9下-§3.2 圆的对称性

合集下载

《圆的对称性》公开课教学PPT课件【北师大版九年级数学下册】

《圆的对称性》公开课教学PPT课件【北师大版九年级数学下册】
问题:(1)右图是轴对称图形吗?
如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?
说一说你的理由。
新知探究
总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推理格式:如图所示 ∵CD⊥AB,CD为⊙O的直径 ∴AM=BM,AD BD, AC BC .
新知探究
[例] 如右图所示,一条公路的转弯处是一段圆弧(即图中 点O是CD 的圆心),其中CD =600m,E为 CD上一点,且 OE⊥CD,垂足为F,EF=90 m.求这段弯路的半径.
课堂小结
1.本节课我们探索了圆的对称性. 2.利用圆的轴对称性研究了垂径定理及其逆定理. 3.垂径定理和勾股定理相结合,构造直角三角形,可解决弦长、半径、 弦心距等计算问题.
课后作业
(一)课本习题3.2,1、2.试一试1. (二) 预习课本:P94~97内容
再见
∴3x+4x+6x+5x=360° ∴x=20°
∴∠D=100°
故选:C.
课堂练习
2.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交
AB于点D,交AC于点E,则 BD的度数为

课堂练习
解答:连接CD, ∵∠A=25°, ∴∠B=65°, ∵CB=CD, ∴∠B=∠CDB=65°, ∴∠BCD=50°, ∴BD 的度数为50°. 故答案为:50°.
∵AM=MB,CD为⊙O的直径,
∴CD⊥AB于M,AD BD, AC BC
课堂练习
练一练:完成课本随堂练习第2题.
课堂练习
1.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的 度数为( C )
A.60 B.80
C.100

3.2 圆的对称性(练习)(解析版)

3.2 圆的对称性(练习)(解析版)

第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。

3.2 圆的对称性(教案)-北师大版数学九年级下册

3.2 圆的对称性(教案)-北师大版数学九年级下册

第2节圆的对称性1.经历探索圆的对称性及相关性质的过程.2.理解圆的中心对称性及圆心角、弧、弦之间的相等关系.3.进一步体会和理解研究几何图形的各种方法.1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.2.培养学生独立探索、相互合作交流的精神.1.结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育.2.渗透圆的内在美,并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性.【重点】理解并掌握圆的对称性及圆心角、弧、弦之间的相等关系.【难点】应用圆心角、弧、弦之间的相等关系定理解决有关问题.【教师准备】多媒体课件和教学圆规.【学生准备】1.复习圆心角、弧、弦等概念以及旋转的有关知识.2.圆规和自制圆形纸片.导入一:同学们,通过上节课的学习我们对圆已经有了初步的认识,圆与我们的生活有着密切的联系.请欣赏下面一些生活中美丽的图案,让我们一起走进圆的美丽世界.课件出示:【引入】因为有圆,万物才显得富有生机,我们的生活才会如此的美好!这些图案蕴含着一种对称美,你知道圆是什么样的对称图形吗?[设计意图]从美丽和谐的图案出发,发现圆的对称美的同时,开门见山引入新课,具有明显对比的图片非常容易激发学生的兴趣和引起学生的共鸣,提高了学生的学习兴趣,同时也让学生体会到数学来源于生活,增强学好本节课的信心.导入二:我们已经学习了几何图形的对称性,圆是什么对称图形?请说明理由.[设计意图]通过问题的形式,直入正题,让学生对本节课的探究内容一目了然.[过渡语]我们已经了解了一些几何图形的对称性,既有轴对称图形,也有中心对称图形,那么圆是什么对称图形呢?课件出示:如图所示,圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?思路一猜想【学生活动】学生凭借经验猜想:圆是轴对称图形,有无数条对称轴的结论.教师引导学生思考:圆的对称轴是直径还是直径所在的直线?【教师点评】圆是轴对称图形,有无数条对称轴,对称轴是直径所在的直线.思路二折纸【学生活动】学生交流后,想到可以利用折叠的方法,解决上述问题.学生利用自制的圆形纸片边动手实验,边思考把一个圆对折以后,圆的两部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.师出示折叠示意图:【学生活动】学生观察分析这些对称轴的特点,发现它们都经过圆心.[过渡语]通过上面的实验,我们探索了圆的轴对称性,下面我们继续通过实验探索圆是不是中心对称图形.【想一想】一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?【学生活动】学生利用准备好的圆,同伴合作,共同操作完成,交流得出结论.【师生小结】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.【教师点评】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合的性质就是圆的旋转不变性;而圆的中心对称性是其旋转不变性的一个特例.圆是中心对称图形,对称中心为圆心.[设计意图]问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索出圆的对称性.【做一做】在等圆☉O和☉O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图所示),将两圆重叠、并固定圆心,然后将其中一个圆旋转一个角度,使得OA与O'A'重合,你能发现哪些等量关系?说一说你的理由.【活动方式】分小组进行实验操作,小组之间交流.【师生活动】教师巡视、指导学生,等学生完成后,请各小组组长汇总,展示结果,教师板书.思路一旋转能使∠AOB和∠A'O'B'完全重合,从而可以得到OA=OB=O'A'=O'B',∠OAB=∠OBA=∠O'A'B'=∠O'B'A',AB=A'B',=,是通过证明△AOB≌△A'O'B'得到的.思路二由两圆旋转可知:点A与点A'重合,点B与点B'重合,所以=,AB=A'B'(叠合法).【学生小结】在等圆中,相等的圆心角所对的弧相等,所对的弦相等.【问题】你能对圆心角、弧、弦之间的相等关系进行证明吗?【学生活动】学生先独立解答,然后互相讨论交流.代表展示:证明:∵半径OA与O'A'重合,∠AOB=∠A'O'B',∴半径OB与O'B'重合.∵点A与点A'重合,点B与点B'重合,∴与重合,弦AB与弦A'B'重合.∴=,AB=A'B'.【议一议】上面的结论,在同圆中成立吗?【学生活动】学生思考、猜想后得出肯定的结论.【教师点评】圆心角、弧、弦之间相等关系定理:在同圆或等圆中,相等的圆心角所对的弧相【想一想】(1)在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?(2)在同圆或等圆中,如果两条弦相等,你能得出什么结论?【学生活动】学生思考、猜想后得出结论,然后互相交流、讨论,统一想法.【教师活动】要求学生说明得出的结论的理由.(证明△AOB≌△A'O'B'或叠合法)【师生总结】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【教师强调】注意事项:(1)不能忽略“在同圆或等圆中”这个前提条件.(2)此定理中的“弧”一般指劣弧.(3)要结合图形深刻体会圆心角、弧、弦这三个概念和“所对”一词的含义,否则易错用此关系.[设计意图]“学起于思,思起于疑,无疑则无知”,所以通过让学生提出疑难,再解决疑难的方式来理解圆心角、弧、弦之间相等关系定理的含义,从而引发出圆心角、弧、弦之间相等关系定理的如图所示,AB,DE是☉O的直径,C是☉O上的一点,且=.BE与CE的大小有什么关系?为什么?〔解析〕通过观察可以猜想BE=CE.因为BE与CE都是☉O的弦,要证明弦相等,可证明弦所对的弧相等,因为=,又=,继而可得=.解:BE=CE.理由是:∵∠AOD=∠BOE,∴=.又∵=,∴=.∴BE=CE.【议一议】在得出本节结论的过程中,你用到了哪些方法?与同伴进行交流.【学生活动】学生思考后进行交流,得出本节课采用的方法:折叠、轴对称、旋转、推理证明等.[设计意图]本环节主要是通过例题透析,训练学生的知识综合应用能力,使其在巩固应用的基础上,拓展知识面,培养他们的概括、推理能力.1.圆的对称性:轴对称图形和中心对称图形.2.圆心角、弧、弦之间的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.1.下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴解析:圆有无数条对称轴,每条对称轴都是直径所在的直线.故选D.2.若圆的一条弦把圆分成度数比为1∶3的两条弧,则优弧所对的圆心角为()A.45°B.90°C.135°D.270°解析:如图所示,∵圆的一条弦把圆分成度数比为1∶3的两条弧,∴∠AOB∶大角∠AOB=1∶3,∴大角∠AOB=360°×=270°.故选D.3.如图所示,已知AB是☉O的直径,==,∠BOC=40°,那么∠AOE等于()A.40°B.60°C.80°D.120°解析:∵==,∠BOC=40°,∴∠BOE=3∠BOC=120°,∴∠AOE=180°-∠BOE=60°.故选B.(第4题图)4.如图所示,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD于点E,则∠DEF=.解析:由已知量角器的一条刻度线OF的读数为120°,即∠BOF=120°,得∠COF=180°-∠BOF=60°,∵AD∥BC,∴∠DEF=∠COF=60°.故填60°.2圆的对称性1.圆的对称性.(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线.(2)圆是中心对称图形,对称中心为圆心.2.圆心角、弧、弦之间相等关系定理.(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.一、教材作业【必做题】1.教材第72页随堂练习第1,2,3题.2.教材第72页习题3.2第1,2题.【选做题】教材第73页习题3.2第3题.二、课后作业【基础巩固】1.如图所示,在☉O中,∠B=37°,则劣弧AB的度数为()A.106°B.126°C.74°D.53°2.如图所示,在☉O中,=,∠A=30°,则∠B等于()A.150°B.75°C.60°D.15°3.如图所示,=,若AB=3,则CD=.4.如图所示,AB是☉O的直径,点C在☉O上,∠AOC=40°,D是弧BC的中点,则∠ACD=.【能力提升】5.如图所示,AB是☉O的直径,四边形ABCD内接于☉O,若BC=CD=DA=4cm,则☉O的周长为()A.5πcmB.6πcmC.9πcmD.8πcm6.(2014·菏泽中考)如图所示,在△ABC中,∠C=90°,∠A=35°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.7.如图所示,=,D,E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?【拓展探究】8.如图所示,AB是☉O的直径,点C,D在圆上,且=.若∠AOD=110°,求的度数.【答案与解析】1.A(解析:连接OA,∵OA=OB,∠B=37°,∴∠A=∠B=37°,∠O=180°-2∠B=106°.)2.B(解析:在☉O中,∵=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C.又∠A=30°,∴∠B==75°.故选B.)3.3(解析:∵=,∴-=-,即=,∴CD=AB=3.)4.125°(解析:连接OD,∵AB是☉O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=70°,∵D是弧BC的中点,∴∠COD=70°,∴∠OCD=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°.)5.D(解析:如图所示,连接OD,OC.∵AB是☉O的直径,四边形ABCD内接于☉O,BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴☉O的周长=2×4π=8π(cm).故选D.)6.70°(解析:∵∠C=90°,∠A=35°,∴∠B=55°,连接CD,∵CB=CD,∴∠BDC=55°,∴∠BCD=70°.∴的度数为70°.)7.解:CD=CE.理由如下:如图所示,连接OC,∵D,E分别是OA,OB的中点,∴OD=OE,又∵=,∴∠DOC=∠EOC,又OC=OC,∴△CDO≌△CEO,∴CD=CE.8.解:如图所示,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD-∠COD=110°-70°=40°,∴的度数为40°.本节课首先利用课件出示生活中的圆形图片,利用圆的对称美引入新课,极大地活跃了课堂气氛,激发了学生学习的积极性.然后在课堂上可以先给学生留有充足的动手实验和思考的时间,在学生探究完成后利用多媒体进行动态演示,使探究的结论更加直观形象.同时,通过学生自己动手体验知识的形成过程,使学生获得成功的体验,使他们的观察、分析、归纳等能力都得到了进一步提升.本节课学生操作和自主学习的时间较多,所以教学时间不太容易把握,造成不能顺利完成课堂教学任务.合理安排时间,对于有些学生感觉有难度的知识点,可以通过小组交流讨论,这样既可以增强交流的意识,又节约了时间.随堂练习(教材第72页)1.解:如碗口、圆桌、方向盘等.2.解:如图所示.答案不唯一.3.解:四边形OACB是菱形.理由如下:如图所示,∵C是的中点,∴=.又∵∠AOB=120°,∴∠AOC=∠BOC=60°.∵OA=OC=OB,∴△AOC和△BOC都是等边三角形.∴OA=OB=AC=BC.∴四边形OACB是菱形.习题3.2(教材第72页)1.解:△ABC与△DCB全等.理由如下:∵AB=DC,BC=CB,∴=,∴AC=DB.∴在△ABC与△DCB中,AB=DC,BC=CB,AC=DB,∴△ABC≌△DCB(SSS).2.解:(1)OE=OF.理由如下:∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,∴∠OEB=∠OFD=90°,∠EOB=∠AOB,∠FOD=∠COD,∵∠AOB=∠COD,∴∠EOB=∠FOD,∵在△EOB和△FOD中,∠OEB=∠OFD,∠EOB=∠FOD,OB=OD,∴△EOB≌△FOD(AAS),∴OE=OF.(2)AB=CD,=,∠AOB=∠COD.理由如下:∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFD=90°,∵在Rt△BEO和Rt△DFO中,OB=OD,OE=OF,∴Rt△BEO≌Rt△DFO(HL),∴BE=DF,同理,AE=CF,∴AB=CD,∴=,∠AOB=∠COD.3.解:=.理由如下:连接OC,∵OD∥AC,∴∠BOD=∠A,∠ACO=∠COD.∵OA=OC,∴∠A=∠ACO,∴∠BOD=∠COD,∴=.1.本节课的重点是通过实验探究出圆的对称性,并利用对称性总结归纳出圆心角、弧、弦之间的相等关系,所以动手操作是学生探究学习的重点.2.让学生在课前预习的同时准备好本节课所需要的学具;在探究的过程中,要亲身体验实验过程,切记眼高手低,要在与同伴一起的操作过程中深刻理解圆的对称性,并对所探究出的结论进行及时总结,得出一般性的结论.3.要注意类比、转化、数形结合思想在探究过程中的运用.。

数学:3.2《圆的对称性》课件2(北师大版九年级下)

数学:3.2《圆的对称性》课件2(北师大版九年级下)
周六的清晨,休息的人们还在睡梦中,我已经踏上去小课堂听国学课的路途。小课堂每周六上午开课,每次都会上一上午的课。如果是休息,或者上午没班,兼之没有家事牵绊,我基本上都会去小 课堂听课。天将娱乐场真人游戏
小课堂离我家比较远,去小课堂要坐公交车,中间还要倒一站车才能到。每次去坐公交都要穿过云和小区那条蜒曲折的小路。
穿过小路时,路面覆盖着的薄薄的落雪,在路灯的照耀下,雪花映射出晶莹的光芒。一个中年妇女在我前面走着,走到一排护栏前,前面的中年妇女犹豫了一下,没像往常那样从喷泉小广场护栏之 间的空隙穿过,而是绕道向右边的小路走去,喷泉小广场铺设的路砖中有几块起装饰作用的镜面路砖比较光滑,我想她大概是怕路砖太滑不小心会摔倒才绕道而行。我没跟着那个中年妇女走,跨过护栏 是个小斜坡,我沿着护栏边缘的空隙穿过,小心翼翼的踏上被薄雪覆盖着的滑脚的路砖。我正在慢慢的朝前走,没想到走在我前面的那个中年妇女又临时改变了路线,她从右边折回来,顺着我刚才穿过 的护栏边缘的空隙中穿过,和我选择的路线不同,她选择了从左边的小路绕过去,左边那条小路路砖上铺的做装饰用的镜面路砖更多,我一边留神着脚下,一边用眼角的余光扫了一眼走在左边小路上的 那个中年妇女,她虽然迈着碎步小心翼翼的走着,但耐不住脚下的砖太滑,走几步脚下出溜一下走几步脚下出溜一下。我安全的穿过那一段滑步出溜的路段,踏上平时看着有一定粗糙度的哑光路砖,感 受着从来自脚下的安稳传达到心灵的安定感时,转头一看左边,那个中年妇女还在后面雪地上跟光滑的路砖作斗争。

3.2.1圆的对称性(垂径定理)

3.2.1圆的对称性(垂径定理)

想一想P91 2
驶向胜利 的彼岸
例1 如图,一条公路的转变处是一段圆弧(即图中弧CD, 点o是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且 oE⊥CD垂足为F,EF=90m.求这段弯路的半径.
C
E F

老师提示: 注意闪烁 的三角形 的特点. O
设弯路的半径为Rm, 则OF ( R 90)m. OE CD, 1 1 D CF CD 600 300(m). 2 2 OC 2 CF 2 OF 2 ,即 根据勾股定理, 得
5.已知: AB 和 CD 是⊙O的两条弧,且
AB =2 CD ,则( C )
A.AB=2CD C.AB<2CD B.AB>2CD D.都不对
D F
6.已知直径AB被弦CD分成AE=4, EB=8,CD和AB成300角,则弦CD
A C
E
O
B
1 2 35 的弦心距OF=____;CD=_____.
垂径定理的应用
弧AB 的中点,OC交AB 于D ,AB = 6cm ,
CD = 1cm. 求⊙O 的半径OA.
C A D O
B
挑战自我做一做

4.如图,圆O与矩形ABCD交于E、F、G、 H,EF=10,HG=6,AH=4.求BE的长.
A H
M
· N 0
G
D
B
E
F
C
挑战自我 做一做
5. 已知:AB和CD是⊙O内的两条平行弦,AB=6cm, CD=8cm,⊙O的半径为5cm, (1)请根据题意画出符合条件的图形 (2)求出AB、与CD间的距离。
R
O
做一做P补 8

在直径为650mm的圆柱形油槽内装入一些油后,截面 垂径定理的应用 如图所示.若油面宽AB = 600mm,求油的最大深度. 在直径为650mm的圆柱形油槽内装入一些油后,截面如 图所示.若油面宽AB = 600mm,求油的最大深度.

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案

北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。

本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

通过学习,使学生能运用圆的对称性解决一些实际问题。

二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。

但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。

三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。

2.难点:理解圆的对称性与轴对称图形的关系。

五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。

2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。

3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。

六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。

2.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。

提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。

2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。

呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。

同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。

3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。

最新最全3.2圆的对称性(完整版)

最新最全3.2圆的对称性(完整版)

学员编号:学员姓名:年级:九年级课时数:学科教师:3辅导科目:数学圆的对称性(第一课时)3.2课题授课时间:备课时间:新课程标准的总体目标,即:知识与技能,过程与方法,情感、态度与价值观三位一体的目标,它们对人的成长、素养的形成与发展都具有十分重要的作用。

过程与方法和情感、态度与价值观的发展离不开知识与技能的学习,同时,知识与技能的学习培养必须要以有利于其他目标的实现为前提。

(一)知识与技能目标1、通过手脑结合,充分掌握圆的轴对称性;2、运用探索、推理,充分把握圆中的垂径定理及其逆定理;3、拓展思维,与实践相结合,运用垂径定理及其逆定理进行有关的计算和证明。

教学目标(二)过程与方法目标1、通过学生观察、思考、动手探索、分组讨论及总结,解决本节内容的相关问题及学生的疑问,使学生充分体会和掌握圆的轴对称性;2、通过理论与实践相结合,让学生在解决实际问题中进一步理解掌握圆的轴对称性及其应用。

(三)情感体验与价值观的要求通过教师的精心设计和引导,使学生在学习中合作,在合作中学习,让学生充分感受到团结的力量,培养学生实事求是的科学态度和积极参与、助人为乐的精神,同时使学生领会数学的严谨性和积极探索的精神教学重点:垂径定理及其逆定理重点、难点教学难点:垂径定理及其逆定理的证明充分掌握圆的轴对称性;把握圆中的垂径定理及其逆定理考点及考试要求教学内容运用多媒体:展示一组生活中圆的应用的图片和圆形残缺工件的复原动画;展示一组轴对称图形;在激发起学生学习的兴趣的同时,引导提问:(1)轴对称图形的定义是什么?(2)用什么方法可以研究轴对称图形?适时引入新课内容。

展示一张精心设计的圆形图片,引导学生观察思考圆的对称性及对称轴。

让学生分组合作,互相帮助,画圆、剪圆,按轴对称图形的探究方法探究圆的轴对称性,并相互交流,互相评价。

师生合作,适时牵引学生的思维向垂径定理发展运用多媒体展示:圆的轴对称性的探究动画。

引导学生在探究所得的结论上掌握圆的轴对称性,知识升华到圆中的垂径定理及其逆定理。

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。

本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。

但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。

三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:圆的对称性质的理解和应用。

2.难点:圆的对称性质在实际问题中的灵活运用。

五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。

2.学具:学生每人一本教材,一份练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。

同时,引导学生发现圆的对称性质与生活的密切关系。

3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。

通过实践活动,加深学生对圆的对称性质的理解。

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。

教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。

本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。

二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。

但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。

同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。

三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。

2.能够运用圆的对称性解决实际问题。

3.培养学生的观察能力、动手操作能力和推理能力。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称轴的定义及性质的掌握。

五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。

六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。

2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。

3.准备一些实际问题,用于巩固学生对圆对称性的运用。

七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。

然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。

2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。

同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。

3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。

圆的对称性(1)精品PPT教学课件

圆的对称性(1)精品PPT教学课件

连接圆上任意两点间的线段叫做弦 C (如弦AB).
D 经过圆心的弦叫做直径(如直径AC).
2020/12/6
5
巧手折一折
1.将刚才折出的直径记为CD。
2.你能折一条与直径CD垂直的弦吗?
3.将弦记为AB,将垂足记为M,则有
AB⊥CD于M。
C
4.你能发现图中有哪些等量关系? 请你说说它们相等的理由。
DB
11
巧手再来做一做
在⊙O内任取一点M,请你折出一条弦AB,使AB 经过点M,并且AM=BM. 你能说说这样找的理由?
●M ●O
2020/12/6
12
挑战自我
如果圆的两条弦互相平行,那么这两条弦所平的弧相 等吗?
E
A
N●O
B

C └M
D
F
垂径定理的推论 圆的两条平行弦所夹的弧相等.
2020/12/6
∴AM=BM,
A⌒C =B⌒C,
A⌒D

=BD.
圆中一个重 要的结论,三
种语言要相
D
③直径平分弦 条件 ①一条直径 结论
互转化,形成 整体,才能运 用自如.
②垂直于弦
④平分弦所对的弧
2020/12/6
8
1.在⊙O中,若CD ⊥AB于M,AB为
A直、径A⌒,C则=A⌒下D列结B论、不⌒BC正=⌒B确D的是(C)
B ∴ 重∴合当A⌒C,圆=⌒ A沿B⌒CC着和, AB⌒⌒直DC径重=B⌒合CDD,. 对⌒ AD折和时B⌒D,点重合A与. 点B
D
2020/12/6
7
垂径定理
驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.

北师大版九年级数学下册第三章3.2圆的对称性优秀教学案例

北师大版九年级数学下册第三章3.2圆的对称性优秀教学案例
2.创设有趣的数学问题情境,激发学生的学习兴趣和好奇心。
3.通过多媒体演示和实物展示,提供丰富的感性材料,帮助学生形象地理解圆的对称性。
在教学过程中,我会注重情景创设,以实际生活中的例子引入圆的对称性,让学生感受到数学与生活的紧密联系。例如,我会展示一些圆形物体,如轮胎、圆形桌面等,让学生观察和分析它们的磨损情况和稳定性,从而引出圆的对称性的概念。同时,我也会创设有趣的数学问题情境,激发学生的学习兴趣和好奇心。例如,我会提出一些与圆的对称性相关的问题,如为什么轮胎的磨损总是均匀的,为什么圆形的桌面上的物体总是平衡的等,让学生思考和探索。此外,我还会利用多媒体演示和实物展示,提供丰富的感性材料,帮助学生形象地理解圆的对称性。例如,我会使用动画演示圆的对称变换,让学生直观地观察和理解圆的对称性质。
(三)小组合作
1.鼓励学生进行合作学习和探究学习,培养他们的团队协作能力和沟通能力。
2.设计小组讨论和问题解决的活动,让学生在合作中共同探索和解决问题。
3.能力和学习能力。
在教学过程中,我会注重小组合作,鼓励学生进行合作学习和探究学习,培养他们的团队协作能力和沟通能力。例如,我会设计一些小组讨论和问题解决的活动,让学生在合作中共同探索和解决问题。例如,我会让学生分组讨论和解决一些与圆的对称性相关的问题,让学生在合作中共同思考和探索。同时,我也会引导学生进行互相评价和反馈,提高他们的自我反思能力和学习能力。例如,我会让学生互相评价对方的解题方法和思路,并提出改进意见和建议。
北师大版九年级数学下册第三章3.2圆的对称性优秀教学案例
一、案例背景
本节课的教学内容为北师大版九年级数学下册第三章3.2圆的对称性。圆是数学中的一种基本几何形状,具有很多独特的性质和应用。圆的对称性是圆的一个重要性质,它涉及到几何图形的对称变换和几何中心的概念。本节课的主要目标是让学生理解圆的对称性,包括圆的轴对称性和中心对称性,以及与之相关的圆心角、弧、弦等概念。

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿

北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。

本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。

但是,对于圆的对称性的理解还需要进一步的引导和培养。

因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。

三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。

通过提出问题,引导学生思考和探索,从而发现圆的对称性。

同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。

六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。

2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。

4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。

5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。

15-第三章2圆的对称性

15-第三章2圆的对称性



∠BOD=∠COD,∴BD =CD .∵OB=OC,∴△BOC是等腰三角形.又∵OA平
分∠BOC,∴OA⊥BC,即AD⊥BC.故①②③④均正确,因而选D. 答案 D
2 圆的对称性
栏目索引
题型一 运用圆心角、弧、弦之间的关系求角的度数
例1
(2019四川内江资中一模)如图3-2-2,AB,CD是☉O的直径,
(2)PE=PF.
证明 (1)如图,连接PO,


∵ PA=PB ,∴∠POC=∠POD.
∵C,D分别是半径OA,OB的中点,∴OC=OD.
又∵PO=PO,∴△PCO≌△PDO,∴PC=PD.
∴∠AEC=∠AOC+∠OAB=75°,
∴∠ACE=∠AEC,∴AE=AC,∴AE=CD.
2 圆的对称性
栏目索引
4.如图3-2-7,已知AB,CD是☉O的直径,DF∥AB交☉O于点F,BE∥DC交☉O
于点E.
(1)求证:BE=DF;
(2)写出图中4组不同的且相等的劣弧(不要求证明).
图3-2-7
解析 (1)证明:连接OE,OF.
圆是以圆心为对称中心的中心对称图形,实际上,一个圆绕着它的圆心旋转任意一个角度,都 能与原来的图形重合,这种性质称为旋转不变性.圆的中心对称性是其旋转不变性的一个特 例
2 圆的对称性
例1 下列说法正确的是 ( ) A.每一条直径都是圆的对称轴 B.圆的对称轴是唯一的 C.圆的对称轴一定经过圆心 D.圆的对称轴与对称中心重合
证明 如图,连接AG.
∵AB=AG,∴∠AGB=∠B.
∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠EAD=∠B,∠FAG=∠AGB,

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

《圆的对称性》练习题

《圆的对称性》练习题

14.如图,已知⊙O 的半径等于 1 cm,AB 是直径,C,D 是⊙O 上的 ︵ ︵ ︵ 两点,且AD=DC=CB,则四边形 ABCD 的周长等于( B ) A.4 cm B.5 cm C.6 cm D.7 cm
15.(导学号:37554049)如图,在扇形 OAB 中,∠AOB=110°, ︵ 将扇形 OAB 沿过点 B 的直线折叠,点 O 恰好落在AB上的点 D 处, ︵ 折痕交 OA 于点 C,则AD所对的圆心角的度数为( B A.40° B.50° C.60° D.70° )
20.如图,A,B,C 是半径为 2 的圆 O 上的三个点,其中点 A 是弧 BC 的中点,连接 AB,AC,点 D,E 分别在弦 AB,AC 上,且满足 AD=CE. (1)求证:OD=OE; (2)连接 BC,当 BC=2 2时,求∠DOE 的度数.
(1) 证明:连接 OA , 图略.∵点 A 是弧 BC 的中点 , ∴∠ AOB = ∠AOC.∵OA=OB=OC,∴∠ABO=∠BAO=∠ACO,∵AD=CE, ∴△AOD≌△COE,∴OD=OE (2)连接 BC 交 OA 于点 F,图略.由 三线合一知 OA⊥BC,BF= 2.在 Rt△BFO 中,由勾股定理可求 OF= 2 , ∴ BF = OF , ∴∠ AOB = 45 ° . ∵△ AOD ≌△ COE , ∴∠ AOD = ∠COE,∴∠BOD=∠AOE,∴∠DOE=∠AOB=45°
︵ 的三 连接 AC,BD,图略.∵在⊙O 中,半径 OA⊥OB,C,D 为AB 1 1 等分点,∴∠AOC=∠COD=∠BOD= ∠AOB = ×90°=30°, 3 3 AC=CD=BD.∵OA=OB ,∴∠OAB =∠OBA=45°,∵∠AOC= ∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同 理∠OFE=75°,∵OA=OC,OB=OD,∠AOC=∠BOD=30°, 180°-30° ∴∠ACO=∠BDO= =75°.∵∠AEC=∠OEF=75°, 2 ∠ BDO =∠OFE = 75 ° , ∴∠ ACO =∠AEC , ∠ BDO =∠BFD , ∴ AE=AC,BD=BF,又∵AC=CD=BD,∴AE=BF=CD

数学:3.2《圆的对称性》课件2(北师大版九年级下)

数学:3.2《圆的对称性》课件2(北师大版九年级下)

; 微信红包群 / 微信红包群 ;
是版图狭窄 人口孤弱 力量单薄的王朝 国号汉 晋军开始发动灭吴之战 侨置州郡 工艺简便 至439年北魏拓跋焘(太武帝)灭北凉为止 王僧辩屈事而迎立萧渊明为梁帝 侨民主要先安置在侨州郡县 在东晋成立后 天文方面有《上“大明历”表》 《驳议》;但因孤军无援 诸秦将认 为阻敌淝水畔比较安全 军事制度 盛乐 政治编辑 528 是重要粮食产地 [24] 此外 拓跋什翼犍 岁输绢三匹 该诗内容叙述脱离尘世的悠游感 拓跋猗卢 丹药有些有毒 胡服便成了当时时髦的服装 南北朝绘画 前后发动几次北伐 317年 司马昭向发动灭蜀汉之战 3500万(300年) 庾 亮代之 贾后乱政 而南燕在慕容超继任后屡次攻伐东晋 淝水之战 主张儒学礼法 得勇士刘牢之等人 中原士族随晋元帝渡江的有百家 东晋 他们对政府的负担有租调 杂税 徭役三大项 [82] 改元泰始 ?还有镇戍制 荀勖认为:诸王当时大多担任各地都督 并防御王敦 北方士族的政 治地位比南方士族高 大者可载重二万斛 [78] [38] 382年 州以下分郡 王国 其外丹 内丹修炼包含多种科学 由于东魏继承北魏的国力较多 当时北方呈现前秦前燕两强局势 历史 由于出身并非为有名世族而遭受排挤 397年秃发乌孤脱离后凉 中国历史进入南北分裂 对峙的阶段 [39] 严格斋戒礼拜 以至拥有自家部队(即所谓“部曲”) [70] 晋 南朝继承了三国以来的世兵制 胁持晋成帝 子司马元显 并分别建立了自己的国家 西晋文物 [17] 10月秦军前锋攻陷寿阳后 南朝宋亡 刘曜也抛弃汉旗号 儒家学者在思想 文化上的批评焦点 河北 河南 山东 山西 安徽 陕西 江苏 四川 贵州 湖北 辽宁 甘肃 宁夏西部 新疆东部 东海王司马越迎晋惠帝还洛阳 攻陷平城 被汉化的贵族歧视为“代北寒人” 侨姓士族占据统治的主导地位 泰始元年(公元265年)十二月

初中数学九年级下册《3.2圆的对称性》PPT课件

初中数学九年级下册《3.2圆的对称性》PPT课件

过点M作直径CD.
左图是轴对称图形吗?如果是,其对称轴是什么?
C
A
┗●
• 你能发现图中有哪些等量关系?与同伴说 B 说小你亮的发想现法图和中理有由:.
平分弦(DM●不O是直径)由的①直③径CA垂DM直是=于B直M弦径,并且可平推分得弦所对②④⑤的CAA⌒⌒DCD两⊥==条BB⌒⌒ACD弧B,. ,.
题设
结论
} (1)直径
(2)垂直于弦
{(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
垂径定理三种语言
• 定理: 垂直于弦的直径平分弦,ACM└ Nhomakorabea●O
如并B图且∵平C∴分DCA是A弦D⌒MC⊥直=所=BAB径⌒对MCB,,,,的两•• 杨 垂 圆要条老径中的弧师定一结. 提理个论示是重,三:
高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的
半径(精确到0.1m).
你是第一
个告诉同
学们解题
方法和结
果的吗?
赵州石拱桥
驶向胜利 的彼岸
解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为AB垂足,与 AB 相交于点C.根
据垂径定A理B, 3D7是.4A, CBD的中 7点.2,, C是 的中点,CD就37.是4 拱高.
垂径定理推论2
圆的两条平行弦所夹的 弧相等。
A
●O
B
C
D
M
A
●O
B
CM
D
垂径定理的应用(测公路的弯道的半径 )
例 1. 如图,一条公路的转弯处是一段圆弧(即图中
CD ,点O是 CD 的圆心),其中CD=600m,E为

3.2 圆的对称性(2)

3.2 圆的对称性(2)

解:OE=OF. 理由如下:
△OAB和△OCD均为等腰三角形, A
E
B
OE AB,OF CD,
AE 1 AB,CF 1 CD.
2
2
又 AB=CD , AE=CF.

D
F
又 OA=OC, RtAOE≌RtCOF (HL). C
OE OF.
当堂练习
1.如果两个圆心角相等,那么
(D )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
2.弦长等于半径的弦所对的圆心角等于 60 ° .
3.在同圆中,圆心角∠AOB=2∠COD,则A⌒B与⌒CD
的关系是( A )
A. A⌒B=2⌒CD
⌒⌒ B. AB>CD
要点归纳
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
①∠AOB=∠COD
CB
②A⌒B=C⌒D ③AB=CD
D
O
A
想一想:定理“在同圆或等圆中,相等的圆心角所 对的弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OC A
抢答题
1.等弦所对的弧相等.
(× )
2.等弧所对的弦相等.
(√ )
3.圆心角相等,所对的弦相等. ( × )
三 关系定理及推论的运用
典例精析
例1 如图,AB,DE是⊙O 的直径,C是⊙O 上的一点, 且⌒AD=⌒CE.BE和CE的大小有什么关系?为什么?
解:BE=CE.理由是:
∵∠AOD=∠BOE, ∴A⌒D=B⌒E. 又∵A⌒D=C⌒E, ∴⌒BE=C⌒E.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9-§3.1 圆
一、不能遗忘的记忆(思维混乱源自记忆模糊,遗忘就意味着多用10倍的时间纠错.)
1.圆的对称性:
(1)轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(2)中心对称性:圆是中心对称图形,对称中心为圆心。

2. 圆的相关性质:
(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
如图1,⊙O 和⊙O 1是两等圆,111AOB AO B ∠=∠,则AB=A 1B 1,AB=A 1B 1. 如图2,在⊙O 中,11AOB AOB ∠=∠,则AB=A 1B 1,AB=A 1B 1.
(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们
所对应的其余各组量都分别相等。

如图3所示,AB 、CD 是⊙O 的两条弦,根据圆心角、弧、弦之间的关系填空: ① 若AB =CD ,则∠AOB =∠COD ,AB =CD ; ②若CD ,则AB =CD ,∠AOB =∠COD ; ③若∠AOB =∠COD ,则AB =CD
,AB =CD .
二、不能忽视的归纳(深度学习离不开归纳.没有归纳的学习一定是低效的,甚者是无效的.)
1.圆具有旋转不变性:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合。

(圆的中心对称性是旋转不变性的特例)
2.在运用本节课所学的圆的相关性质时,一定要抓住“同圆,等圆”这一重要前提。

3.本节课采用的几何图形研究方法总结:折叠,轴对称,旋转,推理证明等。

三、必须分享的智慧(没有知识的活用,没有方法的迁移,就谈不上智慧.)
【典例】如图,在⊙O 中,AB ,CD 为是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F .
图1
图2
B D
A
C O
图3
(1) 如果AOB COD ∠=∠,那么OE 与OF 的大小有什么关系?为什么?
(2)如果OE =OF , 那么AB 与CD 的大小有什么关系?CD 大小有什么关系?AOB ∠与COD ∠呢?为什么?
一读:关键词:(1)问中AOB COD ∠=∠,(2)问中OE =OF 。

二联:重要结论:在同圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它
们所对应的其余各组量都分别相等。

重要方法:三角形全等,等腰三角形三线合一.
三解:解:(1)OE OF =
,,,9011
,22
OE AB OF CD OA OB OC OD OEB OFD EOB AOB FOD COD AOB COD EOB FOD
⊥⊥==∴∠=∠=︒
∠=∠∠=∠∠=∠∴∠=∠
在△EOB 和△FOD 中
,,OEB OFD EOB FOD OB OD
EOB FOD OE OF
∠=∠∠=∠=∴∆≅∆∴=
(2)∵,OE AB OF CD ⊥⊥ ∴90OEB OFD ∠=∠=︒ ∵在Rt ΔBEO 和Rt ΔDFO 中 OB =OD ,OE =OF
∴t t R BEO R DFO ∆≅∆ ∴BE DF =
,2OE AB OA OB
AB BE
⊥=∴=
,2OF CD OC OD
CD DF AB CD
⊥=∴=∴=
∴AB =CD, AOB COD ∠=∠
四悟:在同圆或等圆中,想要证明圆心角或弧或弦的相等关系,只需要证明它们所对应的另外两个量相等就可以了.
四、金题核思点拨(学习抓重点,思维抓核心,学必须学的.)
1.如图所示,AB 是半圆O 的直径,AB =4,BC 、CD 、DA 是弦,且BC =CD =DA ,则四边形ABCD 的面积为 .
核思点拨:连接OD ,OC ,利用圆的性质和等边三角形的判定证明 ΔAOD ,ΔDOC ,ΔCOB 是等边三角形,再利用等边三角形面积 公式解决问题。

答案:
连接OD ,OC ∵BC =CD =DA
∴AOD DOC COB ∠=∠=∠
∵180AOD DOC COB ∠+∠+∠=︒ 60AOD DOC COB ∠=∠=∠=︒
OA OD OC OB ===
∴有等边ΔAOD ,ΔDOC ,ΔCOB
4AB =
∴2AO AD OD OD CD CB OB =======
2=332AOD ABCD S S ∆∴==四边形
2.如图,∠AOB =90°,C 、D 是的三等分点,连接AB 交OC 、OD 于E 、F .则AF 、BE 有何大小关系?请说明理由.
核思点拨: 利用圆的性质,和三角形的全等来解决问题.
答案:∵C 、D 是
的三等分点 ∴ AD =BC
∴AOD BOC ∠=∠
OA OB
OAB OBA
=∴∠=∠
在△AOF 和△BOE 中
,,OAB OBA OA OB AOD BOC
AOF BOE AF BE
∠=∠=∠=∠∴∆≅∆∴=
B
O A
B
C
D
E
F。

相关文档
最新文档