§1.7 分子的碰撞频率与平均自由程
高二物理竞赛课件:分子平均碰撞次数和平均自由程
例题、图为同一种气体,处于不同温度状态下的速率分 布曲线,试问1、哪一条曲线对应的温度高?2、如果这 两条曲线分别对应的是同一温度下氧气和氢气的分布曲
线,问哪条曲线对应的是氧气,哪条对应的是氢气? 3、求解氧在标准状态下的平均速率
解:由v p
2RT M mol
f(v)
T1
(1)同种气体 T1 < T2
以平均相对速率 v运r 动
在A运动过程中只有分子中心与A中心间距 d
的那些分子才能与A碰撞
为确定在时t 间内有多少分子与A碰撞,可设想:以
A的中心运动轨道为轴线,以分子有效直径d为半径 作一曲折的圆柱体,凡是中心在此圆柱体内的分子 都与A碰撞。
圆柱体的截面积 叫分子碰撞截面 d 2
在 t时间内,A走过的路程为 vrt
dN N
v2
v1
v
dN
N
速率在v1
v
间分子速率之和与整个分子数的比值
2
答:无明显物理意义
(3) v vo vf (v)dv vo Cvdv C vo2
0
0
2
v 1 vo2 vo vo 2 2
(4)
v2
v2 f (v)dv
0
vo 0
Cv 2 dv
1 3
vo2
v2
3 3 vo
相应圆柱体的体积为 vrt
若气体的分子数密度为n,则此圆柱体内的总分子数
也就是A与其他分子的碰撞总次数为 n vr t
Z
n vrt
t
n vr
πd2
nvr
可以证明: vr 2 v
Z 2π d 2 nv
Z 的数量级为109~1010/s
物理化学第五版_01章_气体
学平均速率与根均方速率
Maxwell 速率分布定律 设容器内有N个分子,速率在 v v dv 范围内的分子数为 d N v
则
d Nv Ndv
或
d Nv Nf (v)dv
f (v) 称为分子分布函数,
力却是一个定值,并且是一个宏观可测的物理量。
对于一定量的气体,当温度和体积一定时, 压力具有稳定的数值。 压力p是大量分子集合所产生的总效应,是 统计平均的结果。
压力和温度的统计概念
aa' , bb' 是两个半透膜
aa ' 只允许A分子出入
bb ' 只允许B分子出入
在中间交换能量,直至
双方分子的平均平动能相等
是摩尔气体常数,等于
是热力学温度,单位为 K
T (t /℃ 273.15)K
气体分子动理论的基本公式 气体分子的微观模型 (1)气体是大量分子的集合体 (2)气体分子不停地运动,呈均匀分布状态 (3)气体分子的碰撞是完全弹性的 设在体积为V的容器内,分子总数为N,单位体 积内的分子数为n(n = N/V),每个分子的质量为m。 令:在单位体积中各群的分子数分别是 n1 ,n2 , … 等。则
n1 n2 ni ni n
i
气体分子动理论的基本公式 设其中第
i
群分子的速度为
u i ,它在 x, y, z
轴方向上的分速度为
2 ui 2 ui , x
ui, x , ui, y , ui, z ,则
2 ui , z
2 ui , y
在单位时间内,
在
分子平均自由程和碰撞次数
1
B
A
平均速率 (路程/时间)
分子自由程(free path):
气体分子在连续两次碰撞之间自由通过的路程。
碰撞频率(collision frequency):
在单位时间内分子与其他分子碰撞的平均次数。
大量分子的分子自由程与每秒碰撞次数服从统 计分布规律。可以求出在一秒钟内一个分子与其他 分子碰撞的平均次数和分子自由程的平均值。 平均自由程 (mean free path) 平均自由程 的大小是一定的
23
273
10
1.41 3.14 ( 3.5 10
) 1.01 10
5ቤተ መጻሕፍቲ ባይዱ
6.9 10 m
8
空气摩尔质量为2910-3kg/mol
空气分子在标准状态下 的平均速率
v
v
8 RT
448m / s
z
448 6.9 10
8
6.5 10 s
d v n
2
z d v n
2
z d v n
2
一切分子都在运动
z
2d v n
2
一秒钟内分子A经过路程为 v
一秒钟内A与其它分子发生碰撞的平均次数 z
平均自由程
v z
1 2d n
2
平均自由程与分子的 有效直径的平方和分 子数密度成反比
当温度恒定时,平均自 由程与气体压强成反比
P nkT
kT 2d P
2
在标准状态下,几种气体分子的平均自由程
气体
(m )
d (m )
氢
1.13 10
气体分子的平均自由程和碰撞频率
上页
下页
末页
退出
问:在常温下,气体的方均根速率(或平均速率) 达几百米每秒。为什么在几米远的地方,打开酒精瓶塞, 需几秒甚至更长的时间才能嗅到酒精味 ?
首页
上页
下页
末页
退出
一、分子的平均自由程和平均碰撞频率
平均自由程:分子相继两 次碰撞间所走的路程叫分子的 自由程。分子在连续两次碰撞 之间所通过的自由程的平均值 叫 做 平 均 自 由 程 ( mean free path),用 表示。
对其他分子运动 。
下面确定 和 z 是由那些因素决定的。
首页
上页
下页
末页
退出
单位时间内平均碰撞次数 z π d 2 un
考虑其他分子的运动 u 2 v
分子平均碰撞次数 z 2π d 2 vn
平均自由程
v 1
z 2 π d2n
首页
上页
下页
末页
退出
Байду номын сангаас
v 1
z 2 π d2n P nkT
kT
2 πd2p
T 一定时, 1
P
P 一定时, T
首页
上页
下页
末页
退出
7–13 在常温下,气体分子的平均速率可达几百米, 为什么气味的传播速率远比此小?
7–14 一定质量的气体,保持体积不变,当温度升 高时,分子的无序运动更加剧烈,平均碰撞频率增大, 因此,平均自由程减小,对吗?
B A
平均碰撞频率:每个分子平均在单位时间与其他
分子相碰的次数平均值,用 z 表示。
平均自由程与平均碰撞频率之间的关系为:
vt v
zt z
气体分子的平均自由程与碰撞频率
气体分子的平均自由程与碰撞频率气体分子在运动中会发生相互碰撞,这些碰撞对于气体的性质和行为有着重要的影响。
本文将探讨气体分子的平均自由程和碰撞频率以及它们在气体动力学中的意义。
1. 气体分子的平均自由程气体分子的平均自由程是指在单位时间内,分子在不受碰撞影响时所能走过的平均距离。
它与气体分子的碰撞次数、碰撞概率等因素密切相关。
计算平均自由程的方法是通过统计分子在一段时间内的位移,并将其平均值作为结果。
平均自由程与气体分子的直径和气体的密度有关。
当气体分子的直径较小时,分子之间的相互作用较小,平均自由程较大;而当气体分子的直径较大时,分子之间的相互作用较强,平均自由程较小。
此外,当气体的密度较小时,气体分子之间的碰撞次数较少,平均自由程较大;而当气体的密度较大时,气体分子之间的碰撞次数较多,平均自由程较小。
2. 气体分子的碰撞频率碰撞频率是指单位时间内气体分子发生碰撞的次数。
它与气体的温度、密度等因素息息相关。
碰撞频率的计算可以通过统计单位时间内发生的碰撞次数来实现。
碰撞频率与气体分子的速度和相对速度有关。
当气体的温度增加时,气体分子的速度增大,碰撞频率也增加;反之,当气体的温度降低时,气体分子的速度减小,碰撞频率也减小。
此外,当气体的密度增加时,气体分子之间的距离减小,碰撞频率也增加。
3. 平均自由程与碰撞频率的关系平均自由程和碰撞频率是气体分子运动的两个重要参数,它们之间存在着相互关系。
根据气体动力学理论,平均自由程与碰撞频率成反比关系。
当气体分子的平均自由程较大时,分子之间的相互作用较小,碰撞次数相对较少,碰撞频率较低;而当平均自由程较小时,分子之间的相互作用较强,碰撞次数相对较多,碰撞频率较高。
4. 平均自由程与碰撞频率的实际应用平均自由程和碰撞频率在气体动力学中有着广泛的应用。
例如,在研究气体扩散过程中,通过计算气体分子的平均自由程可以估算扩散的速率和距离;在研究气体传热过程中,通过计算气体分子的碰撞频率可以评估热传导的效率和速率。
分子碰撞频率和平均自由度
(二) λ Z 间的关系
v ----气体分子运动的平均速度,即每秒走过的平均距离.
Z -故(-1-)-,气气λ体体或分分Z子子平平与气均均体自每所由秒出程碰的:撞状态次有数λ关.=,如Zv气体单位体积内分子
数n大,分子碰撞的机会多.
(2) λ 或 Z 与气体种类(或性质)有关,分子直径大,碰撞机会多.
过程看作弹性碰撞过程,两这直径只是分 子有效直径,并非分子真正大小.
r0
r
f斥
d
Z = πd 2un
u = 2v 平均相对速率 , v 平均速率.
所以: Z = 2πd 2nv
看出λ 与宏观平均速率 v 无关.
与宏观λ 量(p,V,T)的关系:
λ= v =
Q p=nkT
n = p /kT
Z
∴ λ = kT 2π d 2 p
1
2π d 2 n
a
• 讨论:(1)气体温度一定p增大, λ 减小数量级概念,
v (3) 大,其它条件一定,碰撞机会多.
简略推导: 1) 气体分子为弹性小球,直径d.
2) 假设一定量气体中只有一个分子在运动,其它分子不动,平
均速率为 v ,而此分子运动相对其它分子的相对速率为u ,分
子a运动,轨迹为直线,和分子球心距离等于或小于分子直径 的那些分子与a碰撞.
则a分子在单位时间内和其它分子碰撞的次数为:
地球海平面 p=1大气压=
帕,
T=237K
此时 1.01=31×0-710米5
{ 地面上空(100公里处) p=0.133帕,
=1米λ
地面上空(300公里处) p=
帕
=10米λ
《物理学教学课件》7-5碰撞频率和平均自由程
在气体分子运动论中,平均自由程表示气体分子在连续两次碰撞之间所经过的平均距离。 通过研究平均自由程,可以深入理解气体分子的扩散和输运过程。
热力学第二定律
热传导
在热力学第二定律中,热传导是热量自发地从高温物体传递到低温物体的过程。 通过研究气体分子碰撞频率和平均自由程,可以深入理解热传导的微观机制和 热能传递的规律。
应用
在计算气体分子的平均速度、扩散系 数等物理量时,需要用到平均自由程 。
平均自由程的影响因素
分子间的相互作用力
分子间的相互作用力决定了碰撞 频率,进而影响平均自由程的大 小。
分子质量
较轻的分子具有较长的平均自由 程,因为它们受到的空气阻力较 小。
气体温度
气体温度越高,分子热运动越剧 烈,碰撞频率越高,平均自由程 越短。
、压力等实验条件的关系。
实验结果与数据分析
实验结果
通过实验,获得气体分子的碰撞 频率和平均自由程数据。
数据分析
分析碰撞频率和平均自由程与温度、 压力等实验条件的关系,得出气体 分子运动和相互作用的规律。
结果讨论
根据实验结果,讨论碰撞频率和平 均自由程在气体分子扩散、传递过 程中的作用,以及在实际应用中的 意义。
粘性流动
粘性流动是气体在流动过程中由于分子间的内摩擦力而产生的阻力。通过研究气 体分子碰撞频率和平均自由程,可以进一步了解粘性流动的微观机制和气体流动 的规律。
Part
05
实验研究
实验目的与原理
实验目的
通过实验研究,掌握碰撞频率和平均自由程的概念,理解气体分子碰撞和扩散的基本原理。
实验原理
气体分子在容器内不断进行碰撞,其碰撞频率与气体分子的密度、温度和分子间的相互作用力有关。分子在两次 碰撞之间的平均距离称为平均自由程。通过测量容器内气体分子的碰撞频率和平均自由程,可以深入了解气体分 子运动和相互作用的规律。
平均自由程和平均碰撞频率
平均自由程和平均碰撞频率在物理的世界里,平均自由程和平均碰撞频率就像是空气中的那股清新气息,听起来很专业,但其实挺有意思的。
想象一下,咱们在一个人多热闹的派对上,大家都在忙着交谈、跳舞。
这个时候,你得在众人中间穿梭,偶尔被人撞一下,或者和朋友聊聊。
这就像是气体分子在空间里移动,发生碰撞,听起来是不是挺有画面感的?平均自由程,就像你在派对上能顺利移动的距离。
分子在这个空间里就像是你,四处游荡,能走多远,就取决于周围有多少“障碍物”。
如果人多得像热锅上的蚂蚁,那你可得小心翼翼,才能不被撞到。
相反,如果人少,那就简单多了,能畅通无阻。
简单来说,平均自由程就是气体分子在碰撞之前能走多远的一个数值。
你可能会问,这个数值是怎么计算的呢?它和气体的性质、温度、压力都有关系。
像夏天的空气,热得让人受不了,分子动得飞快,碰撞频率自然就高,这样一来,平均自由程就会变得小一些。
说到平均碰撞频率,那就是在单位时间内,分子之间碰撞的次数。
再把它换个角度看,就像是你在派对上,跟朋友聊得开心,突然有人从旁边冲过来把你撞了一下,感觉一下子被打断了。
这个频率高了,你的谈话就得时不时被打断,显得有点混乱。
反过来,如果碰撞频率低了,那大家的聊天就显得井然有序,就像是一场优雅的舞会,大家都在轻声细语,享受这份宁静。
这里面还有个有趣的地方。
气体分子如果是小颗粒,平均自由程就会长一些;如果是大颗粒,碰撞的机会就多了,平均自由程就短了。
这就好比你在派对上,身材高大的人总是更容易被注意到,走动起来也能避开一些障碍。
但如果是小个子,就得更加灵活,才能在人群中穿梭自如。
这不禁让人想起“人外有人,天外有天”这句话,确实每种情况都有它的道理。
碰撞频率还和温度、压力有关系。
高温下,分子运动得飞快,撞得也多,频率自然就高。
就像夏天的海滩,大家都兴奋得不行,玩得不可开交,彼此碰撞得频繁。
相反,气温低了,分子们就懒洋洋的,像冬天的围炉夜话,大家都安静下来,不再热闹,这时候碰撞频率自然就降了下来。
分子的平均碰撞次数及平均自由程
较大的分子数较少,能量较小的分子数较多。 (3)在大小相等的各区间(坐标区间和速度区间)中比较,
分子总是处于低能态的概率大些。 (4)分布在某一坐标区间具有各种速度的分子总数只与坐标
区间的间隔成正比,与粒子的能量无关。 (A)只有(1),(2)是正确的; (B)只有(2),(3)是正确的; (C)只有(1),(2),(3)是正确的;(D)全部是正确的;
(`1) 10-10m (2) 102~103m/s (3) 108~109s-1
v 1.6 RT M mol
T=300K
v kT z 2d 2 P
把 P 1.01105 Pa
z 2d 2vP
kT T 273K 代入即可得到。
8
例6-12 气缸内有一定量的氢气(可视作理想气体),当
温度不变而压强增大一倍时,氢气分子的平均碰撞次数 z
分子的平均碰撞次数及平均自由程
问题的提出 前面已经说过:分子速率在几百米/秒的数量级,但为什
么食堂炸油饼时并不能马上闻到油香味呢? 原来分子速率虽高,但分子在运动中还要和大量的分子碰撞。
1
一、分子的有效直径d
分子的一种最简单的模型:将分子看成是具有一定体积 的弹性小球。
则分子的有效直径d定义为:两个分子质心之间所能允许的 最小距离。
距离小于或等于分子有效直径d的分子都会与A分子发生碰撞。
为此我们以A分子中心的运动轨迹为曲线,以分子直径d
为半径,做一曲折圆柱体,那么,凡分子中心在圆柱体内的
分子,都会与A分子发生碰撞,
z n d 2 u
4
理论证明:气体分子的平均相对速率 u与平均速率 v间有
7-7分子平均碰撞次数和平均自由程
单位时间内分子经历的平均距离 v ,
平均碰撞 Z 次,有下列关系:
=
v
Z
2
物理学
7-7 分子平均碰撞次数和平均自由程
教程
简化模型
(1) 分子为刚性小球 .
(2) 分子有效直径为 d(分子间距平均值).
(3) 其它分子皆静止,某分子以平均速率u
相对其它分子运动 .
3
物理学
7-7 分子平均碰撞次数和平均自由程
取平均
各个方向随机运动,故为零
u 2 = v 2+ v '2 - 2 v ·v '
u 2 = v 2+ v' 2
u 2= 2 v 2
相等 设 均方根速率与平均速率的规律相似,则由上式
u= 2 v
5
物理学
7-7 分子平均碰撞次数和平均自由程
教程
Z πd2 un
由统计理论计算出 u 2v Z 2d 2 vn
M
v
Z
= 170×108(次/秒)
8
物理学
7-7 分子平均碰撞次数和平均自由程
教程
本次作业
1.习题 P205
7-6、10、14
2.预习:
第八章 热力学基础
9
物理学 教程
7-7 分子8-平0 均教碰学撞基次本数要和求平均自由程
一 掌握内能、功和热量等概念 . 理解准
静态过程 . 二 掌握热力学第一定律,理解理想气体
平均自由程
v
Z
1 kT ( p nkT)
2d 2n 2d 2 p
d为分子的有效直径。
T 一定时 1
p
对空气分子 d ~ 3.5 10 -10 m
气体分子碰撞频率和平均自由程的推导
气体分子碰撞频率和平均自由程的推导气体与固体、液体的不同之处在于,气体由的离散的分子构成,分子之间受到引力作用,在温度和压力相同时,分子们构成的气体能量总是不断变化,分子之间就会发生碰撞,产生热能。
这里以布朗分子模型(Brownian molecular model)为基准,来分析气体分子的碰撞频率及平均自由程。
首先,假设一定的温度和压强条件下,气体分子的碰撞频率是不变的。
在这样的条件下,分子能量总是在不同程度的变化,每次碰撞之后都会有能量的转换。
根据热力学定律,每次碰撞都要转换掉热能或动能到等价物,所以,当分子碰撞频率较高时,分子获取的能量也会增加。
而在温度和压强条件下,分子碰撞频率是不变的。
因此,任何一个分子都会有不同的碰撞频率,而这个频率可以用卡尔曼方程(KM equation)来描述,其表达式为:KM = (u/6)*(1+a1)^2*(1+a2)^2*…*(1+aN)^2其中u表示分子的总能量;ai表示分子碰撞的概率。
根据KM方程,可以得出碰撞频率的计算公式:f=1/u*(1+a1)^2*(1+a2)^2*…*(1+aN)^2其中,f表示分子的碰撞频率,u表示总能量,ai表示分子碰撞的概率。
由此可知,气体分子碰撞频率与能量有关,碰撞次数越多,气体分子的能量就越多。
接着,我们来探讨气体分子的平均自由程p。
由热力学可知,当一个分子受到外力作用时,就会发生力学变化,平均自由程就会发生变化。
因此,在温度和压强相同的情况下,气体分子的碰撞频率越高,此时分子的平均自由程p就会越大,公式为:p=f/u其中,f表示气体分子的碰撞频率,u表示能量总和。
由此可知,气体分子的平均自由程p也与能量有关,越大的能量,分子越可能进行更远的碰撞,所以平均自由程就会越大。
据以上分析,得出气体分子的碰撞频率和平均自由程的推导公式如下:气体分子的碰撞频率:KM = (u/6)*(1+a1)^2*(1+a2)^2*…*(1+aN)^2平均自由程:p=f/u最后,还要注意的是,由于温度和压强的变化,气体的分子的碰撞频率和平均自由程也会发生变化。
大学物理气体分子的平均碰撞频率和平均自由程课件
n=2.451023 个/cm3,
__
v
=477m/s
代入公式计算其碰撞频率
__
Z 50亿次 / 秒
可见一个分子到达你的鼻孔,是不能用几经周折 来描述的,而要用“亿经周折”来描述!
__
三)分子的平均自由程
分子在两次连续两次碰撞之间所经历路程的平均值。
则平均自由程为
分子平均一秒内所飞行的距离为
§7--7分子的平均碰撞次数和平均自由程
一)问题的提出 前面已经过:分子速率在几百米/秒的数量级,但为什 么食堂炸油条时并不能马上闻到油香味呢?
原来分子速率虽高,但分子在运动中还要 和大量的分子碰撞
碰撞是分子的第二特征。 (第一特征是分子作永恒的运动)
分了碰撞是“无规则”的,相隔多长时间碰撞一次?
分了碰撞是“无规则”的,相隔多长时间碰撞一次 每次飞翔多远再碰撞 ,也都有是随机的、偶然 的,因此也只能引出一些平均值来描写。
即下一面秒求内相分对速子率平均_u_碰撞与平的均次速数率
__
__
Zv 的n关系d。2 设u
Z 2nd v 所 其有它即分分:子 子都 的以 速平 率均仅速决率定运于动分,子则运其动2 一的__个方分 向(子 。7相 对33)
B
__
v
B
__
v
B
__
v
A
__
v
__
u 0
__
v
A
__
v
A
__
1.2107 (m)
2 3.14 (2.7 1010)2 1.013105
__
为什么压强降低时,
当p 107 atm时 1.2m 平均自由程增大呢?
《大学物理》75 气体分子的平均碰撞频率和平均自由程.
448 9 1 Z 5.1 10 s 8 8.71 10
上页 下页
v
=
v
Z
=
1
2 d2 n
=
kT
2 d2 P
上页
下页
2
一切分子都在运动
v
A d
v
动态 演示
z 2d v n
2
上页
下页
二、平均自由程
一个分子连续两次碰撞之间经历的平均自由路 程叫平均自由程 单位时间内分子经历的 平均距离 v , 平均碰撞 Z 次
=
v Z v Z
因为
P=nkT
=
=
1
2 d2 n
=
kT
2 d2 P
上页 下页
10-10m。已知空气的平均分子量为29。
解: 已知 T 273 K , P 1.0atm 1.013 105 Pa ,
d 3.10 10 10 m
上页 下页
kT 2d 2 P
23
1.38 10 273 8 8.71 10 m 10 5 1.41 3.14 ( 3.5 10 ) 1.01 10
在标准状态下,几种气体分子的平均自由程
气体 氢
7
氮
氧
7
空气
7
(m ) 1.123 10
0.599 10
0.647 10
7.00 10
8
d ( m ) 2.30 10 10 3.10 10 10 2.98 1010 3.10 1010
气体分子的平均碰撞频率和平均自由程
气体动理论
第9讲 气体分子的平均碰撞频率 和平均自由程
一、分子的平均碰撞频率
平均碰撞频率和平均自由程
平衡态宏观性质的维持 非平衡态向平衡态过渡
依靠分子间的频繁碰撞实现
刚性球 模型
不可以像讨论压强那样 将分子看成质点
不需像讨论内能那样考 虑分子内部结构
分子的有效直径 d 约为10-10 m
无引力刚 性球模型
=
1.013×105 1.38×10−23 × 273
=
2.69 ×1025 m−3
λ = 1 = 2.14 ×10−7 m 2π d 2n
z = v = 7.95×109 s−1
λ
(约80亿次)
平均碰撞频率和平均自由程
d d
假定: 分子是直径为d 的弹性小球
分子A以平均相对速率 u 运动, 其他分子静止 由麦克斯韦速率分布可证 u = 2 v
球心轨迹为轴, d 为半径作折圆柱体
平均碰撞频率和平均自由程
d d
球心在圆柱体内的分子将与A碰撞
单位时间内有 πd 2u n 个分子与A发生碰撞
平均碰撞频率: z = 2π d 2nv
• 当温度一定时,平均自由程与压强成反比,压强越小,平 均自由程越长.
平均碰撞频率和平均自由程
例. 求氢在标准状态下一秒内分子的平均碰撞次数. (已知 分子直径d = 2×10-10m )
解:
v=
8RT =
Mπ
8×8.31× 273
2 ×10−3π
= 1.70 ×103 m ⋅ s−1
n
=
P kT
二、平均自由程平均碰撞频率平均自由程平均自由程( λ ): 分子在连续两次和其它分子发生碰撞
平均碰撞频率和自由程
dN (r ,v ) Ce /kT dvxdvydvz dxdydz
2
§12.10 平均碰撞频率和平均自由程
一. 分子的平均碰撞频率 Z
一个分子单位时间内 和其它分子碰撞的平 均次数,称为分子的 平均碰撞频率。
·假设
每个分子都可以看成直径为 d 的弹性小球,分子间的碰 撞为完全弹性碰撞。大量分子中,只有被考察的特定分
可以推知:有 N 个分子时,分子的总微观态数 2N ,总宏
观态数( N+1 ) ,每一种微观态概率 (1/2N )
10
20个分子的位置分布
宏观状态
一种宏观状态对应的微观状态数
左20
右0
1
左18
右2
190
左15
右5
15504
左11 左10
右9 右10
167960 184756
左9
右11
167960
左5
25
二. 熵 熵增原理
1. 熵
孤立系统 状态(1)
能否自动进行? 判据是什么?
状态(2)
微观态数少的宏观态
微观态数多的宏观态
为了定量的表示系统状态的这种性质,从而定量说明自发 过程进行的方向,而引入熵的概念。
14
玻尔兹曼(Ludwig Edward Boltzmann, 1844-1906)
奥地利物理学家和哲学家,热力学和统计物理学的奠基人之一
一. 热力学第二定律的统计意义
1. 气体分子位置的分布规律
3个分子的分配方式
a b c
气体的自由膨胀
左半边 abc ab bc ac a b c 0
右半边 0 c a b bc ac ab abc
混合气体分子的平均碰撞频率和平均自由程的初等推导
混合气体分子的平均碰撞频率和平均自由程的初等推导
混合气体是指由多种不同种类分子组成的气体,其中包括氢和氦,氧和氮,氯和氩等。
对
于混合气体,人们想知道分子碰撞频率和自由程。
平均碰撞频率是指单个分子碰撞其他分子的平均频率。
计算混合气体的平均碰撞频率需要
用到平均碰撞频率常数。
它可以用以下公式表示:
k=∑_i(f_i*k_i)
其中k代表混合气体的平均碰撞频率常数。
f_i 的值等于混合气体内每种分子的浓度或含量,K_i代表单种分子的碰撞频率常数。
自由程是指分子能够直接穿过物体而不受物体的阻碍而飞行的距离。
在一般情况下,计算
混合气体的平均自由程也可以用到平均碰撞频率常数:
f=K/f
其中l为混合气体的平均自由程,K代表混合气体的平均碰撞频率常数,f代表流体的密度。
上述就是混合气体的平均碰撞频率和平均自由程的初等推导。
平均碰撞频率常数可以用于计算不同种类分子平均碰撞频率,而平均自由程可以用流体密度计算。
在研究气体性质时,这也是有益的推导。
分子动理论 分子平均碰撞次数和自由程
n vt
平均碰撞次数 n vt
Z t
斯韦分布率,对上式加以修正后, 得
n v
Z 2vn 2d vn
2
3 – 6
分子平均碰撞次数和平均自由程
第三章气体动理论
分子平均碰撞次数
Z 2 π d vn
p nkT
平均自由程
平均自由程与平均 2 速率无关,与分子有效直 径及分子数密度有关。
3 – 6
分子平均碰撞次数和平均自由程
2
第三章气体动理论
圆柱体的截面积为 = d
,叫做分子的碰撞截面。
在t内,A所走过的路程 为 vt ,相应圆柱体的 体积为 vt ,设气体 d A 分子数密度为n。则 中心在此圆柱体内的分子 总数,亦即在t时间 修正:对于实际气体,各个分子 内与A相碰的分子数为 都在运动,且运动速率服从麦克
3 . 其它分子皆静止, 某一分子以平均速率相对其他 分子运动 .
3 – 6Biblioteka 分子平均碰撞次数和平均自由程
第三章气体动理论
假设只有一个分子以平均速度运动,其余分子看 成不动。分子A的运动轨迹为一折线,以A的中心运动 轨迹为轴线,以分子有效直径d 为半径,作一曲折圆 柱体。凡中心在此圆柱体内的分子都会与A相碰。
,
Z 2d
,
,
2
8RT p 16R d 2 p M mol kT k T
kT 2d 2 p
,
(1)Z1
Z0 2
1 20 (2)Z1
2Z0
1 2 0 2
3 – 6
分子平均碰撞次数和平均自由程
第三章气体动理论
例 试估计下列两种情况下空气分子的平均自 由程 :(1)273 K、1.013 105 Pa 时 ; ( 2 ) 273 K 、 103 P a 时. 1.333 (空气分子有效直径 : 3.101010 m ) d 解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8kT 已知 va m
则
分子与器壁的碰撞频率为
n vx dA kT n '' 2 vx n z 2 m 2 dA
8
n vx dA kT n '' 2 vx n z 2 m 2 dA
已知
''
pV NkT
或
p n kT
p z 2 mkT
p z L 2 MRT
9
z ''
分子的隙流 气体分子通过小孔向外流出称为隙流 隙流速度为
kT RT p v n n 2 m 2 M 2 mkT
'
v MB MA v
10
' A ' B
ห้องสมุดไป่ตู้
0
m m 2 vx dvx vx exp 2 kT 2kT m m 2 vx dvx exp 2 kT 2kT
1 2
1 2
0
7
vx
v dn dn
0 x 0
vx
vx
2kT m
z d
2 AB
8RT
nA nB
6
分子与器壁的碰撞频率
速率在 vx vx dvx 的分子数
已知
vx
dn(vx ) nf (vx )dvx m m 2 f (vx ) exp vx 2 kT 2 kT vx dnvx
0
0
dnvx
分子的运动方向相反,其相对速度为 分子以90°角碰撞
2va
va
va va
va
2 va 2 2 va 2
va
vr 0
va
vr 2va
vr 2va
4
运动着的分子与其他分子在单位时间内碰撞次数
vat d n 2 z va d n t
2
两个运动着的分子在单位时间内碰撞次数
z 2va d 2n
0.707 1 va l 2 2 z d n 2 d n
5
分子的互碰频率 分子的互碰频率
1 ' z nz 2
z 2va d 2n
3kT 8 u va u 已知 3 m RT 2 2 2 2 2 z n d u 2n d M 3
不同分子的互碰频率
§1.7 分子的碰撞频率与平均自由程
分子的平均自由程 分子的互碰频率 分子与器壁的碰撞频率 分子的隙流
1
分子的平均自由程
分子的平均自由程
va l ' z
是分子每两次碰撞之间所经过路程的平均值 分子发生碰撞的有效半径r和直径d
d 2r
2
分子的运动轨迹和有效截面所掠过的距离示意图
3
分子的运动方向一致,其相对速度为零