现代高层建筑结构设计论文

合集下载

高层建筑结构设计论文

高层建筑结构设计论文

对高层建筑结构设计探讨摘要:随着我国经济的快速发展,全国大中城市高层建筑迅速增多,高层建筑结构设计已成为建筑结构设计人员的重要工作内容。

高层建筑层数和高度都逐渐增加,结构形式更是多样化、复杂化。

为了使设计者对高层建筑的设计有较好地了解,我们就以杭州某工程为例,介绍高层建筑的结构设计方案,本文对该方案的计算模型、转换层的设计和构造及内力分析做了简要介绍。

关键词:高层建筑转换层总结1 概述近年来,现代建筑越来越向多功能、综合用途发展,在同一竖直线上,顶部楼层与下部楼层用途不同,不同的楼层需要大小不同的空间尺寸,采用不同的结构形式。

从建筑功能上讲,上部需要小开间的轴线布置,需要较多的墙体以满足旅馆和住宅的要求,下部共用部分则希望有尽可能大的自由灵活空间,柱网要求大,墙体要尽量少,由于高层结构下部楼层受力很大,上部结构受力相对较小,正常布置应该下部刚度大(墙多,柱网密),到上部刚度较小(墙少,柱网稀疏),但为了满足建筑功能的要求,我们必须以跟常规相反的方式进行布置,即上部布置小空间,下部布置大空间,上部布置刚度大的剪力墙,下部布置刚度较小的框架柱,为了实现这一布置就必须在结构转换的楼层设置转换层。

2 工程概况就以杭州某工程为例。

本工程位于杭州某地区,该工程是集商场、办公、住宅为一体的综合性高层建筑,地下2层为停车库及设备房,地上29层,分a,b两栋塔楼,塔楼均为住宅,主楼主体90.500m。

由于该建筑功能的要求,本工程结构采用底部大空间转换剪力墙结构,转换层在第5层顶面,属高位转换结构,该地区地震设防烈度为6度,设计地震分组为第一组,设计基本地震加速度值为0.05g,拟建场地为ⅲ类场地土。

结构抗震等级:转换层下剪力墙二级,框支柱二级,基础采用桩筏。

为了满足建筑功能,结构必须处理好以下几个问题:①转换层转换结构方式的选择;②转换层楼层结构计算层高的确定;③二级转换梁的处理。

3 概念设计与结构布置3.1 结构计算单元的确定。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着科学技术的不断发展,功能俱全的高层建筑越来越多。

高层建筑结构设计也越来越成为建筑结构工程师的重要工作内容。

下面是店铺为大家整理的高层建筑结构设计论文,供大家参考。

高层建筑结构设计论文范文一:探究高层建筑结构边节点抗震性能1试验概况1.1试验构件设计和制作边节点试验构件取用承重框架梁柱反弯点之间的一个平面组合体,即“T字形”试件。

为有效保证试件的浇筑质量和垂直度,并与工程实际相符,全部试件均采用钢模板、立模浇筑。

边节点构件柱子的截面尺寸为200mm×200mm,梁的截面尺寸为150mm×250mm,纵向受力钢筋采用HRB400级,箍筋采用HPB235级。

柱子的配筋率为1.13%,梁的配筋率为0.9%,所有构件配筋率和钢筋的强度相同。

为防止柱头破坏,柱上、下两端箍筋加密;节点核心区按照抗震要求对箍筋进行了加密处理。

本次试验共包括7根试件,详细的试验构件概况如表1所示,构件的尺寸和配筋图示,节点核心区采用柱混凝土的构件,施工缝留设在梁下部;节点核心区采用梁混凝土的构件,分别在梁上和梁下留设两道施工缝,施工缝处浇筑时间间隔为2天(48小时)。

1.2试验方法和加载装置采用低周反复试验方法进行研究,加载制度为力—位移混合控制加载,在开始加载到构件屈服前采用力控制;构件屈服后,改用屈服位移的整数倍为级差作为回载控制点,每一位移下循环3次。

在实际框架结构中,当作用水平荷载时,上柱反弯点可视为水平可移动铰,相应的下柱反弯点可视为固定铰;而节点两侧梁的反弯点可视为水平可移动铰。

这样可以有两种加载方案:一种是在柱端施加水平荷载或位移,这时梁能够左右移动而上下受到约束,产生剪力和弯矩。

这种边界条件比较符合实际结构中的受力状态;另一种是将柱保持垂直状态,在梁的自由端施加反复荷载或位移,此时边界条件变为上下柱反弯点为不动铰,梁反弯点为自由端。

本次试验采用的是柱端加载的方式,即采用在柱顶施加轴向力和水平力的方式进行试本次试验在东北电力大学结构试验室进行,采用美国MTS公司生产的MTS液压式伺服加载系统进行试验,采用MTS动态数据采集系统进行数据采集。

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。

第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。

近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。

因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。

关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。

因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。

2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。

特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。

其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。

②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。

而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。

2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。

但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。

高层建筑结构论文

高层建筑结构论文

高层建筑结构论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更承载着人们对于高效利用空间和提升生活品质的期望。

然而,高层建筑的结构设计与施工面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和功能性。

高层建筑的定义在不同的国家和地区可能会有所差异,但通常是指高度超过一定数值(如 24 米或 7 层)的建筑物。

高层建筑之所以与普通建筑在结构设计上有显著区别,主要是因为其高度带来的一系列特殊问题。

首先,风荷载是高层建筑结构设计中必须重点考虑的因素。

随着高度的增加,风速也会显著增大,风对建筑物的作用效应也更为复杂。

强风可能导致建筑物产生较大的水平位移和振动,影响居住者的舒适度甚至结构的安全性。

为了减小风荷载的影响,高层建筑的外形通常会设计成流线型,以减少风的阻力。

同时,在结构设计中会采用加强的抗侧力体系,如框架核心筒结构、筒中筒结构等,来抵抗水平风力。

其次,地震作用对高层建筑的影响也不可忽视。

地震是一种突发的、破坏力巨大的自然灾害,高层建筑在地震中的表现直接关系到人们的生命财产安全。

在地震区建造高层建筑,需要根据当地的地震烈度进行抗震设计。

这包括选择合适的结构体系、确定结构的抗震等级、加强关键部位的构造措施等。

例如,采用延性较好的材料和构件,设置多道抗震防线,以增加结构在地震中的耗能能力和抗倒塌能力。

高层建筑的自重也是一个重要问题。

由于高度大,建筑的自重会产生巨大的竖向荷载。

为了承受这些荷载,需要选用高强度的材料,如高性能混凝土和高强度钢材。

同时,合理的结构布置可以有效地传递和分配竖向荷载,确保结构的稳定性。

在高层建筑结构的设计中,基础设计至关重要。

高层建筑的基础需要承受巨大的上部荷载,并将其均匀地传递到地基中。

常见的基础形式包括桩基础、筏板基础等。

在选择基础形式时,需要充分考虑地质条件、地下水位、建筑物的荷载分布等因素。

对于地质条件复杂的地区,还需要进行详细的地质勘察和地基处理,以确保基础的稳定性和可靠性。

高层建筑结构研究论文

高层建筑结构研究论文

高层建筑结构研究论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。

然而,高层建筑的结构设计和安全性面临着诸多挑战,因此对高层建筑结构的研究具有重要的现实意义。

一、高层建筑结构的特点高层建筑与低层建筑在结构上有明显的区别。

首先,高层建筑的高度较大,导致其竖向荷载显著增加。

这就要求结构体系具备足够的强度和刚度来承受这些荷载。

其次,风荷载和地震作用对高层建筑的影响更为突出。

在强风或地震作用下,高层建筑容易产生较大的水平位移和振动,从而影响结构的安全性和使用功能。

此外,高层建筑的结构自重较大,对基础的要求也更高,需要确保基础能够提供足够的承载力和稳定性。

二、高层建筑结构体系常见的高层建筑结构体系主要包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。

框架结构由梁和柱组成,具有布置灵活、空间大等优点,但抗侧刚度较小,适用于层数较少的高层建筑。

剪力墙结构则通过钢筋混凝土墙体来抵抗水平荷载,其抗侧刚度大,但空间布置不够灵活。

框架剪力墙结构结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的抗侧性能,是目前应用较为广泛的结构体系之一。

筒体结构包括框筒、筒中筒和束筒等形式,具有良好的整体性和抗侧能力,适用于超高层建筑。

三、高层建筑结构的分析方法在对高层建筑结构进行设计和分析时,需要采用合适的方法。

目前常用的分析方法包括静力分析、动力分析和非线性分析等。

静力分析是基于结构在恒载、活载和风载等静力作用下的响应进行计算,是结构设计的基础。

动力分析则考虑了结构在地震作用等动力荷载下的振动特性,包括振型分解反应谱法和时程分析法。

振型分解反应谱法是一种简化的动力分析方法,通过计算结构的振型和振型参与系数,并结合反应谱来确定结构的地震响应。

时程分析法则直接输入地震波,对结构在整个地震过程中的响应进行模拟,能更准确地反映结构的动力特性,但计算量较大。

建筑高工论文模板(10篇)

建筑高工论文模板(10篇)

建筑高工论文模板(10篇)在建筑的中心部分,有意识地利用那些功能较为固定的服务用房的围护结构,形成中央核心筒,而筒体处于几何位置中心,还可以使建筑的质量重心、刚度中心和型体核心三心重合,更加有利于结构受力和抗震。

1.2核的分散与分离随着时代的发展、技术的进步,人们对建筑需求的变化和设计侧重点的不同,以中央核心筒为主流的高层建筑“内核”空间构成模式开始受到了挑战。

对于结构专业来说,加强建筑周边的刚度也会有效地抵抗地震对高层建筑的破坏,所以如果将垂直交通和设备用房等分散地布置在周边,则无疑也会对结构抗震有利。

同时,这种分散的多个外核的空间构成模式,也正好适用于新兴的巨型框架结构,使这种结构体系中的巨型支撑柱具有了使用功能。

而从建筑设计的角度来看,核的移动、垂直交通、服务性房间和管道井分散到建筑的周边,对于高层建筑的空间构成模式和立面造型上的变化也是极具革命性的。

它不但适应了其它专业的需求,而且还有利于避难疏散,创造更大的使用空间和使高层建筑的底部获得解放。

这种空间构成模式所具有的灵活性和先进性,很快便被推崇技术表现的欧洲建筑师们所发现,并创造性地应用在他们的作品之中。

1.3中庭空间的出现受高层旅馆的影响,一些办公大楼为了追求气派和空间变化,便在入口处附设一个中庭,实际上,核心筒的分散和分离,中庭空间的介入,已使高层建筑的空间构成模式彻底发生了变化。

新一代的高层建筑空间组织更为灵活多样,由于空间设计的侧重点已由追求经济效率向营造宽松舒适的生活环境转变,所以许多新建的高层建筑都以“景观空间”的概念,将共享空间与功能空间相结合,把核分散向四周,垂直交通采用玻璃电梯,直接采光,给人们以开敞明亮、将动线视觉化的空间感受。

空间构成模式也由封闭的“积层式”,变为上下贯通的“动态流动空间”。

1.4底部空间的变化早期的高层建筑多直接面对街道,从街道进入门厅,再由门厅进入电梯厅,垂座电梯至各楼层,这是高层建筑中最为普遍的空间流线组织方式。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。

然而,高层建筑的结构设计是一项极其复杂且具有挑战性的任务,需要综合考虑众多因素,以确保建筑的安全性、稳定性和功能性。

高层建筑结构设计面临着诸多特殊的挑战。

首先,垂直荷载显著增加。

由于楼层数量多,建筑物自身的重量以及人员、设备等产生的荷载都较大,这对结构的竖向承载能力提出了更高的要求。

其次,水平荷载成为控制结构设计的关键因素。

风荷载和地震作用在高层建筑中产生的效应更为显著,可能导致结构的侧向位移和内力大幅增加,甚至影响结构的整体稳定性。

再者,结构的稳定性和抗倾覆能力至关重要。

高层建筑重心较高,容易在外界作用下发生倾覆,因此在设计中必须充分考虑结构的稳定性。

在高层建筑结构设计中,结构体系的选择是至关重要的。

常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。

框架结构具有布置灵活、空间大等优点,但抗侧刚度相对较小,适用于层数较低的建筑。

剪力墙结构则具有良好的抗侧刚度,能有效抵抗水平荷载,但空间布置不够灵活。

框架剪力墙结构结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的抗侧性能,适用于大多数高层建筑。

筒体结构包括框筒、筒中筒等形式,具有很强的抗侧和抗扭能力,常用于超高层建筑。

风荷载是高层建筑结构设计中不可忽视的因素。

风对高层建筑的作用不仅会产生水平力,还可能引起漩涡脱落、横风向振动等复杂现象。

在设计中,需要通过风洞试验或数值模拟来准确确定风荷载的大小和分布。

同时,合理的建筑外形设计可以有效减小风荷载的影响。

例如,采用流线型的外形可以降低风阻,减少风荷载对结构的作用。

地震作用对高层建筑的安全性构成严重威胁。

在地震区,高层建筑必须具备良好的抗震性能。

结构的抗震设计包括概念设计和计算设计两个方面。

概念设计强调从整体上把握结构的布置和选型,遵循“强柱弱梁、强剪弱弯、强节点弱构件”等原则,保证结构具有合理的传力路径和良好的变形能力。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文【摘要】高层建筑是一种更为复杂的建筑模式,然而建筑的结构设计效果并不理想,高层建筑安全问题发生的频率相对较高,由此在高层建筑结构设计过程中,建筑结构设计人员更应该根据建筑结构的特点,认真考察建筑具体实际,从而设计出合理的设计方案,保证建筑的安全性和稳定性,发挥建筑的效益,从而满足建筑使用群体的要求,同时为建筑业的更快更好发展做出贡献,使得建筑业可以有更长足的发展空间。

一、高层建筑结构的特点1.水平载荷成为决定因素高层建筑的设计和建造过程区别于低层建筑,不仅要考虑竖向载荷,更重要是考虑水平载荷的影响。

高层建筑楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2、抗震设计要求更高相对于低楼层而言,高楼层具有独特的特性,高楼层拥有更好的柔性,由此在地震作用下的变形更大一些。

所以高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

3、轴向变形不容忽视在有外力作用的情况下,建筑结构会发生一定的位移,包括弯曲、轴向变形和剪切变形。

对于低层建筑的结构,一般的结构构件轴向和剪切变形的影响相对小,由此不会涉及到轴向变形和剪切变形问题的考虑。

但是高层建筑的轴力相对较大,由此产生的轴向变形就会比较显著,由此在建筑结构设计中就要把轴向变形考虑进去。

二、高层建筑结构体系1、框架结构体系整个结构的纵向和横向全部由框架构件组成的结构成为框架结构。

框架既负担重力荷载又负担水平荷载。

框架结构的优点是建筑平面布置灵活,可提供较大的内部空间。

但由于结构属于柔性结构体系,在水平荷载作用下,强度低,刚度小,水平位移大,在高烈度地震区不宜采用。

高层建筑结构设计论文(1)

高层建筑结构设计论文(1)

论高层建筑结构设计研究摘要:本文介绍了高层建筑结构的设计特点以及高层建筑的结构体系,并对高层建筑结构进行了初浅的分析,以供设计人员参考。

关键词:高层建筑结构设计高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

1 高层建筑结构设计特点高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。

其主要特点有:1.1 水平荷载成为决定因素。

一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。

1.2 轴向变形不容忽视。

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

1.3 侧移成为控制指标。

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。

随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

1.4 结构延性是重要设计指标。

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。

然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。

一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。

首先,高层建筑所承受的风荷载和地震作用明显增大。

随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。

地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。

其次,高层建筑的竖向荷载较大。

由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。

再者,高层建筑的结构体系更为复杂。

常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。

不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。

二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。

这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。

在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。

(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。

因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。

(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。

这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。

(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。

结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。

(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。

建筑结构设计论文高层建筑结构体系论文

建筑结构设计论文高层建筑结构体系论文

建筑结构设计论文高层建筑结构体系论文【摘要】要想保证高层建筑施工质量,首先在结构设计阶段就要保证其设计方案完全符合国家的相关标准,并结合其实际用途,紧抓设计要点,并对较易发生的潜在问题的设计进行及时排除,确保施工方案得以顺利的展开,从而保证整体高层建筑的施工质量,为人们的正常使用提供较高质量的保障。

当今社会,随着人们对居住空间的要求越来越高,同时对住宅的布局以及装饰也越来越高,使得目前的建筑形式向多元化发展,并且随着高层建筑的大量出现,满足了人们对居住大空间的要求,同时也使得城市用地紧张的情况得以解决,但是,随之而来的问题也出现了,因为高层建筑本身的特点决定着建筑结构的特殊性,比如结构复杂,建筑施工的工作量很大,施工的周期较长等,所以,如果在结构设计方面发生问题,不但会使得经济造成巨大的损失,而且也会危及人们的生命以及财产的安全,因此,我们要对高层建筑结构设计要点严格把握,并且对工程施工的各种相关因素全面考虑,详细的分析及把握影响建筑质量的潜在问题,从而采取有效的方法及措施进行防治。

1高层建筑结构体系1.1高层建筑的剪力墙体系。

在高层建筑中设计中结构体系中,其重要组成部分就是剪力墙,在高层建筑承受风荷载或高层建筑承受地震方面,剪力墙有着积极性的作用。

因为其不仅对结构中水平构件所产生的竖向荷载能够承担,而且对外部因素所引起的振动作用也能够承担。

1.2高层建筑的框架—剪力墙体系。

高层建筑中常见的结构体系就是框架—剪力墙体系,垂直荷载的力量是框架所能承受的,而剪力墙所承受的则是水平剪力。

剪力墙的设置不仅能够在很大程度上增强建筑的侧向刚度,使其水平位移变小,而且还能够使框架所受的力实现均匀分布。

1.3高层建筑的筒体体系。

高层建筑筒体结构体系由框架—剪力墙结构与全剪力墙结构综合演变和发展而来的。

筒体结构体系是将剪力墙或密柱框架集中到建筑的内部和外围而形成的空间封闭式的筒体。

其特点是剪力墙集中而获得较大的自由分割空间,目前在高层建筑中被广泛应用。

现代高层建筑结构设计论文

现代高层建筑结构设计论文

试论现代高层建筑结构设计【摘要】随着科技的进步,经济的高速发展,现今社会的高层建筑向着更高、更复杂的趋势发展,本文就高层建筑的最基本原理展开讨论。

【关键词】高层建筑结构;结构体系;结构布置1 选择合理的结构类型正确认识高层建筑的受力特点高层建筑从本质上讲是一个竖向悬臂结构。

竖向荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。

从受力特性看,竖向荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向结构上的作用、作用效应和结构抗力。

结构产生各种效应的原因,统称为结构上的作用。

结构上的作用包括直接作用和间接作用。

作用在结构上的直接作用或间接作用,将引起结构或结构构件产生内力(如轴力、弯矩、剪力、扭矩等)和变形(如挠度、转角、侧移、裂缝等),这些内力和变形总称为作用效应,其中由直接作用产生的作用效应称为荷载效应。

结构或结构构件承受内力和变形的能力,称为结构的抗力,如构件的承载能力、刚度的大小、抗裂缝的能力等。

结构抗力与结构构件的截面形式、截面尺寸及材料强度等级等因素有关。

结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

因此,高层建筑采用何种结构形式,应取决于其结构体系和材料特性。

2 正确选择合理的结构体系建筑设计与结构设计是整个建筑设计过程中的两个重要的环节,对整个建筑物的外观效果、结构稳定起着至关重的作用。

二者相互协调也相互制约,是伙伴还是冤家,就在于能否和谐工作。

建筑设计师常常把结构放在从属地位,要求结构必须服从建筑,一切以建筑为先导。

通过受力因素分析,下一步就考虑采用什么结构体系,有下面几种高层建筑结构体系可供选择,其结构体系有:框架结构、剪力墙结构、框架一剪力墙结构、筒中筒结构等。

钢筋混凝土常用的结构形式:框架结构:平面布置灵活,抗侧刚度小,但建筑物较高时就需要较大的梁柱,减小了有效的使用空间,经济指标不太好。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。

然而,高层建筑的结构设计是一项极其复杂且具有挑战性的工作,需要综合考虑众多因素,以确保建筑的安全性、稳定性和功能性。

一、高层建筑结构设计的特点高层建筑由于其高度较高、自重较大、水平荷载影响显著等特点,使得其结构设计与低层建筑有很大的不同。

首先,高层建筑所承受的竖向荷载远大于低层建筑。

除了自重外,还包括大量的人员、设备和家具等荷载。

这就要求结构具有足够的强度来承受这些竖向压力,以避免出现过大的变形和破坏。

其次,水平荷载成为了高层建筑结构设计的控制因素。

风荷载和地震作用对高层建筑的影响非常显著。

在强风或地震作用下,高层建筑会产生较大的水平位移和内力,因此需要结构具有良好的抗侧力性能。

再者,高层建筑的结构体系更为复杂多样。

常见的结构体系如框架结构、剪力墙结构、框架剪力墙结构、筒体结构等,每种结构体系都有其特点和适用范围,设计时需要根据具体情况进行合理选择。

二、高层建筑结构设计的原则在进行高层建筑结构设计时,需要遵循一系列的原则,以确保设计的合理性和可靠性。

安全性是首要原则。

结构设计必须能够承受各种可能的荷载组合,包括正常使用情况下的荷载以及极端情况下的风荷载、地震作用等,确保在其使用寿命内不会发生倒塌或严重破坏。

适用性原则要求结构在正常使用过程中,具有良好的变形性能和舒适度,不出现过大的振动或裂缝,满足建筑的使用功能。

经济性原则也是不可忽视的。

在保证结构安全和适用的前提下,应通过合理的设计和优化,降低工程造价,提高建筑的经济效益。

耐久性原则则要求结构具有足够的抗腐蚀、抗老化能力,以保证其在长期使用过程中的性能稳定。

三、高层建筑结构设计的主要内容1、结构选型结构选型是高层建筑结构设计的关键环节。

需要根据建筑的高度、使用功能、地质条件、施工条件等因素,综合考虑选择合适的结构体系。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文【摘要】高层建筑结构设计的主要难点是对抗高空的强风、突发性的地震和内部消防结构等,为了更好的解决高层建筑结构设计中的难题,要遵循结构设计中科学的基础方案、合适的计算简图、合理的结构设计、合理的构造选择四项基本原则,选择合适的结构框架,制定具备操作性、科学性的高层建筑结构设计方案。

随着经济的高速发展和科学技术的进步,为了满足人们日益增长的物质需求和精神需求,加快了现代化城市建设的步伐。

高层建筑物的应用是市场经济发展的需要。

为了使高层建筑物更好的服务社会,必须要确保高层建筑结构的质量,确保高层建筑的稳定性和安全性,才能使其发挥良好的使用价值。

如何在设计过程中强化高层建筑结构的强度和安全性能,一直是建筑设计中备受关注的课题。

为了确保高层建筑结构设计的合理性和科学性,必须遵守高层建筑结构的四项基本原则,再根据实际需要和客观条件进行合理的规划和演算分析,突破高层建筑结构设计中的难点,使高层建筑建设不断进步和发展。

一、高层建筑结构设计的基本原则(一)科学的基础方案高层记住结构的设计过程中不仅要符合开发商的经济发展需求,还要结合地域地质类型及施工现场的客观条件,进行科学合理的基础设计构思。

在设计前做好充分的准备工作,收集施工现场的地质条件、建筑物类型、结构特点、周围环境等详细的数据和资料,为设计科学合理的高层建筑方案奠定良好基础。

(二)合适的计算简图选择正确的计算简图是确保结构设计中计算准确的前提,合适的计算简图需要结合实际和理论的研究,跟具高层建筑物的结构特点,选择安全性和稳定性较好的计算简图方式。

使计算出的理论数据和实际数据的差异最小化,是确保高层建筑结构质量保障的基础。

因此在高层建筑结构的设计中坚持采用合适的计算简图原则。

(三)合理的结构设计合理的结构设计要符合"稳定、经济、简捷、规范"的条件。

合理的结构设计必须具备可操作性,因此在设计过程中不仅要将建筑物整体结构的抗震性能、抗风性能和消防设计等多方面考虑其中,还要计算材料的性质、用量、价格等成本预算的问题。

综述我国现代高层建筑设计论文

综述我国现代高层建筑设计论文

综述我国现代高层建筑设计摘要:近年来,在我国的国民经济快速发展,城市化进程越来越快,土地资源日益紧张的今天,高层建筑已成为城市建设重要的组成部分。

高层建筑有利于节约用地、解决住房紧张、减少市政基础设施和美化城市空间环境。

本文作者结合工作经验对现代高层建筑设计要点进行简要分析,以期交流探讨。

关键词:高层建筑;建筑设计;生态设计;中图分类号: tu97 文献标识码: a 文章编号:一、高层建筑的规划设计1.控制超高层建筑数量。

一些已建成的超高层建筑投入使用后表明收益并不乐观,可以说仅仅是体现城市形象,提高城市知名度。

2.避免高层建筑密集。

高层建筑的密集虽然对于城市办公等条件方便有利,却给城市空间带来很多压力,造成城市空间和城市交通的拥挤,如一些高层建筑玻璃幕墙的大面积使用造成以前未出现过的光污染。

3.高层建筑与城市街道。

高层建筑一般分布在城市中商业发达的地段,这些地段的街道本身交通荷载就较大,在规划设计时要对这些街道进行扩展,加大其通行能力。

可以看出,高层建筑设计与城市空间的协调以及城市空间的营造是通过两方面的共同作用来完成的,即建筑设计和规划。

二、高层建筑的外部尺度设计1.建筑与城市环境在尺度上的统一注意高层建筑布置对城市轮廓线的影响,因为在城市轮廓线的组织中,起最大作用的是建筑物,特别是高层建筑,因而它的布置应遵行有机统一的原则进行布置:①高层建筑聚集在一起布置,可以形成城市的“冠”,但为避免其相互干扰,可以采用一系列不同的高度,或虽采用相仿高度,但彼此间距适当,组成有关的构图。

也可以单栋高层建筑布置在道路转弯处,以丰富行人的视觉观赏。

②若高层建筑彼此间毫无关系,随处随地而起不到向心的凝聚感,则不会产生令人满意的和谐整体。

③高层建筑的顶部不应雷同或减少雷同,因为这会极大影响轮廓线的优美感。

2.同一高层建筑形象中,尺度要有序高层建筑设计时,应充分考虑建筑的城市尺度、整体尺度、街道尺度、近人尺度、细部尺度这一尺度的序列,在某一尺度设计中要遵守尺度的统一性,不能把几种尺度混淆使用,才能保证高层建筑物与城市之间、整体与局部之间、局部与局部之间及与人之间保持良好的有机统一。

高层建筑结构设计论文

高层建筑结构设计论文

浅谈高层建筑结构设计【摘要】上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。

如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。

【关键词】结构设计;高层建筑;控制参数;载荷;抗震1 高层建筑的特点《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m的钢筋混凝土民用建筑属于高层建筑。

相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。

高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。

高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。

2 高层结构设计体系特点地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。

高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。

不同的层数、高度应采用不同的结构体系。

2.1 筒体结构单个筒体可分为实腹筒、框筒和桁筒。

平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。

实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。

在层数很多或设防烈度要求很高时,可用筒体结构。

2.2 剪力墙结构体系利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。

剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。

现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈现代高层建筑的结构设计
摘要:本文论述了现代高层建筑的结构设计要点,并指出了在现代高层建筑结构设计中需注意的问题及需控制的主要指标,为设计的同行进行高层建筑结构设计提供参考。

关键词:高层建筑结构概念设计设计指标
随着经济和科学技术的快速发展,城市人口逐渐增多,可利用的土地资源越来越少,势必会使建筑往高空延伸,高层建筑逐渐成为衡量一个城市发展的软指标,因此,高层建筑的结构设计也逐渐成为人们关注的焦点。

结构工程师在高层设计中如何把握设计要点,直接影响到整体结构的安全性、经济性及合理性。

1 概念设计
概念设计一般指对难以作出精确理性分析或规范中难以规定的问题,不经数值计算,而是依据简化力学模型、分析结构破坏机理以及日常工程实际所积累的经验,从整体角度来确定结构的总体布置和对抗震细部的宏观控制。

其主要内容如下:
1.1 结构规则性
结构的平面布置宜简单、规则、对称,使得建筑物质量分布均匀和结构刚度协调,平面规则的结构受力明确、传力简洁,具有良好的整体性。

实际上,由于建筑外形及使用上的要求,要做到平面规则是比较困难的。

对此,结构设计人员对整个结构模型要有宏观的把握,进行结构布置时使刚心与质心尽量重合,减小因偏心而引起的扭转。

结构竖向布置应使体型规则、均匀,结构的刚度及承载力和传力途径没有太大的变化,避免有较大的外挑或内收,避免侧向刚度和承载力的突变面形成薄弱层。

1.2 结构延性
结构延性是指结构吸收地震能量后的变形能力。

结构延性设计是高层结构概念设计的一项重要内容。

结构主要靠延性来抵抗地震作用产生的非弹性变形。

延性后的结构吸收地震能量后,出现塑性铰,从而引起结构的内力重分布,以继续抵抗地震的作用。

这就要求结构满足“强柱弱梁,强剪弱弯,强节点弱构件”的设计原则。

控制竖向构件的轴压比对结构的延性至关重要,轴压比的大小反映出结构延性的好坏。

轴压比越小,结构的延性越好,但会增加建筑成本。

把轴压比控制在一个合理的范隔内,既能保证结构的延性,也能节约成本。

2 结构选型
高层结构常见的结构体系有框架结构、剪力墙结构、框架-剪力墙结构和筒体结构等。

2.1 框架结构
框架结构是梁和柱通过节点构成的承载结构。

框架结构由于其平面布置的灵活性,使得建筑获得较大的使用空间,能满足较多的功能要求。

但是框架结构的抗侧刚度较小,在风荷载或水平地震荷载作用下,结构的整体位移和层间位移都较大。

随着建筑高度的增加,框架结构的经济性和安全性均存在不合理的问题,因此在使用
层数上受到了限制。

2.2 剪力墙结构
在剪力墙结构中,剪力墙承受全部的垂直荷载和水平力。

剪力墙结构相对于框架结构而言,具有良好的侧向刚度和规整的平面布置,空间整体性好,水平位移和层间位移小,有一定延性,传力直接、均匀,对抵抗水平荷载作用十分有利。

但剪力墙体系的平面布置灵活性差,使用上受到很大的限制,适用范围小。

2.3 框架-剪力墙结构
当框架结构的强度和抗侧刚度满足不了要求时,往往需要在适当的位置布置一些剪力墙,通过剪力墙和框架柱共同抵抗水平荷载的作用,这种结构称为框架-剪力墙结构。

这种结构既具有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的延性。

2.4 筒体结构
筒体结构主要包括单筒体-框架、筒中筒、多束筒等形式,能满足更多层数的要求,常见用于超高层结构中。

筒体结构具有很大的刚度和强度,受力合理,在平面布置及满足功能使用上有明显的优势。

随着建筑往更多层数方向发展,这种结构形式的应用会越来越广泛。

3 埋深及嵌固端
高层建筑基础要求具有一定的埋置深度.其目的是为了保证结构的整体稳定性,减弱震害。

确定基础埋深时,应综合考虑建筑物的高度、体型、地基土以及设防烈度等因素。

基础埋深一般从室外
地坪算至基础底面或承台底面。

《高层建筑混凝土结构技术规程(jgj 3—2002)》(以下简称《高规 )规定基础埋深需满足以下2条规定:(1)天然地基或复合地基可取房屋高度的1/15;(2)桩基础可取房屋高度的l/l8。

正确选定结构嵌固端是结构计算模式中的一个重要假定,它关系到结构某些构件内力分配的正确性、影响结构产生位移的真实性以及结构局部的经济性:当高层建筑设有地下室时,若地下室全埋于土中,地基土对地下室有明显的约束作用,则可将地下室顶板作为上部结构的嵌同端;若地下室半埋于土中或是开敞式地下室,则需计算地下室结构的侧向刚度是否大于或等于相邻上部结构楼层
侧向刚度的2倍。

当满足此条件时,则可将地下室顶板作为嵌固端。

当高层建筑不设有地下室时,可将基础面作为上部结构的嵌固端,还须在纵横2个方向设基础粱加以连接。

4 主要设计指标
在结构整体性能设计中,应对以下主要设计指标加以控制。

4.1 位移比
位移比是判断结构平面是否规则的重要依据。

《高规》规定:在考虑偶然偏心影响地震作用下,a级高度高层建筑的位移比不宜大于1.2,不应大于1.5;b级高度高层建筑、混合结构、复杂高层结构的位移比不宜大于1.2,不应大于1.4。

4.2 周期比
周期比为以结构扭转为主的第一自振周期t1与以平动为主的第
一自振周期t1 之比。

限制周期比是为了控制结构的抗扭刚度不能太弱。

可通过调整抗侧力结构的布置,减弱内筒的刚度,增加结构周圈构件的刚度等措施来增加结构的抗扭刚度。

《高规》规定:a级高度高层建筑的周期比不应大于0.9;b级高度高层建筑、混合结构、复杂高层结构的位移比不应大于0.85。

4.3 刚度比
刚度比指结构竖向不同楼层的侧向刚度的比值,调整该值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。

《高规》规定:高层建筑结构其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻3层侧向刚度平均值的80%。

4.4 刚重比
刚重比是结构刚度与重力荷载之比。

它是控制结构整体稳定的重要指标,是影响重力二阶效应的主要参数通过对结构刚重比进行控制,可使高层建筑满足稳定性要求。

4.5 轴压比
轴压比指针对柱(墙)考虑地震作用组合的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积的比值。

它是影响墙柱抗震性能的主要因素之一,是保证竖向构件具有良好延性和耗能能力的主要指标。

5 结束语
结构工程师在进行高层建筑结构设计时,应对建筑有总体的概念把握,对结构设计中的难点、关键部分要着重优化设计。

面对经
济性与安全性这一对矛盾,通过合理的结构优化来达到双赢,既能很好地满足安全性的要求,也能达到经济性的要求。

相关文档
最新文档