第3章 基本体的三视图

合集下载

机械制图第三章 简单体三视图及尺寸注法1

机械制图第三章  简单体三视图及尺寸注法1

e' d' a' c' b'
c"d" b"e" a"
C D
B
E A
E0
B0
E0 A0
dd0
cc0 ee0
bb0 aa0
ddo
cco
eeo
bbo
aao
遵照国家标准规定,视图中的可见轮廓线用粗实线绘制,不 可见轮廓线用细虚线绘制。
第一节 基本体三视图及尺寸标注
一、平面立体
1.平面立体的三视图 [例]作竖放正三棱柱的三视图。
dd0
aa0
d″
a″c″
C
b″
O d0″
B a0″c0″
C0
Hale Waihona Puke b0″O0B0
cc0
bb0
圆柱的俯视图是一个圆,圆的直径等于圆柱的直径;圆柱的主 视图和左视图均为矩形,矩形的宽等于圆柱的直径,矩形的高等 于圆柱的高。
第一节 基本体三视图及尺寸标注
二、曲面立体
1.曲面立体的三视图
s'
s"
V
W
s
H
圆锥的俯视图是一个圆,圆的直径等于圆锥的底圆直径;圆 锥的主视图和左视图均为等腰三角形,三角形的底边等于圆锥的 底圆直径,三角形的高等于圆锥的高。
转向轮廓线
轮廓线
在曲面立体的三视图中可能存在着两种不同含义的图线: 一种是轮廓线,它是由形体上两个相邻表面的交线得到的;另 一种是转向轮廓线,它是由形体上某个曲面在弯曲换向处被 “观察”到的。此外,绘制回转体三视图时,还要用细点画线 画出其回转轴线或代表其对称平面的位置。
第一节 基本体三视图及尺寸标注 二、曲面立体

机械制图基本体的三视图和其截交线相贯线的画法专题培训课件

机械制图基本体的三视图和其截交线相贯线的画法专题培训课件

a (b)
点的可见性规定点:
b
若点所在的平面的投影可见, 点的投影也可见;若平面的投影 a
积聚成直线,点的投影也可见。
a
b
第一节 基本体的三视图
• 一、平面基本体的三视图
【例3-1】根据已知条件,补画第三视图,并求作形体 表面A、B、C三点的三面投影。
S
第一节 基本体的三视图
• 一、平面基本体的三视图
k(n) b′ d′
ns● b
k d
●(n) k b″
如何在圆锥面上作直线?
过锥顶作一条素线。
第一节 基本体的三视图
• 二、回转体的三视图
【例3-4】已知圆锥的三视图, M、N是圆锥表面上的点,给定 其单面投影,求作两点的三面投影。
第一节 基本体的三视图
• 二、回转体的三视图
圆球任何方向的投影都是等径的圆
第三节 相贯线的画法
• 一、相贯线概述
轴线相对位置变化对两圆柱相贯线的影响
第三节 相贯线的画法
• 一、相贯线概述
★ 相贯线一般为光滑封闭的空
间曲线,它是两回转体表面
的共有线。
★ 作图方法
• 表面取点法
• 辅助平面法 确定交线
★ 作图过程
的范围
• 先找特殊点 • 补充中间点
确定交线的 弯曲趋势
• 二、两圆柱正交的相贯线 例 :圆柱与圆柱相贯,求其相贯线。
例:求四棱锥被截切后的俯视图和左视图。
例:求八棱柱被平面P截切后的俯视图。
P 4≡5
2≡3≡6≡7
1≡8
8
7
5 6
3 4
1
2
5 7
8
6 3
4

第三章 基本体的三视图

第三章 基本体的三视图

例3:如图所示,已知球面对V面的转向轮廓线上点的1’ 投影,求1”、1;又知它对V的转向轮廓线上的点水平 投影2,求2’、2”。
球面转向轮廓线上点的投影的求解步骤与上一图例相 似,作图过程如图所示。
2’ 1’ 2”
y
1”
2 y
1
练 习 题
1. 根据立体图,找出相对应的三视 图,并在括号内填写相应编号。 2. 根据立体图及所给观察方向,画 出相应的三视图。 3. 根据立体图及所给观察方向,画 出相应的三视图。
1. 根据立体图找出相应三视图,并在括号内填写相应编号。









11

12
请点击解答显示其内容
2. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
3. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
k


k

n

n
圆的半径?
辅助圆法
k
n

例1: 已知三棱锥棱线上一点的V面投影1′和另一点 的V面投影2′,求两点的其它各面相应投影1″、1及 2、2″。
作图步骤:
y 1“ 2′ 1′ 2″ ⑴过点的V面投影1’作水平投 射线,投射线与W面相应棱线 投影的交点即为投影1”;根 据“宽一致”的投影规律, 在W面投影中量取1”的Y坐标 值,然后在H面相应棱线的投 影上直接量取Y,得H面投影1。 ⑵过点的V面投影2’分别作水 平投射线和垂直投射线,水 平投射线与W面相应棱线投影 的交点即为投影2”,垂直投 射线与H面相应棱线投影的交 点即为投影2。
作投影图时,先画出正六棱柱的水平投影正六边形,再根据 其它投影规律画出其它的两个投影。如图所示。

工程制图《第3章 基本体及简单叠加体的三视图》

工程制图《第3章 基本体及简单叠加体的三视图》
方法二: 用辅助圆 法求解
注意辨明 点位于何 表面之上
第一页
上一页
下一页
最后页
目 录
结 束
3.圆球体表面取点
已知圆球体表面M点的投影m,求m、m 投影。
方法一:
用辅助水 平圆求解 注意辨明 点位于何 表面之上
第一页
上一页
下一页
最后页
目 录
结 束
3.圆球体表面取点
已知圆球体表面M点的投影m,求m、m 投影。
第一页
上一页
下一页
最后页
目 录
结 束
2.画切割体三视图
画三视图: 画形体Ⅰ投 影 画切去形体 Ⅲ后的投影 完成形体Ⅱ 三视图
第一页
上一页
下一页
最后页
目 录
结 束
本章结束
第一页
上一页
下一页
最后页
目 录
结 束
1/4圆柱面与平面相切
1/2圆柱面与平面相切
部分圆柱面与平面相切
部分圆柱面与平面相切
第一页 上一页 下一页 最后页 目 录 结 束
1.常见基本几何体一
形体分析: 画三视图: 注意:不得画切线投影
第一页
上一页
下一页
最后页
目 录
结 束
1.常见基本几何体一
形体分析: 画三视图: 完成全部投影
第一页
上一页
下一页
最后页
目 录
结 束
2.常见基本几何体二
形体分析: 画三视图: 注意:不得画切线投影
第一页
上一页
下一页
最后页
目 录
结 束
2.常见基本几何体二
形体分析: 画三视图: 完成全部投影
第一页

基本体的三视图

基本体的三视图

基本体的三视图
六棱柱的三视图:
F A
(f') (e')
E a' b'
c' d'
D
BC
(e" )(d" )(c" ) f" a" b"
f a
b
e d
c
基本体的三视图
m k
m k
m k
基本体的三视图
(f') (e') (e" )(d" )(c" )
a' b'
c' d' f" a" b"
m'
主视、俯视长相等且对正 长对正
主视、侧视高相等且平齐
高平齐 俯视、侧视宽相等且对应
宽相等
二、棱柱
棱柱的组成: 上下两底面 —— 多边形 若干侧棱面 棱 线 —— 侧棱面的交线 棱线数 —— 三棱柱,四棱柱….. 直棱柱 —— 棱线垂直底面
基本体的三视图
五棱柱的三视图:
作图时先画反映底面实形的那 个投影,然后再画其它两面投影。
X
A
a
画图步骤:
S
s"
完成底面的三面 投影,再画出锥顶S 的各个投影,连接各
顶点的同面投影,即
C a" (c")
B c b"
s
为正三棱锥的三视图。
b
Y
基本体的三视图
正三棱锥的三视图
s'
Z
s"
a'
a"
b"
b' c' O (c") X

机械制图第3章-基本几何体

机械制图第3章-基本几何体

b' A
ABC是水平面,在俯视图的上各反个映投影均为类似形。 实两形个。侧侧 棱棱面C面为ca""S一A般C为位侧置垂平其面面棱侧,。面面另△投S影AsC”为a侧”垂c”面,
a
s B c b"
重影为一直线。
b
Y
正三棱锥的投影
16
V
a' X
Z s'
S
s"
W
b'
Ca"
A
c"
a
s B c b"
b
Y
正三棱锥的投影
d
X
a
d” a”b” c”
Cb
c
22 Y
2)圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、m′和n′,求 它们的其余两投影。
b’ a’
(b”) a”
b
a
在圆柱表面上取点
23
2、圆锥体
1) 圆锥的投影
圆锥表面由圆锥面和底圆组成。它是一母线绕与它相交
的轴线回转而成。
Z
如图所示,圆锥轴 线垂直H面,底面为水 平面,它的水平投影 反映实形,正面和侧 面投影重影为一直线。
成的平面。 讨论的问题:截交线的分析和作图 。
32
一、 平面立体的截切
1、平面截切的基本形式
截断面 截交线
截平面
截交线与截断面
33
截交线的性质:
• 截交线是一个由直线组成的封闭的平面多边形,其 形状取决于平面体的形状及截平面相对平面体的截
切位置。 •平面立体的截交线是一个多边形,它的顶点是平 面立体的棱线或底边与截平面的交点。截交线的每 条边是截平面与棱面的交线。 • 共有性:截交线既属于截平面,又属于立体表面。

第三章基本体的三视图分解

第三章基本体的三视图分解

截交线的性质 (1)截交线是截平面与立体表面的共有线,截交线上
的点是截平面与立体表面的共有点。 (2)截交线是封闭的线条。 (3)截交线的形状决定于立体表面的形状和截平面 与立体的相对位置。
一、平面与平面立体相交
单一平面与平面立体相交,截交线是一个多边形,其 顶点是平面立体的棱线或底边与截平面的交点。 多个平面与平面立体相交,如切割与穿孔,则逐个作出截 平面与平面立体的截交线,并画出截平面之间的交线。
两截平面的交线
y1
若增加圆柱孔 结果将如何?
内、外交线分别求解
求外表面交线 求内表面交线 检查孔的轮廓线 检查交线
[例题七]画出左视图
(2)
作上部切片的投影
作下部通槽的投影
判别可见性,整理、加深完成全图
(二)平面与圆锥相交
[例题一] 求水平面与圆锥的截交线
截平面⊥圆锥轴线, 截交线是圆
多个截平面与回转体相交,截交线是各个截平面所 得截交线的结合,其结合点是相邻截平面交线与回转体表 面的交点。
P
P Q
(一)平面与圆柱相交
截平面轴线倾斜 截平面垂直 截平面平行轴 轴线 线 柱面 1底+柱面 2底+柱面
截交线为圆 截交线为矩形 截交线为椭圆
截交线为部分椭 圆
截交线为部分椭 圆
[例题一] 求侧平面与圆柱的截交线
b
1,求特殊点Ⅰ、Ⅱ、Ⅲ、 Ⅳ(长、短轴端点)
3
4
b
a
b 1 a
2,求一般点A、B
3 ,光滑且顺次地连接 各点,整理轮廓线。
a
4
b

2
Ⅱ Ⅲ
1 a 3 b

截平面倾斜圆柱轴线 截交线为椭圆

第3章-机械制图基本体

第3章-机械制图基本体
《机械制图》 第3章 基本体
资讯
3.1 基本体的投影
立体按构成不同可分为基本体和组合体。 通常将棱柱、棱锥、圆柱、圆锥、球体等简单几何体称为基本体。 按表面性质不同,又可将立体分为平面立体和曲面立体。 3.1.1 平面立体 由平面围成的立体称为平面立体,立体上相邻侧表面的交线称为 棱线。 1. 棱柱 (1) 棱柱的三视图 图3-1所示一放置在三投影面体 系中的正六棱柱。
图3-2 三棱锥的三视图
资讯
3.1.2 曲面立体 曲面立体的表面由曲面或曲面和平面组成。常见的曲面立体有圆 柱、圆锥和球体。 由于组成立体的曲面为回转面,故上述曲面立体也称为回转体。 有关回转面的几个概念如下。 回转面:一条线绕另一直线旋转所形成的运动轨迹。 回转面的轴线:不动的直线。 母线:即运动的线,回转面的母线可以是 直线也可以为任意曲线。 素线:母线位于回转面上任一位置时的线。
(a) 截切的圆锥
(b) 截切圆锥的视图
图3-17 圆锥的截交线
资讯
[例3-4] 完成被截切圆锥的视图。
(a) 求作截交线
(b) 整理图形 图3-18 圆锥的截交线
资讯
3. 球体的截交线 球体的截交线为圆,如图3-19所示。 由于截切的位置关系,球体截交线圆的投影可能为圆、直线或椭圆。 球体截交线的作图分析:当截交线的投影为圆或直线时,作图较为 简便。如是椭圆,则要利用找点的方法求得椭圆上若干点的投影后 再光滑连接各点。
资讯
若是沿圆柱轴线开一通孔,便称为圆筒。圆筒有内、外两个表面。 当截平面截切圆筒时,就会在内外表面上产生形状相同的截交线, 如图3-14所示。
(a)
(b)
图3-14 圆筒的截交线
资讯
圆筒被截切和开槽的情况如图3-15所示。

第三章 基本形体—— 三视图的投影习题答案new

第三章  基本形体—— 三视图的投影习题答案new

3-7、补绘基本形体的第三投影
(1)
(2)
班级 (3)
参考使用,交流学习 1548138554
学号
姓名
(4)
(5)
(6) 45
第三章 基本形体——补绘基本形体的第三投影 3-8、补绘基本形体的第三投影 (1)
(2)
班级
(3)
参考使用,交流学习 1548138554
学号
姓名
(4)
(5)
(6)
46
第三章 平面立体表面上的点
第三章 基本形体—— 三视图的投影 3-1、画三棱柱的投影图。
3-3、画出右下图的投影图。
3-5、画出圆台的三面投影。
班级
学号
3-2、画出六棱柱的投影图。
参考使用,交流学习 1548138554 姓名
3-4、画出半圆拱的三面投影。
3-6、画半圆拱的三面投影。
44
第三章 基本形体—— 补绘基本形体的第三投影
f'
b
cd
df
(e)
(f)
e
a
3-17、正六棱柱被正垂面 P 截断,补全截断体的 H 面投影,作出 3-18、完成平面体被平面截切后的水平投影并作出侧面投影。 截断体的 W 面投影及断面的真形。
49
第三章 平面体的截交线 3-19、补全有缺口的三棱柱的 H 面投影和 V 面投影。
班级
参考使用,交流学习 1548138554
1'
(3')
(3'')
2'
1'' 2''
3
1' 2
3-14、画出三棱柱的 V 面投影,并补全三棱柱表面上的折线 FACEDBF 的 H 面投 影及 V 面投影。

第3章--基本体的三视图

第3章--基本体的三视图
请点击鼠标左键显示后面内容
例7. 画圆锥体及其表面上各点的三视图。 画圆锥体及其表面上各点的三视图。
k
A
B
S
k’
k ’’
a’
(c’) )
(a”) )
c”
1’
பைடு நூலகம்
b’
b”
(C)
作图步骤: 画各视图的轴线; (1)画各视图的轴线; (2)画俯视图的底圆轮廓; 画俯视图的底圆轮廓; 画主视图的轮廓素线; (3)画主视图的轮廓素线; (4)根据投影规律求第三投影; 根据投影规律求第三投影; 点的三投影; (5) 用素线法求 A 点的三投影; (6)根据B点的特殊位置求其三投影; 根据B点的特殊位置求其三投影; (7) 用辅助平面法求C点的三投影。 用辅助平面法求C点的三投影。
1、圆柱体
圆柱体表面由圆柱面和上、下两个平面组成。圆柱面由直 线AB绕与它平行的轴线等距旋转而成。
Z
O
素线
A V a' d' c' B
b' B A
母线
O
C
X 最左轮 廓素线
Y 最前轮 廓素线
(1)圆柱的投影图
a' b'
c'
d'
分析圆柱轮廓素线的投影
V面投影 轮廓素线
圆柱轮廓 素线(转向 轮廓线)
e
f
请点击鼠标左键显示后面内容
例4. 画正三棱锥及表面上各点的三视图。 画正三棱锥及表面上各点的三视图。
K
k’ k
k” k
D
P
A
作图步骤:
E
S
P
C
e’
b’ b
d’
(d”) )

机械识图-项目3__基本几何体的视图

机械识图-项目3__基本几何体的视图

面和 W 面。
图 3-7 圆柱体的形成与视图分析
机械识图——项目3 基本几何体的视图
画图方法:先画俯视图的中心线和主、左视图的轴线,然后从俯视图的圆画 起,按投影关系完成其它两个视图。
(a)
(b) 图 3-8 圆柱体三视图的画法
(c )
示例 3-2 如图 3-8c 所示,已知圆柱面上一点 M 的 V 面投影 m',求 H 面投影 m 和 W 面投影 m"。
分析 正四棱柱上的通槽是由 3 个特殊位置平面截切棱柱而形成的。槽的两 侧壁为矩形,所在平面与水平面、正面垂直,与侧面平行;槽底为六边形,所在 平面与水平面平行,与正面、侧面垂直。
a)立体图
b)画槽的正面投影 c)画槽的水平面、侧面投影 d)描深,完成全图 图 3-19 开槽正四棱柱的三视图画法
机械识图——项目3 基本几何体的视图
三、基本体的尺寸注法
1 平面几何体的尺寸标注
视图上标注尺寸时,应将三个方向的尺寸标注齐全,既不能少,也不能重复 和多余。 □12 表示边长为 12 的正方形。 尺寸重复时可以加括号,称为参考尺寸。
a)四棱柱 b)三棱柱 c)正四棱柱 d)正三棱锥 e)正四棱台 f)正六棱柱 图 3-13 平面体的尺寸标注
高平齐、宽相等”投影规律中的“长对正” W 面投影 m"可根据 m 和 m' 的投影直接由“高平齐、宽相等”作图求出, 由于 M 位于不可见的右侧面,因此 m"也不可见,应加圆括号表示。
棱柱体表面上点的投影
机械识图——项目3 基本几何体的视图 2 棱锥的三视图
a)投影分析
b)三视图
图 3-5 正四棱锥的三视图 画图方法:先画俯视图(正方形并连对角线),再由高度找出锥顶 S 的正面、 侧面投影,根据三等关系分别画出主视图与左视图。

基本体的三视图

基本体的三视图
8
五棱柱旳三视图
9
正五边形作图措施:
10
正五边形作图措施:
11
二、棱锥
S
A
C
B
12
注意:
三棱锥旳三视图
三棱锥左视图不
是一种等腰三角形。
s'
s"
a’ b' c' a"(c") b"
a
c
s
b
13
三、圆柱
转向(侧影)轮廓线旳投影。
转向(侧影) 转向(侧影)
轮廓线
轮廓线
14
孔转向(侧影)轮廓线旳投影
截交线为圆 截交线为矩形 截交线为椭圆 截交线为部分椭

截交线为部分椭 圆
41
[例题一] 求侧平面与圆柱旳截交线
y
截平面平行圆柱轴线 截交线为矩形
42
y
[例题二]圆柱体被切片
y1 y
侧平面R 水平面Q 立体旋装90˚ 怎么体现?
43
y y1
[例题三]圆柱体开槽
y1 y
侧平面R
y y1
水平面Q
44
空心圆柱开圆孔
70
空心圆柱开马蹄槽
空心圆柱开键槽
71
60
[例题一] 完毕正方体与半圆柱相交旳主视图
61
[例题二] 求三棱柱穿孔后旳投影
c' b'
c" b"
a' a"
a c
b
62
[例题三] 完毕两圆柱旳相贯线
清除!
a'
b'
1'
2'
c'Leabharlann a" b" 1"

基本体的三视图

基本体的三视图
基本体的三视图
基本体的表面关系分析
二表面共面 — 之间无线 A
B
共面
A
无线
B
共面
2
二表面相切 — 相切处无线
A
B
相切
A
相切
B
无线
3
二表面相交
平平相交 平曲相交
曲曲相交
由若干段直 线构成的空 间折线
由若干段平面 曲线或直线构 成的空间折线
空间曲线
4
复杂形体的组合方式


(叠加体) (切割体)
复合
相切
9
画图方法
例 求作轴承座的投影图
凸台5 支撑板2
圆筒1
形体分析
形体由1、 2、3、4、 5组合而成 (“并”)
底板4
肋3
10
求作轴承座的投影图
凸台 支撑板
圆筒
底板 圆筒 支撑板
肋 凸台
形底体板分析 肋 画图
画基准线
左右、上下、前后
依次画各立体 的投影
11
归纳 基本方法 形体分析法
把复杂形体分解成若干基本形体 分析各基本体之间的相互关系
实线
要注意投影图中反映形体之间 连接关系的图线
虚线
12
例3
P 12'(11'8'7')
1 3'(4')
1'(2'5'6')
10'(9') 9" 7" 8" 4"
10" 11" 12"
3"
6" 5" 2" 1"
26

机械制图-基本体的三视图及其截交线、相贯线的画法

机械制图-基本体的三视图及其截交线、相贯线的画法

01
根据零件的结构特点,选择主视图、俯视图和左视图进行绘制。
绘制步骤
02
先绘制各基本体的三视图,再绘制它们之间的截交线和相贯线。
注意事项
03
确保零件的整体结构清晰,各部分之间的相对位置准确,符合
实际尺寸。
感谢您的观看
THANKS
曲面体的三视图
球体的三视图都是圆,圆锥体的 三视图是圆、椭圆加线段,圆台 体的三视图是圆、椭圆加圆弧。
02
截交线的画法
平面截切圆柱体的截交线画法
总结词
圆柱体被平面截切后,其截交线的形状取决于平面的位置。常见的截交线形状 有矩形、椭圆和抛物线等。
详细描述
当平面与圆柱体轴线平行时,截交线为矩形;当平面与圆柱体轴线垂直且经过 顶点时,截交线为椭圆;当平面与圆柱体轴线垂直且不经过顶点时,截交线为 抛物线。
注意事项
确保组合体的整体结构清 晰,各基本体之间的相对 位置准确。
截交线和相贯线的绘制实例
截交线
当一个平面与立体相交时,形成的交 线称为截交线。
相贯线
绘制方法
根据立体的形状和截平面或相交立体 的位置,使用投影法绘制截交线和相 贯线。
两个立体相交时,形成的交线称为相 贯线。
实际机械零件的绘制实例
选择合适的视图
相贯线的画法
01

02
ch, whose白发ch via The塍通过 re CA也 C. capture which长安Ch the
03
challenging st that ch以获得说话
相贯线的画法
01

02
E care which Coast highly changing that high mast Pyil C spr other mind CO to C.

平面立体三视图课件

平面立体三视图课件

平面立体
曲面立体
基本立体(平面体)的三视图
常见的平面立体有棱柱和棱锥(包括棱台)。
棱柱
棱锥
棱台
基本立体(平面体)的三视图
一、棱柱
1.棱柱的三视图 棱柱的形体特征: 棱柱的各棱线互相平行。 棱柱的上下两底面平行且相同。
基本立体(平面体)的三视图
一、棱柱
1.棱柱的三视图 棱柱的三视图
及画法
基本立体(平面体)的三视图
c
b/ /
棱锥表面上取点
采用辅助直线法
作直线方法有两种
过顶点的直线法
作棱(底)边的平行线法
表面上点的可见性需要判断
若点所在的平面的投影可见,点的投影也可见。
Y
基本立体(平面体)的三视图
三、平面立体的尺寸注法
棱柱
基本立体(平面体)的三视图
三、平面立体的尺寸注法
棱锥
基本立体(平面体)的三视图
小结
平面立体三视图 平面立体表面的点和线 平面立体的尺寸注法
一、棱柱
1.棱柱的三视图 棱 柱的投影特点
在平行于棱柱底面的投影面上,棱柱的投影是一平面多边形, 它反映底面真形(特征投影)。
在垂直于棱柱底面的投影面上,棱柱的投影是一系列矩形。
一、棱柱
基本立体(平面体)的三视图
2.棱柱表面Байду номын сангаас的点
K
k/
k //
直棱柱表面上取点可利 用棱面投影的积聚性。
表面上点的可见性需要判断
b//
棱锥表面上取点 采用辅助直线法
c
作直线方法有两种
过顶点的直线法
作棱(底)边的平行线法 表面上点的可见性需要判断 若点所在的平面的投影可见,点的投影也可见。

基本体和组合体的三视图

基本体和组合体的三视图
在主视图和左视图上,高度相等且相互垂直的线段表示 物体在长和高方向上的轮廓。
在主视图和俯视图上,长度相等且相互垂直的线段表示 物体在长和宽方向上的轮廓。
俯视图和左视图上,宽度相等且相互垂直的线段表示物 体在宽和高方向上的轮廓。
掌握识读组合体三视图的方法和步骤
先整体后局部
先从整体上观察三个视图,了 解物体的基本形状和结构,再
俯视图
显示球体的顶面,也为圆形。
02 组合体的三视图
叠加组合体的三视图
叠加组合体的三视图是由两个或两个 以上的基本体通过叠加形成的组合体。
在主视图上,应将各基本体的投影绘 制在同一方向上,并按照从上到下、 从左到右的顺序排列。
在三视图中,应先绘制各个基本体的 三视图,然后按照叠加顺序逐个绘制, 注意各基本体之间的相对位置关系。
基本体和组合体的三 视图
目录
CONTENTS
• 基本体的三视图 • 组合体的三视图 • 三视图的绘制方法 • 三视图的识读方法
01 基本体的三视图
立方体的三视图
01
02
03
正视图
显示立方体的正面,为正 方形。
左视图
显示立方体的左侧,也为 正方形。
俯视图
显示立方体的顶面,为正 方形。
圆柱体的三视图
2. 注意线条的粗细
在三视图中,轮廓线和中心线应使用粗线表示,而其他线条应使用 细线表示,以增加清晰度。
3. 注意投影的虚实
在斜投影中,靠近投影面的线条应较实,而远离投影面的线条应较 虚,以增强立体感。
04 三视图的识读方法
正确理解三视图之间的关系
主视图、俯视图和左视图分别表示长、宽和高三个方向 的投影,它们之间存在一定的对应关系。

工程制图第3章

工程制图第3章


● ●

c

b
(一) 形体分析 (1)截交线空间形状 (2)截交线投影情况 (二)作图步骤 (1)求截交线上特殊点 (2)求截交线上一般点 (3)连接截交线的投影
(4)修补题给轮廓线的投影
利用辅助线法表面取点
3. 平面与球相交
平面与圆球相交,截交线的形状都是圆。 但根据截平面与投影面的相对位置不同,其截 交线的投影可能为椭圆、圆或积聚为直线。
第二步: 在圆锥上过一点可做出一条直素 线,也做出一个纬圆,求得A的水平 投影a。 第三步: 利用投影规律(长对正,高平齐, 宽相等)求得侧面投影a。即所谓 “二求三”。
a a

(a)

1
a a

1
3.圆球表面取点
例3-11 已知球表面上点A、B、C的一个投影,求作另两投影。
第一步: 由题给投影可看出:①点A在球的前上 半部②点B在V面转向轮廓线上(下边) ③点C在H面转向轮廓线上(右边)。 第二步: ①利用在球面上做水平圆辅助线得到 A水平投影a ②利用点B在V面转向轮 廓线上的从属性得到B的正面投影b′ ③利用点C在H面转向轮廓线上的从属 性得到C的水平投影c。 第三步: 利用投影规律(长对正,高平齐,宽 相等)求第三投影a、b和c′,即 所谓“二求三”。

面组成。侧棱线交于有限远 的一点s—— 锥顶。 s
2.棱锥 ⑴ 棱锥的组成 ⑵ 由一个底面和若干侧棱 三棱锥的三视图
A
S
C B
三、回转体
1.圆柱体
圆柱体的组成 圆柱体的三视图 圆柱体由圆柱面和两个底面组成。 轮廓线素线的投影分析 其中 :圆柱面是由直线AA1绕与它 与曲面的可见性的判断 平行的轴线 OO 旋转而成。直线 AA1 ) b″ a′ b′ (d′) c′ 1 d″ a″ (c″ 称为母线。圆柱面上与轴线平行的 任一直线称为圆柱面的素线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当棱台的底面平行某一个投影面时,则棱台在该投影面 的视图为两同心,且平行的相似多边形(两底平面的实形), 两多边形的对应角点相连,构成若干个梯形;另外两视图均 为若干个相邻梯形的组合。
3.2.4
圆柱
1. 圆柱面的形成
定轴OO 称为回转轴,直线AA 称为母线,AA 回转到任意位置时称为素线, 在投影图中处于轮廓位置的素线,称为轮廓素线。
(2)三视图的展开。
3.1.2
三视图之间的关系及投影规律
三视图之间的投影规律
1.三视图间的位置关系
主视图在上方,俯视图在主视图的正下方,左视图在主 视图的正右方。
2.三视图间的投影关系
主、俯视图反映物体的同样长度(等长); 主、左视图反映物体的同样高度(等高); 俯、左视图反映物体的同样宽度(等宽)。
球体三视图的绘制
4.圆球三视图的特性
圆球的投影特性为:圆球的三视图都是与球径相等的圆。
*5.圆球上点的投影
3.3
基本体的尺寸标注
基本几何体的尺寸标注
(1)平面立体一般应标注长、宽、高三个方向的尺寸,其中正方形的尺寸可 在边长数字前加正方形符号进行标注。 (2)正棱柱和正棱锥,除标注高度尺寸外,其正多边形底表面的尺寸可用外 接圆直径进行标注,也可根据需要用一般形式进行标注。
图3.1 顶尖和螺栓坯的立体图
1
三视图的形成及三视图之间的关系
2
基本体及其三视图
3
基本体的尺寸标注
3.1 三视图的形成及三视图之间的关系
用正投影法绘制而成的物体的多面投影图,称为视图。
3.1.1 3.1.2
三视图的形成和展开 三视图之间的关系及投影规律
3.1.1
三视图的形成和展开
(1) 三视图的形成。正面投影(由物体的前方向后方投射所得到的视图)称 为主视图,水平面投影(由物体的上方向下方投射所得到的视图)称为俯视图, 侧平面投影(由物体的左方向右方投射所得到的视图)称为左视图。
Hale Waihona Puke (3)圆柱和圆锥(或圆锥台)应标注底圆直径和高度尺寸,在标注直径尺寸 时,尺寸数字前应加注“φ ”,并且直径尺寸应尽量标注在非圆视图上。 (4)圆球只需标注一个尺寸,即圆球直径,标注时,应在尺寸数字前加注 “Sφ ”。
*5.圆柱表面上点的投影
3.2.5
圆锥
1.圆锥面的形成
固定轴OO 称为回转轴,直线SA 称为母线,SA 回转到任意位置时称为素线, 在投影图中处于轮廓位置的素线,称为轮廓素线。
2.圆锥的形状特征
圆锥由圆锥面和一个圆形底平面所围成。圆形底平面与轴线垂直,圆 心位于圆锥面的轴线上,圆锥的顶点位于轴线上,顶点到平面圆心的距离 即为圆锥的高。
中等职业教育课程改革国家规划新教材PPT
机械制图
人民邮电出版社
第3 章
基本体的三视图
课堂讨论
(1)从几何学的角度,说出日常生活中常见的基本几何形体都有哪 些? (2)图3.1 所示形体为机械中简单的零件,其由哪些基本体组合而成 的? (3)如果直接学习图3.1 所示形体的三视图,容易接受吗? (4)先学基本形体的三视图,在其基础上再学组合形体的三视图又 会怎样呢?
3.棱柱三视图的特性
当棱柱的底面平行某一投影面时,则棱柱在该面上投影的外轮廓为 与其底面全等的多边形,而另外两个投影则由数个相邻的矩形线框所组 成。
*4.求棱柱表面上点的投影
3.2.2
棱锥
1.棱锥的形状特征
2.棱锥三视图的画法 (1)适当摆放五棱锥。 (2) 五棱锥各表面及棱线的视图分析。
正五棱锥三视图的绘制
3.圆锥三视图的画法步骤
(1)适当摆放圆锥。 (2)视图分析。 ① 圆底面的三视图。 ② 圆锥面的三视图。 (3)圆锥三视图的画法。
4.圆锥体三视图的特性
*5.圆锥表面上点的投影
3.2.6
圆球
1.圆球面的形成
2.圆球的形状特征
圆球只有一个球表面,其任何方向上的形状都是相同的。
3.圆球三视图的画法步骤
3.三视图间的方位关系
主视图——反映了物体的上、下和左、右; 俯视图——反映了物体的左、右和前、后; 左视图——反映了物体的上、下和前、后。
3.2
基本体及其三视图
基本体可分为平面立体和曲面立体两类。

3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6
棱柱 棱锥 棱台 圆柱 圆锥 圆球
3.2.1
棱柱
1.棱柱的形状特征
2.棱柱三视图的画法 (1)适当摆放六棱柱。 (2)六棱柱各表面及棱线的视图分析。
棱柱三视图的绘制
棱柱三视图的画法步骤可归纳为: (1)形体有对称中心线时,可先画对称中心线的三视图,作为棱柱三视 图的定位基准。 (2)画图时,先从反映底平面形状特征的视图画起;然后,按视图间投 影关系完成底平面另外两面视图。 (3)最后绘制各侧棱反映实长的两面视图。
3.棱锥三视图的特性
当棱锥的底面平行某一个投影面时,则棱锥在该面上投影的外轮廓为 与其底面全等的多边形。轮廓内为若干个汇交于形心的三角形;其他两 面投影均为若干个相邻三角形所组成的线框。
*4.求棱锥表面上点的投影
3.2.3
棱台
1.棱台的形成 2.棱台的形状特征
3.棱台三视图的画法
4.棱台三视图的特性
2.圆柱的形状特征
圆柱由圆柱面和顶、底圆平面所围成。两平面圆平行相等,圆心位于圆柱 面的轴线上,圆心距即为圆柱体的高。
3.圆柱三视图的画法步骤
圆柱体三视图的绘制
4.圆柱三视图的特性
圆柱三视图的一般画图步骤为: (1)先画轴线和中心线。 (2)再画圆柱的圆视图。 (3)最后绘制非圆视图(矩形视图)。
棱锥三视图的画法步骤可归纳为以下几步。 (1)形体有对称中心线时,可先画对称中心线的三视图,作为棱锥柱 三视图的定位基准。 (2)画图时,先从反映底平面实形的视图画起;然后,按视图间投影 关系完成底平面另外两面视图。 (3)根据锥顶的位置特征和棱锥高度,绘制锥顶的三视图。 (4)最后直接连接锥顶和底平面各角点的同面投影,完成侧棱的三视 图。
相关文档
最新文档