第六讲 预混可燃气的湍流燃烧 PPT课件
第六讲 预混合气体火焰-1
f
f
即为Hugoniot曲线上任意点的切线斜率。
(3)Raleigh-Hugoniot方程
• 火焰锋面后方的熵变:
∵
dq du pdV
T f dS f de f Pf dV
dS f Ps Pf 1 1 1 dPf Tf ( ) 1 1 1 1 d ( ) 2 s f d f s f f
• 或将u f 代入式(2)
f ( Ps Pf ) u s ( s f )
2 s
s2us2
s f ( Ps Pf ) ( s f )
6.1.2 爆燃与缓燃-基本方程
• 同理: •
Ps Pf u u 1 1 f s
2 2 s s 2 2 f f
过点S的直线(且 C <0)在第一、三象限不复存在。 凡满足瑞利方程的均为过点S的直线簇。
C 0 , s Pf ,等压线, P
m 0 。
等密线,m 。
( C ,Pf
s f ),
(2)Hugoniot(雨果尼特)方程
将式(1)与能量方程耦合
递的热量,提高自身温度,火焰逐渐向未燃区传播。 燃烧前后反应物浓度、温度变化情况见上图示意。 描述燃烧波中这些量得变化称为火焰结构。 预混火焰可以是固定的,也可以是以一定速度传播 的。
6.1.2 爆燃与缓燃
• 一根很长的等截面水平管内充满可燃混气,在左端 点燃,燃烧波将以某恒定的速度向右传播。
6.1.2 爆燃与缓燃
s f
( Ps
C
s
)
C
f
(4)
• 瑞利方程另一种形式。
燃烧理论基础ppt课件
微波燃烧是一种新型的热工技术,利用微波电磁场与燃料 的相互作用产生热量,实现燃料的快速、高效燃烧。微波 燃烧具有低污染、高效率和节能等优点。
06
未来展望
清洁能源的发展
清洁能源
随着环境保护意识的提高,清洁能源的发展越来越受到重视。未来,化石燃料的使用将逐渐减少,取而代之的是 太阳能、风能、水能等可再生能源。
02
燃烧化学
燃烧反应方程
燃烧反应方程是表示燃烧过程中物质 变化和能量转换的数学表达式。它由 反应物和生成物的化学式及其相应的 反应系数组成,遵循质量守恒和能量 守恒定律。
燃烧反应方程可以用来表示燃料与氧 气或其他氧化剂反应生成二氧化碳、 水蒸气等产物的过程,如C + O2 → CO2 + H2O。
热工仪表
热工仪表用于监测和控制燃烧系统的运行状态,包括温度计、压力计、流量计、氧分析仪 等。这些仪表能够实时监测燃烧过程中的各种参数,如温度、压力、流量和含氧量等。
燃烧控制技术
01
空燃比控制
空燃比是燃料和空气的混合比例,合适的空燃比是保证燃烧效率和经济
性的关键。通过控制燃料和空气的流量,可以调节空燃比,使燃烧过程
燃烧温度
01
燃烧温度是指燃烧过程中火焰或 反应区的温度,它与燃料的种类 、空气的供给、燃烧方式等因素 有关。
02
燃烧温度的高低直接影响到燃烧 产物的组成和燃烧效率,过高或 过低的温度都不利于燃烧过程的 进行。
燃烧产物
燃烧产物是指燃料在燃烧过程中产生 的气体、烟尘和灰渣等物质,它们由 燃料中的可燃元素转化而来。
可持续发展的重要性
资源节约
可持续发展强调资源的合理利用和节约,通过提高能源利用效率和减少浪费,实现经济、 社会和环境的协调发展。
6-湍流预混火焰讲解
湍流火焰的特点
均匀、各向同性的湍流流场,可以用两 个特征量表示湍流特征:湍流强度和湍 流尺度
湍流尺度:
(1)流动特征尺度(与管径、绕流物体尺度有关) (2)积分尺度(湍流宏观尺度,大涡尺度) (3)泰勒微尺度(与平均应变率有关) (4)柯尔莫戈洛夫尺度(最小尺度,与旋涡耗散有关)
湍流火焰的特点
小尺度湍流预混火焰传播速度确定
湍流火焰传播速度和层流火焰传播速度之比等 于二者传输率之比的平方根
ut un
T n
1/ 2
T n
/ 0cp / 0cp
1/ 2
λt表示湍流热传导系数 λl表示层流热传导系数 根据相似性原理,分子导温系数α= λn/(ρ0cp), 故 湍流导温系数αt= λT/(ρ0cp)。在湍流中湍流导温 系数取决于湍流尺度和脉动速度乘积,即
a)小尺度湍流火焰(2300<Re<6000) 条件: l<δL
现象:能够保持规则的火焰锋面,火焰前 沿仍然平滑,只是增加了厚度,火焰锋面 不发生皱折,湍流火焰面厚度δT> δn
特点:小尺度湍流只是由于湍流增强了物 质的输运特性,从而使热量和活性粒子的 传输增加,使湍流火焰传播速度比层流火 焰传播速度快,而在其它方面没有什么影 响
第六章 预混层流火焰
第六章 层流预混火焰传播§6-1 火焰速度和火焰结构一维层流火焰在预混燃料-氧化剂混合物中传播是最简单的燃烧现象之一,在此火焰中,化学动力学以及能量和组分扩散输运起重要作用。
通过守恒方程和状态方程可以导出Rankine-Hugoniot 曲线。
该曲线把在一维层流预混火焰中未燃气和已燃气状态联系起来。
已燃气体位于Rankine-Hugoniot 曲线下分支(缓燃),并相应于未燃气体状态Rayleigh 线与具有适当反应热的Rankine-Hugoniot 曲线交点L ,如图6.1-6.2中所示。
图6.1 层流预混火焰坐标系图6.2 一维燃烧波的Rankine-Hugoniot 曲线和Rayleigh 线Rayleigh 线的斜率与相对于未燃气体的波的传播速度,即层流火焰速度有关。
22)()/(/u u u A mdv dP ρ−=−=& ==)(u u S u 层流火焰速度=)/()/1(dv dP u ρ−由于缓燃Rayleigh 线斜率比爆震Rayleigh 线斜率小得多,所以缓燃速度比爆震速度小得多。
虽然守恒方程和状态方程提供了缓燃的未燃气体和已燃状态之间的关系,但不能唯一确定层流火焰速度u S 。
为了确定u S ,必须将守恒方程通过缓燃波积分。
由于在第5章中推导的方程是非线性耦合微分方程,其准确解只有通过数值积分才能获得。
它需要很大的计算资源。
为了考察层流火焰的某些特征(如火焰速度和厚度)以及这些特征与燃烧参数如燃料类型、化学配比、压力及未燃气体的温度的关系,对方程组进行了简化,以便能分析求解。
要得到简化的模型,需要引入一系列的假设。
我们从考察参考系建立在火焰上的层流火焰结构的某些方面入手。
如前所述,这些计算是针对等压过程进行的。
但是对一维缓燃的Rankine-Hugoniot 曲线,如图6.2所示,已燃气的压力小于未燃气的压力。
现在我们需要考察压力减少的数值是否小到可以忽略的程度。
燃烧学课件_第六章 层流预混火焰传播
0.75
1 s
P 101325 r= = = 0.1997kg / m 3 ( Ru / M r )T (8315 / 29)1770
RR = - 9.55 ?10 (0.1997) = - 2.439kmol / ( s ?m 3 )
5
1.75
0.0301 0.1 0.1095 1.65 ( ) ( ) 44 32
Ti
Tb
(6-8a)
_____
式中 [1 / (Ti Tu ) RRdT ]可以看成是反应区中平均反应速率 RR
Ti
由下图火焰面前后总的能量平衡关系,得
f ( H R ) mc p (Tb Tu ) m
u w f ,u ( H R ) u c p (Tb Tu )
假设燃气中没有氧气或者燃料,可得出氧气和燃料 的平均质量分数分别为: 1 w f = ( w f ,u + 0) = 0.06015 / 2 = 0.0301 2 1 wo2 = [0.2331(1 - w f ,u ) + 0] = 0.1095 2 其中0.2331为空气中氧气的质量分数,化学恰当比的丙烷-
(6-5)
方程(6-5)的物理解释是:来自已燃气体的导热 通量对预热区未燃气体混合物进行“预热”,将其 温度从Tu提高到Ti。
反应区:
在反应区,能量的对流通量(源自温差)比扩散通量 小,因而可以忽略对流项,能量方程(6-2)变成:
d( dT / dx ) / dx RR( H R )
传导的热流 ——扩散项
混气本身热焓的变 化——对流项
方程(6-2)中的边界条件如下:
x (未燃气体)
T Tu ,
dT / dx 0 dT / dx 0
燃烧学讲义-第6章气体燃料的燃烧
w'
uce
ut A = 1+ t uce a
ut a+ A a t … … uce ∝ … … = ∴ uce a τrj
At:湍动输运所引起的折算热扩散率
A t a时,有 ut = uce
A t (一般情况下 A t a
当
a)
A ut t ∝ Re = Re 若流体为管内流动, 若流体为管内流动,一般认为 uce a
uce
ut uce
18
一、湍流传播的理论 一、湍流传播的理论
表面燃烧理论(舍谢尔金)
火焰面是层流型的, 火焰面是层流型的 , 湍流脉动在一定空间内使燃烧 面弯曲、皱折,乃至破裂, 小岛”状的封闭小块, 面弯曲、 皱折 ,乃至破裂, 成“小岛”状的封闭小块, 这样增大了燃烧面积,从而增大了燃烧速度。 这样增大了燃烧面积,从而增大了燃烧速度。
2Qwm RT 2 a 2Q a lr uce = wmdT = ∴ T −T0 λ ∫ ρCp (Tlr −T0 )2 E lr B
10
燃尽时间:τrj =
ρCp (Tlr −T0 )
wmQ
uce ∝
a
τrj
火焰锋面厚度δ及可燃混合物升温预热区厚度 火焰锋面厚度 及可燃混合物升温预热区厚度S
RT 2 S定义为 T = Tlr − lr 点做 T = 定义为在 定义为 E
2
火焰传播的形式
缓燃( 正常传播) 缓燃 ( 正常传播 ) :火焰锋面以导热和 对流的方式传热给可燃混合物引起的火 焰传播, 也可能有辐射( 煤粉) 焰传播 , 也可能有辐射 ( 煤粉 ) 。 传播 速度较低( 速度较低(1~3m/s),传播过程稳定。 m/s) 传播过程稳定。 爆燃:绝热压缩引起的火焰传播 , 爆燃 :绝热压缩引起的火焰传播, 是依 靠激波的压缩作用使未燃混合气的温度 升高而引起化学反应, 升高而引起化学反应 , 从而使燃烧波不 断向未燃气推进,传播速度大于 1000m/s。 1000m/s。
气体燃料的预混燃烧
T t
qw
F
V
(T
T
0)
cp
T t
=
-q
dCA dt
, 绝热条件下
T Tc , C0 Cc
积分可得:Tc
T0
q
cp
(Cc
C0 )
即: Tc T0 q ,容器内混合物的温升正比于反应物浓度的衰减。
C0 Cc cp
热自燃孕育期
i
C0 CC wi
氨 (NH3) 高炉煤气
焦炉煤气
发生炉煤气
生活用煤气
天然煤气
571 609 632 472 504 305 290 651 700~800 650~750 700~800 560~750 530
可燃物着火
的浓度范围
低限 % 高限 %
4.0
74.2
12.4
73.8
4.6
14.6
2.9
14
2.08
10.6
散热曲线Qs与放热曲线Qf相切的数学条件为 (1)散热与放热相等,即 Qf =Qs (2)在曲线相切点C处的斜率应相等,即
dQf dQs dT dT
思考题
煤堆自然导致能源的浪费和设备受损伤,因此必须 防止。现有下列四种现象,请用自燃热力着火理论 加以解释? 褐煤和高挥发分烟煤容易自燃。 煤堆在煤场上日久后易自燃。 如在煤堆上装上若干通风竖井深入煤层深处,可防 止自燃。 如用压路机碾压煤堆,使之密实,也可防止自燃。
Ⅴ
Tlj
Ⅰ、Ⅱ不能着火
Ⅳ
Ⅲ
Ⅲ能够着火,在Tlj时,温度 拐点,孕育时间τi
系统初温升高有利于着火,
第六章 可燃气体扩散燃烧
6.4.2 扩散火焰与动力火焰
图6 - 8 动力火焰逐渐转化为扩散火焰的过程
6.4.2 扩散火焰与动力火焰
表6 - 2 空气中各种火焰的临界雷诺数
6.4.2 扩散火焰与动力火焰
图6 - 9 火焰的形状及高度随射流速度增加时的变化
6.5 湍流扩散火焰
(1)初始射流动量通量与作用在火焰上方的力之比,即火焰的傅鲁特(Froude) 数。 (2)喷管内流体密度与环境气体密度之比。 (3)初始射流直径。 (4)成分组成为化学当量比时,燃料的质量分数。
6.5 湍流扩散火焰
火焰的傅鲁特数定义如下:
(6-67)
6.2.1 层流射流模型
6.2.2 层流射流求解
图6 - 3 层流射流 a)原始轴向速度分布 b)自相似轴向速度分布 c)自相似径向速度分布
6.2.2 层流射流求解
6.2.2 层流射流求解
(6-9) (6-10)
(6-11)
(6-12)
(6-13)
6.2.2 层流射流求解
(6-14) (6-15)
(6-16)
(6-17)
(6-18)
6.2.2 层流射流求解
(6-19) (6-20)
(6-21)
(6-22)
(6-23)
6.2.2 层流射流求解
(6-24) (6-25)
(6-26)
(6-27)
(6-28)
6.2.2 层流射流求解
(6-29) (6-30)
(6-31)
(6-32)
(6-33)
6.2.3 射流参数
1.中心轴线速度 2.扩张率和扩张角 3.卷吸量
1.中心轴线速度
(6-34) (6-35)
(6-36a)
6-湍流预混火焰讲解
大尺度弱湍流传播速度确定——小 火焰模型(表面理论)
设薄层焰锋的传播速度仍然是un,那么单位时间内焰锋锋 面烧掉的混合气是Acun,它应与湍流火焰传播速度ut和湍 流焰锋的平均面积Ap的乘积相等,即:
Acun=Aput 或 ut=Acun/Ap 因为Ac>Ap,故ut>un, 若把湍流气团设想成凹凸不平的很多 小的焰锋,则ut>un, 等于这些小的椎体表面积和底面积之 比。 ——小火焰模型,亦称湍流火焰传播的表面理论
燃烧学
6-湍流预混火焰
湍流预混火焰传播 湍流预混火焰传播图域 湍流预混火焰传播速度确定 湍流火焰传播速度影响因素
第一节 湍流预混火焰传播
研究湍流火焰的目的
(1)工程中的燃烧装置多为湍流燃烧 (2)确定湍流特性对火焰传播的影响 雷诺数Re=ρvL/μ 直管段中: Re<2300时,层流; Re>3200时,湍流 此时火焰为湍流火焰
(5)混气浓度 化学恰当比或偏富时速度最大
St
m
Au
湍流预混火焰传播速度要比层流预混火焰传 播速度快
湍流火焰比层流火焰传播快的原因
(1)湍流流动使火焰变形,火焰表面积增加,因而增大了 反应区; (2)湍流加速了热量和活性中间产物的传输,使反应速率 增加,即燃烧速率增加; (3)湍流加快了新鲜混合气和燃气之间的混合,缩短了混 合时间,提高了燃烧速度。 湍流火焰理论基于上述概念发展起来的。 湍流火焰传播理论主要有两种: (1)表面褶皱理论(邓克尔和谢尔金) (2)容积燃烧理论(萨默菲尔德和谢京科夫)
第二节 湍流预混火焰传播图域
湍流预混火焰的性质既依赖于预混层流火焰的特性(如SL和
部分预混可燃气的着火-PPT课件
1点被称为低温稳定点。混合物只能处于缓慢氧化状态。 燃料处于储存期且有空气进入就类似这种情况。
2020/10/10
6
不同壁温情况下Q-T曲线
T=T01,两个交 点A、B。在B, 只要温度略高 于T,系统温度 将不断升高, 达到爆炸。但 是从A过渡到B 很困难。B不属 于自燃范畴。 低温稳定点A 又称下稳定点
热自燃:混合物本身化学反应放 热量大于系统散热量时将造成热 量的积累,使温度不断升高、反 应速度增大,最终达到很高的反 应速度--热爆炸。
链锁自燃:由于分枝链锁反应 造成活性中心迅速繁殖,不需 要高温条件,就可以达到很高 的反应速度--链锁爆炸
实际自燃过程中,二者兼有,一般低温下链锁自燃主导,高温下热自燃主导。
2020/10/10
4
闭口系统自燃条件分析
假设反应热为q,则单位时间单位体积化学反应放出的热量为:
Q f Q 1q0C kfaC abex R p E T A ex R p E T
折算到单位时间单位体积上系统的散热量为:
一组超越函数
Q sQ 2分析两组曲线之间的关系
第四章预混可燃气的着火理论
2020/10/10
在燃烧装置中,着火是有条件的;另外,有些 时候我们要防止发生着火,或者在燃烧后要求尽快 熄灭,比如消防。因此我们要了解着火的理论。
1
基本概念
自燃:使可燃混合物在整个空间内同时达到某一温度,超 过该温度,混合物便自动地、不再需要外界作用而达到燃 烧状态。俗称自燃着火、着火。
2020/10/10
5
低温稳定点
当放热曲线与散热曲线在低温 区仅有一个交点的时候,如图所示1 点,Q f= Q s。
在1点之前,放热量大于散热量, 于是系统温度逐渐升高。到达1点的 时候,放热量等于散热量,达到平衡。
第六章 预混合气的紊流燃烧ppt课件
第六章 预混合气的紊流燃烧
• 流体运动有层流和紊流之分 • 紊流状态将使火焰传播速度大大加快 • 紊流火焰的特点之一是火焰面有许多皱折
• 绝大多数燃烧设备中的火焰都是紊流火焰,紊流火 焰可使燃烧设备的单位空间的放热率大大提高。
3
汽油机
燃气轮机
工业气体燃烧器
燃油加热器
紊流模型
• 由于动量方程中出现了新的紊流应力项,因此第三 章中的封闭方程组就变的不封闭了,为了使方程组 封闭,常常根据经验建立一些补充的,用代数方程 或微分方程表示的关系式,作为约束条件,即所谓 的“紊流模型” • 比较简单,应用最早并且最广泛的模型:普朗特混 合长模型 • 假设紊流应力与平均流动参数的关系和分子粘性应 力与流动参数的关系相同
u u j i u u T i j T x x i j
• 则6-9右侧方括号中的项变为 • 普朗特参照分子运动论,假设
uj u i T x x i j 2 l u T m
u u u ( y ) u ( y l ) l 1 m m y
• 同样,由y+lm层进入y层时,也将引起一个脉动
• 因此假设
u u u ( y ) u ( y l ) l 2 m m y 2 u u 2 u lm ,带入6-12,得 T lm y y
A BA B 两个时均值的乘积的时均值等于两个时均值的乘积
A B A B 0
பைடு நூலகம்
• 由以上各关系式得
BB AB A A A B A B AB AB
B AB A B 0 • 若A、B各自独立,不互相关联,则 A
第6章 预混可燃气的着火与熄火
E dT Cv m qVk0CF aC Ab e RT S (T T0 ) dt
某些气体和液体燃料与空气混合物在大气压力的着火温度名称分子式着火温度530590一氧化碳co654658甲烷ch658750乙烷520630乙烯542547乙炔580740航空汽油390685原油360367重油336煤油一些固体燃料的着火温度种类着火温度木柴250350泥炭225280褐煤200350200400300500无烟煤600700焦炭700碳黑560600高挥发分烟煤低挥发分烷烯炔的着火温度是烷烃最高为饱和烃所以活性低炔烃最低三价键不饱和烃活性最强
燃料与氧化剂的混合比例;
环境的压力与温度;
气流的速度;
燃烧室的尺寸;
保温情况等。
二、着火方式与机理
热着火:可燃混合物由于本身氧化反应放热大于散热,或 由于外部热源加热,温度不断升高导致化学反应不断自动 加速,积累更多能量最终导致着火。——大多数气体燃料 着火特性符合热着火的特征。 分为: 热自燃 强迫点燃 链式着火:由于某种原因,可燃混合物中存在活化中心, 活化中心产生速率大于销毁速率时,在分支链式反应的作 用下,导致化学反应速度不断加速,最终导致着火。 — —某些低压下着火实验(如 H2+O2 ,CO+O2 的着火)和 低温下的“冷焰”现象符合链式着火的特征。
Q
1 > 2 > 3 1
2
3
T0
Tc p1 > p2 > p3
第六节 可燃液体的燃烧ppt课件
应用
▪ 在使用空汽油桶时,我们一定要注意,这 是因为空汽油桶往往由于不可能完全倒净 而残留一些汽油,这时空油桶也会存在处 于爆炸极限范围之内的可燃性混合气体, 所以空汽油桶亦应特别注意防火,动火焊 接也必须进行严格的清洗置换,并分析合 格。
精品课件
4、沸溢或喷溅式燃烧
▪ 原油及某些石油产品等沸程较宽的混合液体,在 连续燃烧的过程中,其中沸点较低的轻质部分首 先被蒸发离开液面进入燃烧区,而沸点较高的重 质部分则携带接受来的热量向液体深层沉降,或 者形成一个热的锋面向液体深层传播,逐渐深入 加热冷的液层,这一现象称为液体的热波特性, 热的锋面称为热波。这种现象往往导致致沸溢喷 溅式燃烧。原油,重油,沥青油等含有水分的黏 度加拿大的重质石油产品发生燃烧时,都有可能 产生沸溢现象和喷溅现象。
精品课件
应用
▪ 火灾现场,在一般情况下发生沸溢要比喷 溅的时间早得多。在发生前,油品会发出 咕咕的声音,火焰发亮,变白,增大,烟 色由浓变淡,油罐发生抖动等。当有这些 现象发生时,我们一定要及时远离现场, 也可在热波未来之前,将底层的水抽走。
精品课件
总结
▪ 这一节我们学习了液体燃烧的特性,掌握 了液体燃烧是以闪点来区分的,这与我们 上一节所学的有所不同,同时我们还知道 了液体的结构不同,闪点也就不同。还知 道了沸溢和喷溅现象,这对我们今后的工 作都有一定的好处。
精品课件
▪ (1)不同种类的液体,其化学组成不同,闪点 也不同;
▪ (2)同类(同系物)液体的闪点变化,一般规 律如下:
▪ A、同类液体的闪点随分子量的增加而变高; ▪ B、同类液体的闪点随沸点的升高而升高。如苯
的沸点为80.36 度,闪点为-12度,甲苯的沸点为 110度,其闪点为5度。 ▪ C、同系物中,正构体比异构体的闪点高。这主 要是由于分子之间的范德华力的不同造成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.1 湍流燃烧及其特点
实际各种燃烧装置中的燃烧过程往往都是湍流燃烧过程。
所谓湍流的确切定义尚难明确,但与层流的平滑分布和有 秩序流动相比较,可认为它具有:
(1) 不规则性 只能用统计方法 (2) 扩散性 传递速度加快 (3) 具有明显的旋涡脉动 (尺寸大小:含能大、小, 脉动具有耗散性) (4) 是一种流动(是流体受约束转弱的自收运动状态 )
l
大尺度湍流火焰
l
强湍流火焰 湍流的脉动速度远大于层流火焰传播速度,此 时有:
u' SL
弱湍流火焰 湍流的脉动速度小于层流火焰传播速度,此时有
u' SL
湍流火焰稳定燃烧的条件: 一维湍流能量方程:
CP ST
dT dx
d dx
[(
T
)
dT dx
]
sQs
为便于分析,取无量纲后:
§6.2 湍流燃烧火焰传播速度
湍流燃烧火焰传播速度:
湍流火焰前沿法向相对于新解可燃气运动的速 度
ST=u COSθ
测定ST的常用方法有二种。 (1) 定常开口火焰,本生灯法
(2) 定常封闭火焰
对于定常开口火焰,ST的大小测定
V
(1) 测得U及θ
F
(2) 流入可燃预混气流量除以湍流火焰表面积
如何确定F是很困难的。
层流火焰与湍流火焰的特点比较
当Re < 2300 层燃火焰 a) 前沿厚度0.01~0.1mm高度; b)火焰前沿光滑基本成正圆锥形; c) 20~200cm/s
当Re>2300时,湍流火焰(渐变过程) a) 火焰高度很小。说明 ST>>Sl b) 火焰前沿出现脉动和弯曲 c) 收光区模糊 d) 有明显的噪音 e) 有较宽的反应区域
燃烧在湍流物中进行,即为湍流燃烧。
湍流燃烧形式:1)预混气(燃料气及空气预混) 2)扩散(燃料气及空气扩散)
以本生灯火焰为例:
当Re<2300时,本生灯喷嘴火焰为层流火焰,它的火焰十 分薄,一般只有0.01~1.0毫米。在层流火焰中火焰前沿是很 光滑的,并且基本上成正圆锥形。
在湍流工况时,火焰根部前沿厚度增加不多,但在火焰 锥顶部,火焰明显地变得很厚。在湍流工况下,火焰前沿很 明显出现了脉动和弯曲,试验发现由于湍流脉动的结果,使 得湍流火炬的高度比层流短得多。
对于定常封闭火焰,困难如何确定火焰面积。
本生灯的火焰前沿
d ds cos
uH w cos
uH
V F
Sl
w0
F FL
ST
w0
F FT
低雷诺数湍流
低雷诺数湍流中,火焰出现皱折和抖动,在高 速摄影中仍可发现火焰面基本连续
湍流火焰传播速度ST ST > SL ST与流动状态有关
Tm T
Tm T
Tm—火焰最高温度
ST
ST U
x
L
L—特征尺度,可是直径、长度等
u'2 Lh U L
表征脉动强度(与主流速度之比),Lh 湍流微团尺度
a
u L
则有:
湍流/层流时导温能力 之比
ST
ST
(Tm T
,
E RT
,
u'2 Lh , a , Sl2L ) u L u L ua
在每个可燃物微团外表面上,燃烧速度和层流火 焰流法燃线烧传速播度速的度增大Sl相倍同数,应因等此于湍因流气燃流烧脉速动度使比火层焰 前沿表面积增大的倍数
1沿) 厚气度流小脉,考动虑速到度l不T是大表,征湍微流团标的尺大lT小比,层气流流火脉焰动前 对火焰前沿的歪曲不会很大,只能把光滑的层流 火焰前沿变成波纹状(图a)。
对于层流火焰,在一定条件下,火焰传播速度与试验装 置无关。
在研究湍流燃烧时,针对湍流火焰,同样期望确定其传 播速度时,不要与装置本身有关,以带有共性,仅与料量比: λ、μ、D等量数有关。
事实证明这是不可能的。
在某些化学当量比下,湍流中有效热扩散系数要比层流 中分子的热扩散系数大100倍,因此,湍流火焰的理论概念 不象层流火焰那样容易定义。
一、小尺度湍流火焰
邓克尔认为:
1. 小尺度火焰(l )湍流仅增加火焰前面的物质输运
系数(a),对火焰前的形状不产生影响
2. 湍流的作用是增加了前沿厚度
分析:
SL a
a C
假定 动量传递、传热、传质三者相似,且有:
a D SL
根据相似性,有:
ST SL
2) 气流脉动不很大,湍流标尺大于层流火焰前沿 厚度的情况。此时火焰前沿弯曲得很厉害,但火 焰前沿还未被撕裂(图b)。
3) 气流脉动及湍流标尺均很大的情况,此时火焰 前沿被撕裂得四分五裂,而不再以连续状态出现 (图c)。在三种典型工况下,火焰前沿表面积的计 算方法也大不相同。
邓克尔和萧尔金皱折火焰面模型
另一类是湍流燃烧模型方法,是以计算湍流燃烧速率为 目标的湍流扩散燃烧和预混燃烧的物理模型,包括几率 分布函数输运方程模型和ESCIMO湍流燃烧理论。
§6.3 湍流燃烧理论分析 (经典理论分析方法)
湍流燃烧火焰分类:
小尺度湍流火焰 不规则运动的气体微团的平均尺寸相对小于
混合气体的层流火焰前沿厚度,此时有
高雷诺数湍流燃烧
不再存在单一连续的火焰面,整个燃烧区由许 多程度不同的已燃和未燃气团组成-----“容积燃 烧”
影响燃烧速率的因素
流动状态 分子输运过程和化学动力学因素
研究湍流火焰过程中发展起来的方法
一类为经典的湍流火焰传播理论,包括皱折层流火焰的 表面燃烧理论与微扩散的容积燃烧理论。
如初温及压力变化不大,则
ST ST (
u'2
Lh
,
S
2 l
)
u L
u
2
表征湍流火焰传播能力与脉动速度与标尺有关. 如P, T固定
ST A( u '2 ) Sl 且 1
湍流气流中火焰传播的表面燃烧模型
此模型是在层流火焰传播理论的基础上发展起来 的,即应用了火焰前沿的概念,并认为在湍流工 况中燃烧速度之所以会增加是由于在气流脉动作 用下使得火焰前沿表面产生弯曲,因而燃烧表面 FT增加;
(其中:ε是湍流扩散系数)
如是定常开口火焰,其湍流尺度 l 与管直径成正比 脉动速度 u' 与 u 成正比,因此有:
lu' du Re
则
ST Re SL
因此:
ST f (SL , Re)