L6562升压式有源功率因数校正电路,使功率因数大于0.95.1.2 功率因数校正的现状与发展1.2.1 功率因数校正的现状目前功率因数校正主要有两种方法:无源功率因数校正和有源功率因数校正.无源功率因数校正技术是指在整流电路中用LC滤波器来增大整流桥导通角,从而降低电流谐波来提高功率因数.无源功率因数校正达到的功率因数没有有源功率因数校正的高,但是比较简单,与有源功率因数校正相比比较经济,因而这种技术在中小容量的电子设备中被广泛采用.有源功率因数校正是就是通过功率因数调节装置,使电网输入电流波形完全跟踪电网输入电压波形的变化,并且保持输入电流和电压波形同相位.有源功率因数校正有体积小、重量轻、功率因数可接近1等优点.无缘功率因数和有源功率因数有不同的优势,本文的技术要求比较高,因此本文主要针对有源功率因数校正进行论述.1.2.2 无桥PFC电路无桥PFC电路用单个的变换器代替传统的由四个二极管组成的前级整流桥+升压式PFC电路,实现AC-DC和PFC两个任务.这个电路实际上是一个双升压式电路.无桥是目前高性能功率因数校正电路研究的一个方向,图1.1为无桥PFC拓扑图.图1.1无桥PFC电路无桥PFC电路有两种工作模式:1. 开关管S1和S2同时开通或关断.电压源有正半波和负半波组成,在电源的负半波,S2导通时,电源通过S2和S1的寄生二极管对电感LB充电,S2关断时,电感通过D2、RL和S1的寄生二极管放电,该电路变成一升压式电路.当电压源在正半波时,S1导通时,电源通过S1和S2的寄生二极管对电感LB充电,S1关断时,电感通过D1、RL和S2的寄生二极管放电,该电路变成另外一升压电路.在电源的负半波,S2导通时,电源通过S2和S1的寄生二极管对电感LB充电,S2关断,电感通过D2、RL和S1的寄生二极管放电,这是另一升压式电路.2.当工作模式是:在电源的正半波,S1高频工作,S2则直通.电感LB,S1,D1和负载构成一个升压式电路.在电源的负半波,S2处于高频工作,S1处于直通.S2,D2和负载构成另一个升压式电路.第二种工作模式与第一种相比较模式控制较为简单.1.2.3 软开关功率因数校正电路改进大功率升压式电路的性能近几年在国内是比较热门的,主要集中在如何减少升压式boost电路中的二极管的反向恢复损耗和MOSFET的开通损耗,从而达到提高转换效率和减少电磁干扰的目的.升压式boost电路,输出电压总是比输入电压要大,假如输入电压为100-270V时,则输出为370-420V.在高频电力电子PFC电路中,功率二极管一般采用快恢复二极管,快恢复二极管是一种具有开关特性好、反向恢复时间较短的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用. 快恢复二极管的内部结构与普通PN结二极管不同,属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片.因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,耐压值较高.软开关功率因数校正电路有很多的拓扑电路,将存在的电路统一整理,并区分不同拓扑电路的优缺点,将是研究的方向.1.3论文主要安排本文首先分析了目前国家电网存在谐波,功率低等问题,及功率因数的现状及发展,在第二章中提出功率因数校正电路的原理及分类,第三,四章介绍了元器件和提出技术指标,并最终设计出基于L6562升压式有源功率因数校正电路.2 设计原理2.1 功率因数功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值.1111cos cos ms msU I COS I P PF S U I I φφγφ==== (2.1) (2.1)式中:U 1:单位为伏特,表示电网电压有效值;γ:表示输入电流失真系数;I ms :单位为安培(A ),表示为输入电流有效值;I 1:单位为安培(A ),表示输入基波电流有效值;cos φ:表示基波电流和基波电压之间的相移因数;由式子(2.1)可知功率因数也可以定义为输入电流失真系数(γ)和基波电压与基波电流相移(cos φ)的乘积,功率因数的高低跟γ、cos φ有关系,增大γ,cos φ可以提高功率因数.由式子(2.1)可知,PF 由电流失真系数γ和cos φ决定.当γ值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,会对电网造成谐波污染.当cos φ低时,则表示用电气设备的无功功率大,设备利用率低,导线、变压器绕组损耗大.PF 与总的谐波畸变率THD 的关系如下:1111cos cos ms ms V I I P PF S V I I φφ==== (2.2)1THD =(2.3)= (2.4)PF φ=即 (2.5)有式子(2.5)可知,THD 对功率因数的影响,THD 越大,功率因数越低,THD 越小,功率因数越高,提高功率因数可以通过减小 THD 来达到.功率因数校正技术分为无源和有源两种,无源功率因数校正的性能比较差,达不到很好的效果,本文技术要求是功率因数大于等于0.95,因此本文只针对有源功率因数校正APFC 技术做探讨.有源功率因数校正APFC 技术的基本思想:将输入的交流进行全波整流,在整流电路与滤波电容之间加入DC/DC 变换,通过适当控制使输入电流的波形自动跟随输入电压的波形,即使整流器的输出电流跟随它输出直流脉动电压波形,且要保持贮能电容电压稳定,从而实现稳压输出和单位功率因数输入.有源功率因数校正APFC 技术,从其实现方法上来讲,就是通过功率因数调节装置,使电网输入电流波形完全跟踪电网输入电压波形的变化,并且保持输入电流和电压波形同相位,从而使得无论负载性质如何,从输入端看,负载取用的都是有用功率,是功率因数能够接近于1.由于APFC 使得电网端的功率因数接近1,减小了输入电流,降低了配电输入线的损耗,消除了用电装置的谐波分量对电网的污染,本身的工作会产生非线性,引起电网电压、电流畸变的电力电子装置,增加功率因数校正部分对电网带来的效益是明显的,但是用电器本身则会增大体积提高成本.2.2 有源功率因数校正电路2.2.1 有源功率因数校正电路的原理有源功率因数校正主要是在整流滤波和DC/DC 功率级之间串入一个有源PFC 作为前置级,用于提高功率因数和实现DC/DC级输入的预稳,用作PFC电路的功率级基本上是升压型Boost变换器,它具有效率高、电路简单、适用电源功率高等优点.有源功率因数校正电路的思想为:选择输入电压作为参考信号,使得输入电流跟踪参考信号,实现输入电流的低频分量与输入电压为一个近似的同频同相的正弦波,以提高功率因数和抑制谐波.有源功率因数校正电路原理图为图2.1.主电路由单相桥式整流器和DC—DC变换器组成,包括电压误差放大器V A,基准电压,电流误差放大器CA,乘法器M及驱动器等部分,负载可以是开关电源,也可以为电器.图2.1 有源功率因数校正电路的原理主电路的输出电压V o与基准电压比较后,再输入给V A,整流电压V dc的检测值和V A的输出电压V o信号共同加到乘法器M的输入端.M的输出作为电流反馈控制的基准信号,与开关电流i S检测值比较后,经过CA加到逻辑及驱动器上,用以控制开关VT r 的通断,使输入电流i i与V dc的波形基本一致,从而大大减少了电流谐波,提高了输入功率因数,从而保持了V o的恒定.2.2.2 有源功率因数校正电路的分类有源功率因数校正电路按电流模式可以分为连续电流模式控制型与非连续电流模式控制型两类.其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)三种;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)两种;它们有不同的优缺点,通过对不同类型的分析,最后选择升压式做为重点研究对象,下面对上述电流模式的工作原理做简单的介绍.1、升压型PFC电路图2.2为升压型PFC主电路,工作过程主要分两种:1.开关管Q导通时,电流I L流过电感线圈L,电感线圈处于未饱和状态时,此时的电感开始以磁能的形式储存电能,电容放电给负载提供能量,图中的R为负载;2.开关管Q截止时,L自感电动势V L与电源V IN 的电流方向相同,此时V L与电源V IN 串联给电容以及负载供电.图2.2升压型PFC主电路该电路的优点是:(1)输入电流是指电感电流,操作上容易调节,在工作过程中处于连续的状态,在整个输入电压的正弦周期内都可以调制,可以得到很高的功率因数.(2)开关管栅极驱动信号地与输出共地,驱动起来比较简单;(3)开关管的电流峰值较小,对输入电压变化具有很强的适应性,适合用在电压变化比较大的电网场所.主要缺点:输出电压比较高,开关管对输出不能实现短路保护的功能.2、降压型PFC电路图2.3是降压型PFC电路,工作过程主要有两种:1.当开关管Q导通时,二极管D 处于截止状态,电流I L流过电感线圈,电感线圈处于未饱和状态时,电流I L线性增加,储存电能;2.当开关管Q关断时,L将会产生自感电动势,向电容和负载供电.因为变换器输出电压总是小于电源电压,故称为降压变换器.图2.3降压型PFC主电路该电路的主要优点是:开关管具有很弱的电压适应能力,假如后面的电路发生短路,可以起到一定的短路保护,该优点是升压式PFC没有的.该电路的主要缺点是:只有输人电压高于输出电压时,降压式PFC电路才能参加工作,在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;与升压式PFC相比,开关管门极驱动信号与输出地端不同,驱动较为复杂,再加上输人电流存在断续的情况,功率因数不是很高,应用较少.3、升降压型PFC电路图2.4为升降压型PFC电路,其工作过程有两种状态:1.当开关管Q处于导通时,电流IIN流过电感线圈,二极管处于截止状态,电容C放电为负载提供能量,电感L 处于储能状态;2.当开关管Q处于断开时,IL有减小趋势,L中产生的自感电动势使二极管D处于导通状态,L开始释放其储存的能量,对电容C和负载供电.图2.4升降压型PFC主电路该电路的优点:可以对输人电压升压和降压,适用范围比较广,集合了升压式和降压式PFC的一些优点;电路输出电压选择范围较大,可根据一级的不同要求设计;电路中的开关管可实现输出短路保护的功能.该电路的主要缺点有:开关管要有很强的电压应力,因为开关管的电压为输入电压与输出电压的和;由于在每个开关周期中,输入电流只有在开关管处于导通状态下才会有,峰值电流变的比较大;因此驱动起来比较复杂;因为输出电压极性与输入电压的极性是相反的,后级逆变电路比较难设计,因此在现实应用中比较少.4、正激型PFC电路图2.5为正激型PFC电路,工作状态有两种:1.当开关管Q处于导通时,二级管D1处于正偏导通,D2处于截止状态,电源向负载提供能量,输出电感L处于储能状态.当开关管Q处于关断时,电感L储存的能量通过二极管D2,向负载释放电能,电容C 处于充电状态.该电路的磁通是单向累积的,在电路中需要设计磁复位.图2.5正激型PFC主电路这种电路的优点是功率级的电路设计比较简单,缺点是电感中的能量要通过磁复位回路来释放.5、反激型PFC电路图2.6为反激型PFC电路,工作状态有两种:1.当开关管Q处于导通时,输入电压加到高频变压器B1的原边绕组上,由于B1副边整流二极管D1反接,副边绕组中没有电流流过,此时,电容C放电向负载提供能量.当开关管Q关断时,绕组上的电压极性反向,二极管D1正偏导通,储存在变压器中的能量通过二极管D1向负载释放.这种电路的优点是功率级电路简单,且具有过载保护功能.图2.6反激型PFC主电路2.2.3 升压式有源功率因数校正电路的分析有源功率因数校正技术的思路,主要是通过控制整流后的电流,在对滤波大电容充电之前,能够与整流后的电压波形相位相同,避免引起电流脉冲的形成,达到提高功率因数的目的.1、升压式Boost电路的基本原理升压式Boost电路按电流区分有三种工作模式分别为:连续模式、断续模式、临界模式.图2.7为升压式Boost电路拓扑.图中的Vcont是指功率开关MOSFET的控制信号,VI是指MOSFET两端的电压,ID是指流过二极管D的电流.MOSFET有两种状态;1.当开关管T处于导通时,电流IL流过电感线圈L,在电感线圈处于未饱和状态时,电流线性逐渐增加,电感线圈以磁能的形式储存电能,二极管D处于截止状态,电容Cout 储存的能量将会释放,为负载提供能量.2.当开关管T处于断开时,线圈储存的磁能将改变线圈L两端的电压VL,以保持其电流IL不发生突变.电源Vin与线圈L转化的电压相串联,以高于输出的电压向电容和负载供电.如图2所示是其电压和电流的关系图.图2.7 Boost 电路拓扑电压和电流的关系如图2.8所示.图2.8 Boost 电路的电压与电流的关系分析图2.8,可得:in 1111()()L out in I V t V V T t L L ∆==-- (2.6) (2.7) 升压式Boost 连续模式和临界模式下的基本公式为式(2.7) .2、临界状态下的Boost-APFC 电路设计基于L6562的临界工作模式下的Boost-APFC 电路的典型拓扑结构如图2.9所示,图2.10所示是其APFC 工作原理波形图.图2.9 Boost—APFC控制框图图2.10 临界APFC工作原理波形图升压式Boost实现高功率因数的原理是让整流后的输入电流跟踪输入电压,使能够获得期望的输出电压.控制电路所需的参量有即时输入电压、输入电流以及输出电压.乘法器与输入电流控制部分和输出电压控制部分相连接,使输出的信号为正弦信号.假如输出电压偏离了期望值,如输出电压发生跌落时,电压控制环节的输出电压将会增加,使乘法器的输出也相应随着增加,从而达到使输入电流有效值也相应地随着增加,使能够提供足够的能量.在临近状态控制模型中,输入电流的有效值是由输出电压控制环节实现调制,而输入电流控制环节使输入电流能够保持正弦规律变化,从而达到跟踪输入电压的目的.本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法.3 元器件的选择3.1 L6562简介图3.1是L6562芯片的元器件,图3.2是L6562芯片的引脚图.DIP-8图3.1 L6562芯片INV ZCDCOMP GNDMULT GDCS V CC图3-2 L6562引脚图1脚(INV):误差放大器反向输入端.PFC输出电压分压电阻分压后送入该引脚.2脚(COMP):误差放大器输出端.补偿网络设置在该脚与INV端(1脚),以完成电压控制环路的稳定性和保证有高的PF值与低的谐波失真(THD).3脚(MULT):乘法器输入端.该引脚通过分压电阻分压,连接到整流器整流电压提供基准的正弦电压给电流环.4脚(CS):输入到PWM比较器.MOSFET管电流流过取样电阻,在电阻产生电降,该电压与内部的正弦电压形成基准信号,与乘法器比较来决定MOSFET的关闭.5脚(ZCD):升压电感去磁侦测输入端.工作在临界传导模式,用负极性信号的后沿来触发MOSFET的导通.6脚(GND):控制电路的地端.栅极驱动和信号回路的通路都应该汇集到该地引脚端.7脚(GD):栅极驱动输出.图腾柱输出能直接驱动MOSFET管或IGBT管,对源极峰值推动电流是600mA,吸收电流时800mA.该脚的驱动电压被钳制在12V左右,避免因CCU电压过高而使驱动电压也升高.8脚(VCC):电压供给IC内部信号与栅极驱动,供电电压能够被限制在22V以下.L6562是在临界电流模式状态下工作的.升压电感L的电流逐渐减小到零时,能够检测到电感两端的电压极性同时发生变化变号,零电流检测器才能够打开外部的MOSFET.为了防止发生虚假触发,电路提供了0.5V的滞后电压.ZCD端输入电压的门限值设为1.8~2.3V,输入电流为2μA ,禁止阈值为200mV,箝位电压为5.7V.为了改进THD的恶化,在L6562的内部乘法器单元中,专门嵌入了TD最优化电路.改进后的电路能够处理AC线路电压过零附近时积聚的能量,从而使桥整流器后的高频滤波器电容能够充分放电,达到减小交越失真,从而降低THD的目的.综合高线性乘法器中的THD最优化电路,L6562允许在误差放大器反相输入端INV 脚和输出端COMP脚之间连接RC串联补偿网络,减小放大器输出波纹和乘法器输出的高次谐波的误差.L6562性能与L6561,L6560相比较有明显的提升,但制作的成本并没有增加.3.2 L6562芯片原理框图图3.3为芯片L6562的原理框图.图3.3 L6562芯片原理框图4 电路的设计4.1基于L6562的Boost-APFC电源电路本文的设计是基于临界状态下,采用的是ST公司的L6562作为控制芯片,设计出升压式有源功率因数校正电路.图4.1给出了由L6562构成的APFC的电路图.图中的C1、C2、L1构成双π抗电磁干扰滤波器,输入的交流电经整流桥整流后变换为正弦全波直流脉动,作为升压式Boost 电路的输入;电容C3的作用是为了滤除电感电流中的高频信号,降低输入电流中存在的谐波含量;整流后的正弦全波直流电压经过电阻R1和R2构成的电阻分压网络,然后通过3脚输入到乘法器,是用来确定输入电压的波形与相位,电容C4的大小为0.01uF,是用以滤除3号脚的高频干扰信号;PFC的变换器直流输出电压V0经过R8、R9分压反馈到1号脚误差放大器的反相端.升压式Boost电感L的一个副绕组,用作初级电感的高灵敏度的传感器,将初级电感的高频电流传送到R4转换为电压信号,给5号脚以过电流检测信号.芯片的驱动信号通过电阻R5连接到MOS管的栅极;电阻R7作为电感电流的检测电阻,用以采样电感电流的上升沿MOS管的电流,电阻R7一端接地,另一接在MOS管的源极,同时经电阻R6连接到芯片的4号脚;电阻R9和R8不仅构成电阻分压网络,也形成输出电压的负反馈回路;电容C6连接于芯片1、2脚之间,组成电压环的补偿网络.图4.1 基于L6562的Boost-APFC 电源电路4.2 Boost-APFC 电感的设计 升压式Boost 电感,采用AP 法则,原理是首先根据设计要求计算所需电感:20(min)0(2)2ims ims sw i V V V L f p V -= (4.1)式中,Virms 为输入电压有效值;Vo 为输出电压,fsw(min)为MOS 管的最小工作频率,通常在20kHz 以上;Pi 为输入功率.计算要求的AP 值为:6()()max 10_L rms L pk u C LI I AP req k B J δ-⨯=(4.2)式中,Ku 为磁芯窗口利用率,Jc 为电流密度,IL(pk)为电感电流峰值.有式子(4.2)式的计算结果可选择磁芯的AP 值(大于AP_req ,AP=AeAw ,单位为m ^4).然后根据所选磁芯来计算原边匝数及所需气隙.副边匝数一般按10:1的比例选取.。

功率因数校正电路(PFC)电路工作原理及应用

功率因数校正电路(PFC)电路工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。

PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。

PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。

线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。

前一个原因人们是比较熟悉的。

而后者在电工学等书籍中却从未涉及。

功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。

对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。

由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。

这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。

为提高负载功率因数,往往采取补偿措施。

最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。

PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。

长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。

由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。

滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。

根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用有源功率因数校正电路分类及工作原理分析
来源:半导体器件应用网
摘要:常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。

其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。

关键字:有源功率因数校正电路,升压型PFC, PFC电路,工作原理
常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。

其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。

1.升压型PFC电路
升压型PFC主电路如图1所示,其工作过程如下:当开关管Q导通时,电流IL 流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。

这样,VL与电源VIN串联向电容和负载供电。

图1 升压型PFC主电路
这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。

主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。

2.降压型PFC电路
降压型PFC电路如图2所示,其工作过程如下:当开关管Q导通时,电流IL 流过电感线圈,在电感线圈未饱和前,电流IL线性增加;当开关管Q关断时,L两端产生自感电动势,向电容和负载供电。

由于变换器输出电压小于电源电压,故称为降压变换器。

图2 降压型PFC主电路
(1)这种电路的主要优点是:开关管所受的最大电压为输人电压的最大值,因此开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。

(2)该电路的主要缺点是:由于只有在输人电压高于输出电压时,该电路才能工作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;开关管门极驱动信号地与输出地不同,驱动较复杂,加之输人电流断续,功率因数不可能提高很多,因此很少被采用。

3.升降压型PFC电路
升降压型PFC电路如图3所示,其工作过程如下:当开关管Q导通时,电流IIN 流过电感线圈,L储能,此时电容C放电为负载提供能量;当Q断开时,IL有减小趋势,L中产生的自感电动势使二极管D正偏导通,L释放其储存的能量,向电容C和负载供电。

图3升压型PFC主电路
(1)该电路的优点是既可对输人电压升压又可以降压,因此在整个输入正弦周期都可以连续工作;该电路输出电压选择范围较大,可根据一级的不同要求设计;利用开关管可实现输出短路保护。

(2)该电路的主要缺点有:开关管所受的电压为输入电压与输出电压之和,因此开关管的电压应力较大;由于在每个开关周期中,只有在开关管导通时才有输入电流,因此峰值电流较大;开关管门极驱动信号地与输出地不同,驱动比较复杂;输出电压极性与输入电压极性相反,后级逆变电路较难设计,因此也采用得较少。

提示:常用连续电流模式类功率因数校正芯片有TDA16888(PFC+PWM)、1PCS01(PFC)、L4981、FA4800(PFC+PWM)、UC3854、UCC3817、UCC3818等。

4.正激型PFC电路
正激型PFC电路如图4所示,当开关管Q导通时,二级管D1正偏导通,电网向负载提供能量,输出电感L储能。

当Q关断时,L中储存的能量通过续流二极管D2向负载释放。

这种电路的优点是功率级电路简单,缺点是要增加一个磁复位回路来释放正激期间电感中的储能。

图4 正激型PFC主电路
5.反激型PFC电路
反激型PFC电路如图5所示,当开关管Q导通时,输入电压加到高频变压器B1的原边绕组上,由于B1副边整流二极管D1反接,副边绕组中没有电流流过,此时,电容C放电向负载提供能量。

当开关管Q关断时,绕组上的电压极性反向,二极管D1正偏导通,储存在变压器中的能量通过二极管D1向负载释放。

这种电路的优点是功率级电路简单,且具有过载保护功能。

相关文章推荐:
1、《常用有源功率因数校正电路分类及工作原理分析》
2、《大屏幕彩电开关电源高频有源功率因数校正》
3、《现代逆变电源中有源功率因数校正技术的应用》
4、《Intersil推出有源功率因数控制器ISL6730A》
5、。

相关文档
最新文档