聚类分析—层次聚类

合集下载

聚类分析的类型与选择

聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。

通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。

本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。

1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。

下面将分别介绍这两种聚类方法。

1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。

这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。

层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。

另外,它对异常值敏感,若存在异常值可能影响聚类结果。

1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。

该方法通过迭代计算簇的中心和重新分配数据来实现聚类。

k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。

但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。

2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。

下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。

对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。

2.2聚类目标需要考虑聚类的目标。

如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。

而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。

2.3数据质量数据质量也是选择聚类方法的重要因素。

层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。

选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。

层次聚类分析

层次聚类分析

层次聚类分析层次聚类分析在层次聚类中,起初每⼀个实例或观测值属于⼀类。

聚类就是每⼀次把两类聚成新的⼀类,直到所有的类聚成单个类为⽌,算法如下:(1) 定义每个观测值(⾏或单元)为⼀类;(2) 计算每类和其他各类的距离;(3) 把距离最短的两类合并成⼀类,这样类的个数就减少⼀个;(4) 重复步骤(2)和步骤(3),直到包含所有观测值的类合并成单个的类为⽌。

层次聚类⽅法单联动聚类⽅法倾向于发现细长的、雪茄型的类。

它也通常展⽰⼀种链式的现象,即不相似的观测值分到⼀类中,因为它们和它们的中间值很相像。

全联动聚类倾向于发现⼤致相等的直径紧凑类。

它对异常值很敏感。

平均联动提供了以上两种⽅法的折中。

相对来说,它不像链式,⽽且对异常值没有那么敏感。

它倾向于把⽅差⼩的类聚合。

Ward法倾向于把有少量观测值的类聚合到⼀起,并且倾向于产⽣与观测值个数⼤致相等的类。

它对异常值也是敏感的。

质⼼法是⼀种很受欢迎的⽅法,因为其中类距离的定义⽐较简单、易于理解。

层次聚类⽅法可以⽤hclust()函数来实现,格式是hclust(d, method=),其中d是通过dist()函数产⽣的距离矩阵,并且⽅法包括"single"、"complete"、"average"、"centroid"和"ward"。

(1)营养数据的平均联动聚类:data(nutrient, package="flexclust")s(nutrient) <- tolower(s(nutrient)) #将⾏名改为⼩写(个⼈习惯)nutrient.scaled <- scale(nutrient) #标准化为均值为0、⽅差为1d <- dist(nutrient.scaled) #27种⾷物之间的距离采⽤欧⼏⾥得距离,默认为欧⼏⾥得距离fit.average <- hclust(d, method="average") # hclust()做层次聚类,应⽤的⽅法是平均联动plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering")#plot()函数中的hang命令展⽰观测值的标签(让它们在挂在0下⾯)结果分析:树状图应该从下往上读,它展⽰了这些条⽬如何被结合成类。

聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析

聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析

聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21)思想很简单,想象成⼀颗倒⽴的树,叶节点为样本本⾝,根据样本之间的距离(相似系数),将最近的两样本合并到⼀个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最⼩的合为新的根节点。

以此类推对于样本X=(x1,x2,,,x m),共n个样品,m个特征,我们可以考虑两种情形聚类R型聚类:m个特征之间的聚类,可以理解为⼀种降维。

Q型聚类:n个样品之间的聚类,这就是⼀般意义上机器学习中的系统聚类(⽂中的下标i、j在R型、Q型中的含义不⼀样,聪明的读者⾃⾏分辨)相似系数:R型(真正意义上的相似系数)(r)$r_{ij}=\frac{\left | \sum \left ( X_{i}-\bar{X_{i}} \right )\left ( X_{j}-\bar{X_{j}} \right ) \right |}{\sqrt{\sum \left ( X_{i}-\bar{X_{i}} \right )^{2}\sum \left ( X_{j}-\bar{X_{j}} \right )^{2}}}$可以看到$r_{ij}$越⼤标明两特征相似程度越⾼Q型(真正意义上的样品距离)(d)闵可夫斯基(Minkowski)距离:$\sqrt[p]{\left | x-\mu _{i} \right |^{p}}$Minkowski距离没有考虑变量之间的相关关系。

引进马⽒距离:$d_{ij}={\mathbf{X}}'\mathbf{S}^{-1}\mathbf{X}$其中$X=(X_{i1}-X_{j1} \right , X_{i2}-X_{j2} \right, X_{im}-X_{jm})$(不明原因的公式不正确显⽰)类间相似系数:最⼤相似系数法r=Max(r)D=Min(d)最⼩相似系数法r=Min(r)D=Max(d)可以看出,就是⼈为规定了,当某两个指标或样品合并后,新的样本(或指标)与上⼀节点样品(或指标)的距离(或相似系数)的选取现举实例说明测量了300名成年⼥⼦⾝⾼(X1)、下肢长(X2)、腰围(X3)、胸围(X4)得到相似系数矩阵可以看到X1,X2的相似系数最⼤,所以将X1,X2合并为G5X3变为G3,X4变为G4G3与G4的相似系数不变,为0.73G5与G3、G5与G4的类间相似系数采⽤最⼤相似系数法G5与G3的类间相似系数r = Max r即$r_{53}=Max(r_{13},r_{23})=Max(0.09,0.05)=0.09$$r_{54}=Max(r_{14},r_{24})=Max(0.23,0.17)=0.23$所以有根据上述步骤,直到所有的类都归为⼀类。

聚类分析的基本

聚类分析的基本

聚类分析的基本1、聚类分析(cluster analysis):又被称为群集分析,是一种对多维数据进行分析和探索的统计技术,目的是将许多观测值分类至具有相同特征的聚类,这些观测值之间差别较大,但内部观测差别较小。

聚类分析是一种目的性数据分析,它能够将没有标签分类(unsupervised classification)的不等来源的数据,分组至具有相似性特征的群体中,即对对象或事情按共有特征(feature)将他们分成几个类。

以此弥补“同属一个类别,但又个别有异的”的不足。

2、聚类分析的用途:(1)聚类分析用于数据挖掘,帮助系统提取未知信息,比如通过分析客户购买组合,把客户分成相关性很大的群体,以此帮助商业内容的定位;(2)帮助系统估算和识别多变量的变化趋势;(3)帮助用户从数据大海中获取价值信息,快速实现有效的数据查询;(4)帮助提升机器学习的精度,以及数据挖掘的价值,以此改善系统的性能;(5)可用于新闻分类,通常将同类型或相关性较大的新闻放在一起,进行分类。

3、聚类分析的原理:(1)根据定义与要求来制定聚类算法;(2)构造数据库,合理编码解决聚类分析问题;(3)根据构造好的数据库,提取其中的特征并进行度量,确定分类间的相似程度;(4)建立类内类间的关系,使用hierarchical clustering方法;(5)根据设定的特征度量准则,确定聚类分析后的结果;(6)对结果进行评定,检验聚类的正确性、有效性。

4、聚类分析的类型:(1)层次聚类:hierarchical clustering;(2)partitioning-clustering:将聚类中的各个群体将看作划分问题进行处理;(3)基于密度的聚类:density-based clustering;(4)基于模型的聚类:model-based clustering。

聚类分析也有许多优点,例如:(1)可以将相似的数据聚类在一起,细节化的数据可以表达地更清楚;(2)可以减少错误判断甚至盲目判断的几率,从而提高把握性;(3)可以改进数据查询速度;(4)可以识别数据之间的关联,从而实现对数据的有效分析利用。

层次聚类分析案例

层次聚类分析案例

层次聚类分析案例层次聚类分析是一种常用的数据挖掘技术,它通过对数据集进行分层聚类,将相似的数据点归为一类,从而实现对数据的有效分类和分析。

本文将以一个实际案例为例,介绍层次聚类分析的应用过程和方法。

案例背景。

某电商平台希望对其用户进行分类,以便更好地进行个性化推荐和营销活动。

为了实现这一目标,我们将运用层次聚类分析方法对用户进行分类,并找出具有相似特征的用户群体。

数据准备。

首先,我们需要收集用户的相关数据,包括用户的购买记录、浏览记录、点击记录、收藏记录等。

这些数据将构成我们的样本集合,用于进行层次聚类分析。

数据预处理。

在进行层次聚类分析之前,我们需要对数据进行预处理,包括数据清洗、数据标准化等工作。

通过数据预处理,我们可以排除异常值和噪声,使得数据更加适合进行聚类分析。

层次聚类分析。

在数据预处理完成之后,我们将使用层次聚类分析算法对用户进行分类。

该算法通过计算不同用户之间的相似度,将相似度较高的用户归为一类。

通过层次聚类分析,我们可以得到用户的不同分类结果,从而实现对用户群体的有效划分。

结果分析。

最后,我们将对层次聚类分析的结果进行分析和解释。

通过对不同用户群体的特征和行为进行分析,我们可以更好地理解用户群体的特点和需求,为电商平台的个性化推荐和营销活动提供有力的支持。

总结。

通过本案例的介绍,我们可以看到层次聚类分析在用户分类和群体分析中的重要作用。

通过对数据的分层聚类,我们可以更好地理解用户群体的特征和行为,为个性化推荐和营销活动提供有力的支持。

希望本文能够对层次聚类分析的应用有所启发,为相关领域的研究和实践提供参考和借鉴。

结语。

层次聚类分析是一种强大的数据挖掘工具,它在用户分类、群体分析等领域具有广泛的应用前景。

通过本文的介绍,相信读者对层次聚类分析有了更深入的理解,希望大家能够在实际应用中灵活运用层次聚类分析方法,为相关问题的解决提供更好的支持。

聚类分析的类型与选择

聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据分析方法,用于将一组数据分成不同的类别或群组。

通过聚类分析,可以发现数据中的内在结构和模式,帮助我们更好地理解数据和做出决策。

在进行聚类分析时,我们需要选择适合的聚类算法和合适的聚类类型。

本文将介绍聚类分析的类型和选择方法。

一、聚类分析的类型1. 划分聚类(Partitioning Clustering)划分聚类是将数据集划分为不相交的子集,每个子集代表一个聚类。

常用的划分聚类算法有K-means算法和K-medoids算法。

K-means算法是一种迭代算法,通过计算数据点与聚类中心的距离来确定数据点所属的聚类。

K-medoids算法是一种基于对象之间的相似性度量的划分聚类算法。

2. 层次聚类(Hierarchical Clustering)层次聚类是将数据集划分为一个层次结构,每个层次代表一个聚类。

常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。

凝聚层次聚类是自底向上的聚类过程,开始时每个数据点都是一个聚类,然后逐步合并相似的聚类,直到形成一个大的聚类。

分裂层次聚类是自顶向下的聚类过程,开始时所有数据点都属于一个聚类,然后逐步将聚类分裂成更小的聚类。

3. 密度聚类(Density Clustering)密度聚类是基于数据点之间的密度来进行聚类的方法。

常用的密度聚类算法有DBSCAN算法和OPTICS算法。

DBSCAN算法通过定义数据点的邻域密度来确定核心对象和边界对象,并将核心对象连接起来形成聚类。

OPTICS算法是DBSCAN算法的一种改进,通过计算数据点的可达距离来确定聚类。

二、选择聚类分析的方法在选择聚类分析的方法时,需要考虑以下几个因素:1. 数据类型不同的聚类算法适用于不同类型的数据。

例如,K-means算法适用于连续型数值数据,而DBSCAN算法适用于密度可测量的数据。

因此,在选择聚类算法时,需要根据数据的类型来确定合适的算法。

2. 数据量和维度聚类算法的计算复杂度与数据量和维度有关。

聚类分析

聚类分析
11
步骤:
• • • • • • • 1、对数据进行变换处理,消除量纲 2、构造n个类,每个类只包含一个样本计算 3、n个样本两两间的距离{dij} 4、合并距离最近的两类为一新类 5、计算新类与当前各类的距离,重复(4) 6、画聚类图 7、决定类的个数和类
12
类与类间距离的确定
一、最短距离法 二、最长距离法 三、中间距离法 四、重心距离法 五、类平均法 六、离差平方和
聚类分析
(Cluster Analysis)
1
聚类分析(Cluster Analysis)
• 一、聚类分析基本原理 • 二、层次聚类法(Hierarchical Cluster) • 三、K-均值聚类法(K-means cluster)
2
一、聚类分析(Cluster analysis)基本原理 • 聚类分析又称群分析或点群分析,它是研
G8={G1,G2}
17
d78=min{d71,d72}=12.80 7 D4= 7 8 河南3 甘肃4 青海5 辽宁1 浙江2 0 12.8 0 8
18
最长距离法(furthest neighbor)
• 用两类之间最远点 的距离代表两类之 间的距离。
例2:对例1的数据以最长距离法聚类。
19
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21 1 D1= 1 2 3 4 5 0 11.67 0 13.80 24.63 0 13.12 24.06 2.20 0 0 12.80 23.54 3.51 2.21 2 3 4 5 河南与甘肃的距离最近, 先将二者(3和4)合 为一类G6={G3,G4}

数据聚类分析方法

数据聚类分析方法

数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。

聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。

以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。

它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。

该算法通过不断迭代更新簇的中心来优化聚类结果。

2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。

聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。

分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。

3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。

该算法通过确定数据点周围的密度来划分不同的簇。

常见的密度聚类算法有DBSCAN和OPTICS。

4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。

该算法通常适用于高维数据集,可以减少计算复杂度。

5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。

该算法通常用于非线性可分的数据集。

需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。

聚类分析—层次聚类

聚类分析—层次聚类

2017/12/8
BIRCH算法流程如下图所示:

BIRCH算法流程如下图所示:

2017/12/8
BIRCH (续)

重建过程从旧树的叶子节点建造一个新树。这样,重建树的过程不需要重 读所有的对象 ----建树只需读一次数据

2017/12/8
有意思的是簇中心、簇半径、簇直径以及两簇之 间的距离D0到D3都可以由CF来计算,比如 簇直径 簇间距离 这里的N,LS和SS是指两簇合并后大簇的N,LS 和SS。所谓两簇合并只需要两个对应的CF相加 那可

2017/12/8
BIRCH的CF树

聚类特征

从统计学的观点来看,聚类特征是对给定子类统计汇总: 子聚类的0 阶, 1阶和 2阶矩( moments ) 记录了计算聚类和有效利用存储的关键度量, 并有效地利用了存储,因 为它汇总了关于子类的信息,而不是存储所有的对象
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10
2017/12/8
层次方法(续)

四个广泛采用的簇间距离度量方法

最小距离:dmin(Ci,Cj) = min p∈Ci, p’∈Cj |p-p’| 最大距离:dmax(Ci,Cj) = max p∈Ci, p’∈Cj |p-p’| 平均值的距离:dmean(Ci,Cj) = | mi - mj | 平均距离(簇的直径D ):davg(Ci,Cj) =∑ p∈Ci ∑p’∈Cj |p-p’| /n i n j

两个重要概念

聚类特征(Clustering Feature, CF) 聚类特征树(Clustering Feature Tree, CF树) 聚类特征(CF)是一个三元组,给出对象子类的信息的汇总描述 设某个子类中有N个d维的点或对象{oI},则该子类的CF定义如下

卫生统计学基础流行病学数据的聚类分析与分类方法

卫生统计学基础流行病学数据的聚类分析与分类方法

卫生统计学基础流行病学数据的聚类分析与分类方法在卫生统计学中,流行病学数据的聚类分析与分类方法是一种重要的分析技术,可以帮助我们更好地理解和处理大量的流行病学数据。

本文将介绍聚类分析和分类方法,并探讨它们在卫生统计学中的应用。

一、聚类分析聚类分析是一种将样本根据某种指标进行分组的数据挖掘方法。

在卫生统计学中,聚类分析可以帮助我们发现不同因素之间的相似性和差异性,从而更好地了解疾病的传播规律和危险因素。

聚类分析方法包括层次聚类和非层次聚类。

层次聚类从样本开始,通过逐步合并最近的样本,形成一个层次结构。

非层次聚类则根据距离或相似性对样本进行聚类,不考虑层次结构。

在卫生统计学中,聚类分析可用于以下方面:1. 疾病分类:根据疾病特征和传播途径等因素,将疾病进行分类。

通过聚类分析,可以发现不同疾病之间的相似性和差异性,为疾病预防和控制提供依据。

2. 群体划分:对于不同聚集水平的疾病,如家庭、社区、城市等,可以通过聚类分析将人群划分为不同的群体,以便进行特定的干预措施。

3. 危险因素识别:通过将人群按照暴露因素进行聚类,可以识别出不同危险因素对疾病发生的影响程度,为干预措施的制定提供依据。

二、分类方法分类方法是根据已知类别的样本建立分类模型,然后利用该模型对未知样本进行分类。

在卫生统计学中,分类方法可以帮助我们预测疾病风险、评估危险因素和选择适当的干预措施。

常见的分类方法包括决策树、逻辑回归、支持向量机和人工神经网络等。

这些方法根据不同的算法原理和样本特征,可以将样本分为不同的类别。

在卫生统计学中,分类方法的应用主要有以下几个方面:1. 风险评估:根据已知危险因素和流行病学数据,建立分类模型,对人群进行风险评估。

通过预测个体的患病风险,可以采取相应的干预措施,提高疾病预防效果。

2. 干预措施选择:根据已有的疾病分类和干预效果,建立分类模型,为不同类型的疾病选择适当的干预措施。

通过分类方法,可以根据不同的病情指导具体的干预策略。

聚类分析方法

聚类分析方法

聚类分析方法聚类分析方法是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

通过将数据分成不同的组别,聚类分析可以帮助我们理解数据之间的相似性和差异性,从而为后续的数据挖掘和决策提供有力支持。

在聚类分析中,最常用的方法包括层次聚类和K均值聚类。

层次聚类是一种基于数据间的相似性度量,逐步将数据点进行合并的方法。

它可以帮助我们发现数据中的层次结构,从而更好地理解数据的内在关联。

而K均值聚类则是一种基于距离度量的方法,它通过迭代的方式将数据点划分到K个簇中,每个簇的中心点代表了该簇的特征。

这两种方法各有优势,可以根据具体情况选择合适的方法进行分析。

在进行聚类分析时,我们需要首先选择合适的距离度量和相似性度量。

常用的距离度量包括欧氏距离、曼哈顿距离和闵可夫斯基距离等,而相似性度量则可以选择相关系数、余弦相似度等。

选择合适的距离度量和相似性度量对于聚类结果的准确性至关重要,因此需要认真进行选择和评估。

另外,聚类分析还需要确定合适的聚类数目。

聚类数目的选择直接影响到最终的聚类结果,因此需要通过合适的评估指标来确定最佳的聚类数目。

常用的评估指标包括轮廓系数、Calinski-Harabasz指数等,它们可以帮助我们评估不同聚类数目下的聚类效果,从而选择最佳的聚类数目。

在进行聚类分析时,我们还需要考虑数据的预处理工作。

数据预处理包括数据清洗、标准化、降维等工作,它可以帮助我们提高聚类结果的准确性和稳定性。

在进行数据预处理时,需要根据具体情况选择合适的方法和技术,从而保证数据的质量和可靠性。

总的来说,聚类分析方法是一种非常有用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构,从而为后续的数据挖掘和决策提供有力支持。

在进行聚类分析时,我们需要选择合适的方法和技术,并进行充分的数据预处理工作,从而保证分析结果的准确性和可靠性。

希望本文对聚类分析方法有所帮助,谢谢阅读!。

数据科学中的聚类分析方法使用教程

数据科学中的聚类分析方法使用教程

数据科学中的聚类分析方法使用教程聚类分析是数据科学领域中常用的一种方法,它能够将数据集中的观测对象分成若干个互相独立的组或簇,组内的对象相似性较高,组间的对象相似性较低。

这种方法可以帮助我们从大量的数据中找出相似的群体,以便进行更有效的数据分析和决策。

本文将介绍三种常用的聚类分析方法:K-means、层次聚类和DBSCAN,并讨论它们的使用方法和注意事项。

1. K-means聚类算法K-means算法是最常见且易于理解的聚类算法之一。

它将数据集中的观测对象划分为K个簇,其中K是一个预先设定的参数。

算法的步骤如下:1. 随机选择K个中心点作为初始簇中心。

2. 计算每个观测对象与各个簇中心的距离,并将其归类到离它最近的簇中心。

3. 更新每个簇的中心点,将其设为簇中所有观测对象的均值。

4. 重复步骤2和步骤3,直到触发终止条件(例如簇中心不再发生变化)。

K-means算法的优点是简单易懂,并且在处理大规模数据时效率较高。

然而,它的缺点是对初始簇中心的选择较为敏感,可能会得到不理想的聚类结果。

2. 层次聚类算法层次聚类算法通过逐步合并或分割观测对象来构建聚类结构。

它有两种主要类型:凝聚型层次聚类和分裂型层次聚类。

凝聚型层次聚类从每个观测对象作为一个簇开始,然后不断合并最相似的簇,直到满足终止条件为止。

分裂型层次聚类的过程则相反,从所有观测对象作为一个簇开始,然后不断拆分最不相似的簇,直到满足终止条件为止。

层次聚类算法的优点是它不需要预先设定聚类的数量K,并且它可以生成树状的聚类结构,帮助我们理解数据的层次关系。

然而,层次聚类算法的计算复杂度较高,特别是处理大型数据集时。

3. DBSCAN聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类方法,它能够识别出任意形状的聚类,并且能够将离群点识别为噪声。

数据分析中的聚类分析与聚类算法比较

数据分析中的聚类分析与聚类算法比较

数据分析中的聚类分析与聚类算法比较在数据分析领域,聚类分析是一种常见的技术,用于将一组数据对象划分为相似的组或簇。

通过聚类分析,我们可以发现数据集中的隐藏模式、相似性和特征,并帮助我们更好地理解数据。

本文将比较几种常见的聚类算法,并探讨它们的优势和劣势。

聚类算法是一种无监督学习方法,它可以自动发现数据集中的结构,并将相似的数据点归为一组。

在聚类分析中,有许多不同的算法可供选择,如K均值聚类、层次聚类、DBSCAN和高斯混合模型等。

下面将对这些算法进行比较。

1. K均值聚类算法(K-means):K均值聚类算法是最常用的聚类算法之一。

它通过将数据分为预先定义的K个簇来进行聚类。

该算法的主要优势在于简单和快速,适用于大规模数据集。

然而,K均值算法对于初始聚类中心的选择非常敏感,并且对于非凸形状的簇分割效果较差。

2. 层次聚类算法(Hierarchical clustering):层次聚类算法是一种自上而下或自下而上的聚类方法。

这种方法通过计算对象之间的相似性将数据逐渐合并或拆分成不同的簇。

其优势在于可以生成层次结构和树状图,可以更好地理解数据之间的关系。

然而,由于计算复杂度高,处理大规模数据集时效率低下。

3. DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise):DBSCAN算法是一种基于密度的聚类算法,可以发现任意形状和任意大小的簇。

它通过计算数据点周围的密度来划分簇,并可以自动处理噪声和异常值。

它的优势在于不需要预设簇的数量和形状,对数据集中的离群值鲁棒性较强。

然而,该算法对于数据密度分布不均匀或者维数较高的数据集效果较差。

4. 高斯混合模型(Gaussian Mixture Model,GMM):高斯混合模型是一种使用多个高斯分布来对数据进行建模的方法。

每个高斯分布表示一个簇,在训练过程中通过最大似然估计来估计模型参数。

聚类分析方法比较

聚类分析方法比较

聚类分析方法比较聚类分析是一种数据挖掘技术,用于将一组样本分为具有相似特征的组或簇。

聚类分析方法有很多种,包括层次聚类、K-means、DBSCAN、SOM等。

这些方法在不同的领域和应用中可能有不同的优势和适用性。

下面将对几种常见的聚类分析方法进行比较。

1. 层次聚类(Hierarchical Clustering)层次聚类是一种自下而上的聚类方法,将样本逐步合并形成层次聚类树。

层次聚类的优点是可视化效果好,可以根据聚类树划分不同的组别。

然而,层次聚类的计算复杂度高,适用于小样本量的情况。

2. K-meansK-means是一种常用的聚类算法,通过计算样本间的欧式距离将样本划分为K 个簇。

K-means的优点是计算速度快,对大规模数据集效果好。

然而,K-means 对初始质心的选择敏感,并且需要预先设定簇的个数。

3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise) DBSCAN是一种基于密度的聚类方法,通过设定样本周围邻域的密度阈值,将稠密区域划分为簇,将稀疏区域划分为噪声。

DBSCAN的优点是对初始参数不敏感,可以发现任意形状的簇。

然而,DBSCAN对数据分布的要求较高,对密度差异较大的数据集不适用。

4. SOM(Self-Organizing Maps)SOM是一种无监督学习方法,通过将多维样本映射到低维的神经网络空间中,实现样本的聚类。

SOM的优点是可以保留样本的拓扑结构,并且对噪声具有较好的鲁棒性。

然而,SOM的计算复杂度较高,需要预先设定神经网络的参数。

除了以上几种聚类分析方法,还有许多其他的方法,如谱聚类、模糊聚类等。

这些方法的选择应根据具体应用的需求和数据特征来确定。

在选择聚类方法时,需要考虑以下几个因素:1. 数据类型:不同的聚类方法适用于不同类型的数据,如数值型数据、类别型数据、文本数据等。

常用的聚类分析方法

常用的聚类分析方法

常用的聚类分析方法常用的聚类分析方法有层次聚类、K均值聚类、密度聚类、DBSCAN聚类和谱聚类等。

首先介绍层次聚类方法。

层次聚类是一种自底向上或自顶向下的聚类方法。

自底向上方法从每个数据点开始,将每个点看作一个独立的簇,然后通过计算两个最近的簇之间的距离,将距离最近的两个簇合并为一个新的簇,直到所有的数据点都合并为一个簇。

自顶向下方法从所有的数据点开始,将它们看作一个整体的簇,然后通过计算簇内数据点之间的距离,将距离最远的数据点划分为两个簇,再递归地继续划分簇,直到达到预设的聚类数目为止。

其次介绍K均值聚类方法。

K均值聚类是一种基于距离度量的聚类方法,它将数据划分为K个不同的簇,使得每个数据点与所属簇的中心点之间的距离最小化。

算法首先随机选择K个中心点,然后将数据点分配到距离最近的中心点所属的簇中,接着更新每个簇的中心点为簇内所有数据点的平均值,重复这个过程,直到簇的分配不再发生变化或达到预设的迭代次数。

再介绍密度聚类方法。

密度聚类是一种基于密度的聚类方法,它通过寻找数据点的密度相对较高的区域来确定簇的划分。

算法首先根据指定的邻域半径和最小邻居数目确定核心对象,然后从核心对象出发,递归地扩展可达对象,得到一个密度可达的区域,将这个区域内的数据点划分为一个簇,重复这个过程,直到所有的数据点都被访问过为止。

还介绍DBSCAN聚类方法。

DBSCAN聚类是一种基于密度相连的聚类方法,它将数据划分为多个密度相连的点构成的簇。

算法首先随机选择一个未访问的数据点,如果该点的邻域内有足够数量的点,则将这些点及其邻域内的点都划分为一个簇,接着对这些点进行标记为已访问,然后递归地寻找其他点,并重复这个过程,直到所有的点都被访问过为止。

最后介绍谱聚类方法。

谱聚类是一种基于图论的聚类方法,它将数据点看作图中的节点,通过计算节点之间的相似度构建一个邻接矩阵,然后通过对邻接矩阵进行特征分解或图划分得到数据点的特征向量,再将这些特征向量作为输入进行聚类。

聚类分析的类型简介及应用

聚类分析的类型简介及应用

聚类分析的类型简介及应用聚类分析是一种无监督学习的方法,它将数据集中的对象按照其相似性分为若干个互不重叠的子集,每个子集被称为一个簇。

不同的聚类分析方法根据其内聚力和分离力的不同标准,可以分为层次聚类、划分聚类、密度聚类和模型聚类等类型。

下面将对这些聚类分析的类型进行详细介绍,并介绍它们的应用领域。

1. 层次聚类:层次聚类根据簇间的连续关系进行分类,可以形成一个层次性的聚类结果。

层次聚类分为凝聚式和分离式两种方法。

凝聚式聚类从每个数据点开始,逐渐合并相邻的数据点,直到所有的数据点都被合并成一个簇。

分离式聚类从所有的数据点开始,逐渐将它们分成更小的簇,直到每个数据点都成为一个簇。

层次聚类的优点是不需要事先指定簇的个数,缺点是时间复杂度较高,适用于数据较少、簇的个数未知的情况。

层次聚类的应用包括社交网络分析、生物信息学、图像分析等。

2. 划分聚类:划分聚类根据簇内的相似性和簇间的分离度将数据集划分成不同的簇。

常用的划分聚类方法有K-means聚类和K-medoids聚类。

K-means聚类将数据集分成K个簇,每个簇的中心是该簇中所有数据点的均值。

K-medoids 聚类是K-means聚类的扩展,每个簇的中心是该簇中离其他数据点最近的数据点。

划分聚类的优点是计算速度快,缺点是对初始簇中心的选择敏感,适用于大规模数据集和已知簇个数的情况。

划分聚类的应用包括市场细分、用户分类、图像压缩等。

3. 密度聚类:密度聚类根据数据点的密度将其划分成不同的簇。

常用的密度聚类方法有DBSCAN和OPTICS。

DBSCAN通过设置一个半径范围和一个最小邻居数目的阈值,标记样本点为核心点、边界点或噪声点,并将核心点连接成簇。

OPTICS根据样本点之间的密度和距离建立一个可达距离图,通过截取距离图的高度获得不同的簇。

密度聚类的优点是不需要指定簇的个数,对噪声和离群点鲁棒性较强,缺点是对参数的选择敏感,计算复杂度较高,适用于数据集具有不规则形状的情况。

生物大数据技术中的聚类分析方法

生物大数据技术中的聚类分析方法

生物大数据技术中的聚类分析方法生物大数据技术的迅猛发展为科研人员提供了丰富的数据资源,然而如何从庞大的数据中提取有意义的信息,成为了生物信息学研究的重要课题之一。

在生物大数据分析中,聚类分析方法被广泛应用,它通过将相似的样本或数据点归为一类,从而揭示数据集中的隐藏模式和结构。

本文将介绍生物大数据技术中的聚类分析方法,并剖析其应用于生物学研究的意义。

聚类分析是一种无监督学习的方法,其目标是根据数据点的相似性,将它们划分为不同的群组或簇。

在生物领域,聚类分析方法适用于多种应用场景,如基因表达数据的分类、蛋白质序列的聚类和进化树的构建等。

下面将介绍几种常用的生物大数据技术中的聚类分析方法。

1. K-means聚类算法:K-means算法是一种常见的聚类分析方法,其基本思想是将数据集分成K个簇,使得簇内的数据点相互之间的距离最小,并使得簇与簇之间的距离最大化。

在生物学研究中,K-means算法可以用于基因表达数据的分类。

通过将基因表达矩阵中的每一行看作一个数据点,将基因按照表达水平划分为不同的簇,可以帮助研究人员发现基因表达的模式和规律。

2. 层次聚类分析:层次聚类分析是一种基于样本之间相似性的聚类方法,其通过计算数据点之间的距离或相异度,并逐步将相似的数据点合并为一个簇。

这种方法能够形成一棵聚类树,可以将样本按照不同的层次进行分类。

在生物学研究中,层次聚类分析可以应用于多个领域,如RNA测序数据的组织分类、蛋白质序列的聚类和系统发育关系的推断等。

3. 基于密度的聚类方法:基于密度的聚类方法将样本点集划分为不同的簇,其中每个簇代表着一个高密度的区域,被低密度或离群点所包围。

这种聚类方法适用于具有复杂形状和不规则分布的数据集。

在生物学研究中,基于密度的聚类方法可以用于DNA甲基化数据的挖掘、蛋白质相互作用网络的簇划分等。

4. 基于模型的聚类方法:基于模型的聚类方法是在给定概率模型的情况下,将数据点分配到不同的簇中。

统计学中的聚类分析方法

统计学中的聚类分析方法

统计学中的聚类分析方法聚类分析是一种常用的统计学方法,用于将相似的观测值归为一类。

它在数据分析、模式识别和机器学习等领域有着广泛的应用。

本文将介绍统计学中的聚类分析方法,包括层次聚类分析和K均值聚类分析。

一、层次聚类分析层次聚类分析是一种基于树状结构的聚类方法。

它将观测值逐步合并,形成层次化的聚类结果。

层次聚类分析的步骤如下:1. 确定相似度度量方法:在层次聚类分析中,需要选择一种相似度度量方法,用于衡量不同观测值之间的相似程度。

常用的相似度度量方法包括欧式距离、曼哈顿距离和相关系数等。

2. 计算相似度矩阵:根据选择的相似度度量方法,计算出观测值两两之间的相似度,并构建相似度矩阵。

3. 构建聚类树:从相似度矩阵出发,可以使用不同的聚类算法构建聚类树。

常用的聚类算法包括单链接、完全链接和平均链接等。

单链接聚类算法将每个观测值视为一个单独的聚类,然后逐步合并最近的两个聚类;完全链接聚类算法则是选择最远的两个聚类进行合并;平均链接聚类算法则是计算两个聚类之间所有观测值之间的平均距离,并选择平均距离最近的两个聚类进行合并。

4. 切割聚类树:将聚类树切割成不同的簇,得到最终的聚类结果。

切割聚类树的方法有多种,可以根据需求选择最合适的切割方式。

层次聚类分析方法的优点是可解释性强,可以直观地展示聚类结果的层次结构。

然而,它的计算复杂度较高,对大规模数据的处理效率较低。

二、K均值聚类分析K均值聚类分析是一种基于中心点的聚类方法。

它将观测值划分为K个簇,每个簇的中心点代表该簇的特征。

K均值聚类分析的步骤如下:1. 初始化K个中心点:随机选择K个观测值作为初始中心点。

2. 计算每个观测值到各个中心点的距离,并将其归属到最近的中心点所代表的簇。

3. 更新中心点:计算每个簇内观测值的均值作为新的中心点。

4. 重复步骤2和3,直到中心点不再发生变化或达到预定的迭代次数。

K均值聚类分析方法的优点是计算简单、效率高,适合处理大规模数据。

聚类分析—层次聚类

聚类分析—层次聚类

聚类分析—层次聚类
层次聚类是一种基于有序树结构的聚类分析方法,是由弗雷德里
克·拉宾斯基于系统发育理论和分类学的层次原则提出来的。

它是一种自
底向上的分类过程,也就是聚类的过程。

在分析中,样本被放进一个只有
一个样本的集合,然后两两合并形成一个新的集合,再将新的集合两两合并,这样循环往复,直到把所有样本合并在一起。

层次聚类分析的主要步骤包括:
1、样本测量:首先要衡量数据集中各个样本之间的差异,这是聚类
分析过程中的第一步。

常用的测量差异的方法有欧氏距离、曼哈顿距离和
切比雪夫距离等;
2、构建树状结构图:层次聚类算法依据样本之间的相似性或差异性,采用自底向上的方法,构建树状的结构图;
3、确定聚类中心:将样本分配到几个类别中,每个类别的中心就是
聚类中心;
4、分类决策:将样本划分到最近的类中,根据聚类簇和类别信息,
对样本进行分类;
5、聚类评估:评估聚类结果,主要有轮廓系数、Calinski-Harabasz
系数等评估指标;
6、迭代:层次聚类可以迭代多次,改变初始测量差异得到不同的结果。

层次聚类的优点是简单易行,可以用于大量数据;从计算效率上看。

数据分析中的聚类分析方法

数据分析中的聚类分析方法

数据分析中的聚类分析方法数据分析是一门研究如何从大量数据中提取有用信息的学科。

在数据分析的过程中,聚类分析是一种常用的方法,用于将相似的数据点分组或聚集在一起。

聚类分析可以帮助我们发现数据中的隐藏模式和结构,从而更好地理解数据集。

一、什么是聚类分析聚类分析是一种无监督学习方法,它通过将相似的数据点划分为不同的组别或簇来实现数据的分类。

聚类分析的目标是在不事先知道数据的标签或类别的情况下,将数据点分组,使得同一组内的数据点尽可能相似,而不同组之间的数据点尽可能不相似。

二、聚类分析的应用领域聚类分析在各个领域都有广泛的应用。

在市场营销中,聚类分析可以帮助企业识别不同类型的消费者群体,从而制定针对性的营销策略。

在医学领域,聚类分析可以帮助医生对患者进行分类,从而更好地制定个性化的治疗方案。

在社交网络分析中,聚类分析可以帮助我们发现社交网络中的社群结构,从而更好地理解人际关系。

三、聚类分析的方法聚类分析有多种方法,其中最常用的方法包括层次聚类和K均值聚类。

1. 层次聚类层次聚类是一种自下而上或自上而下的聚类方法。

在自下而上的层次聚类中,每个数据点首先被视为一个独立的簇,然后根据它们之间的相似度逐步合并为更大的簇,直到所有数据点都被合并为一个簇。

在自上而下的层次聚类中,所有数据点首先被视为一个簇,然后根据它们之间的相似度逐步划分为更小的簇,直到每个簇只包含一个数据点。

2. K均值聚类K均值聚类是一种迭代的优化算法,它将数据点划分为K个不重叠的簇。

在K 均值聚类中,首先需要选择K个初始聚类中心,然后将每个数据点分配给与其最近的聚类中心,再根据分配结果更新聚类中心的位置,重复这个过程直到聚类中心不再发生变化。

四、聚类分析的评估指标聚类分析的结果通常需要进行评估,以判断聚类的质量和效果。

常用的聚类评估指标包括轮廓系数、Davies-Bouldin指数和Calinski-Harabasz指数。

轮廓系数衡量了聚类内部的紧密度和聚类间的分离度,数值越接近1表示聚类效果越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
9
8
7
6
5
4
3 2
1
0 0
123Fra bibliotek45
6
7
8
9
10
2020/6/19
10
9
8
7 6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
10
9
8
7
6
5
4
3 2
1
0 0
1
2
3
4
5
6
7
8
9
10
层次方法(续)
四个广泛采用的簇间距离度量方法
最小距离:dmin(Ci,Cj) = min p∈Ci, p’∈Cj |p-p’| 最大距离:dmax(Ci,Cj) = max p∈Ci, p’∈Cj |p-p’| 平均值的距离:dmean(Ci,Cj) = | mi - mj | 平均距离(簇的直径D ):davg(Ci,Cj) =∑ p∈Ci ∑p’∈Cj |p-p’|
/ninj
其中, |p-p’|是两个对象p和p’之间的距离 mi是簇Ci 的平均值,ni是簇Ci中对象的数目
2020/6/19
层次方法(续)
层次聚类的主要缺点
不具有很好的可伸缩性: 时间复杂性至少是 O(n2), 其中 n 对象总数 合并或分裂的决定需要检查和估算大量的对象或簇 不能撤消已做的处理, 聚类之间不能交换对象. 如果某一步没有很好地
2020/6/19
聚类特征
假定簇C1中有两个点(1,2,3),(3,2,1),簇C2 有三个点(1,1,2),(2,2,1),(2,1,2),簇 3由C1和C2构成,则:
CF1=(2,(1+3,2+2,3+1),( ))=(2,(4,4,4), (10,8,10))
CF2=(3,(1+2+2,1+2+1,2+1+2),( ))=(3,(5,4, 5),(9,6,9))
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
2020/6/19
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
DIANA (Divisive Analysis)
由 Kaufmann和Rousseeuw提出 (1990) 已在一些统计分析软件包中实现 . 如 Splus 是 AGNES的逆 最终每个节点自己形成一个簇
个指定的收缩因子向着聚类中心对它们进行收缩
2020/6/19
BIRCH (1996)
Birch (Balanced Iterative Reducing and Clustering using Hierarchies): 利用层次方法的平衡迭代归约和聚类由Zhang, Ramakrishnan和Livny 提出(SIGMOD’96), 该算法的特点是能利用有限的内存资源完成对大数 据集的高质量的聚类,同时通过单遍扫描数据集能最小化I/O代价。
2020/6/19
层次方法(续)
凝聚的(agglomerative)和分裂的(divisive)层次聚类图示
Step 0 Step 1 Step 2 Step 3 Step 4
a ab
b
abcde
c
cde
d
de
e
Step 4 Step 3 Step 2 Step 1 Step 0
agglomerative (AGNES)
智能数据挖掘
Topic3--聚类分析
层次聚类方法(Hierarchical Methods)
层次方法
层次的聚类方法将数据对象组成一棵聚类的树 根据层次分解是自底向上, 还是自顶向下形成, 层次的聚类方
法可以进一步分为凝聚的(agglomerative)和分裂的(divisive) 层次聚类 纯粹的层次聚类方法的聚类质量受限于如下特点:一旦一个 合并或分裂被执行,就不能修正 最近的研究集中于凝聚层次聚类和迭代重定位方法的集成 使用距离矩阵作为聚类标准. 该方法不需要输入聚类数目 k, 但需要终止条件
因此得到CF3为: CF3=(2+3,(4+5,4+4,4+5),(10+9,8+6,10+9))=(5,
(9,8,9),(19,14,19))
2020/6/19
簇的质心和簇的半径。
假如一个簇中包含n个数据点:{Xi},i=1,2,3...n., 则质心C和半径R计算公式如下:
C=(X1+X2+...+Xn)/n,(这里X1+X2+...+Xn是向 量加)
CF (N , LS, SS)
聚类特征
Clustering Feature:CF = (N, LS, SS)
N: 数据点数目
LS: Ni=1 Xi SS: Ni=1Xi2
CF = (5, (16,30),(54,190))
10
9
8
7
6
5
4
3 2
1
0 0
1
2
3
4
5
6
7
8
9
10
(3,4) (2,6) (4,5) (4,7) (3,8)
R=(|X1-C|^2+|X2-C|^2+...+|Xn-C|^2)/n 其中,簇半径表示簇中所有点到簇质心的平均距
离。CF中存储的是簇中所有数据点的特性的统计 和,所以当我们把一个数据点加入某个簇的时候, 那么这个数据点的详细特征,例如属性值,就丢 失了,由于这个特征,BIRCH聚类可以在很大程 度上对数据集进行压缩。
divisive (DIANA)
2020/6/19
AGNES (Agglomerative Nesting)
由 Kaufmann和Rousseeuw提出(1990) 已在一些统计分析软件包中实现 . 如 Splus 使用单链接(Single-Link)方法和相异度矩阵 合并具有最小相异度的节点 以非递减的方式继续 最终所有的节点属于同一个簇
选择合并或分裂的决定, 可能会导致低质量的聚类结果
2020/6/19
层次方法(续)
改进层次方法的聚类质量的方法: 将层次聚类和其他的聚类 技术进行集成, 形成多阶段聚类
BIRCH (1996): 使用 CF-tree对对象进行层次划分, 然后采用其他的聚 类算法对聚类结果进行求精
ROCK1999:基于簇间的互联性进行合并 CHAMELEON (1999): 使用动态模型进行层次聚类 CURE (1998):采用固定数目的代表对象来表示每个簇,然后依据一
两个重要概念
聚类特征(Clustering Feature, CF) 聚类特征树(Clustering Feature Tree, CF树)
聚类特征
聚类特征(CF)是一个三元组,给出对象子类的信息的汇总描述
设某个子类中有N个d维的点或对象{oI},则该子类的CF定义如下
2020/6/19
相关文档
最新文档