正态分布的概率密度、分布函数、数学期望与方差

合集下载

正态分布公式中各符号的意思

正态分布公式中各符号的意思

在正态分布N(μ,σ^2)中,μ表示均值,就是钟形曲线的对称轴,σ^2为方差,σ为标准差μ决定正态曲线的中心位置,标准差σ决定正态曲线的陡峭或扁平程度。

σ越小,曲线越陡峭;σ越大,曲线越扁平。

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质。

是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ = 0,σ = 1时的正态分布是标准正态分布。

定理由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。

只要会用它求正态总体在某个特定区间的概率即可。

为了便于描述和应用,常将正态变量作数据转换。

将一般正态分布转化成标准正态分布。

若服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。

故该变换被称为标准化变换。

(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。

)一维正态分布若随机变量服从一个位置参数为、尺度参数为的概率分布,且其概率密度函数为则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,记作,读作服从,或服从正态分布。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。

本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。

一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。

通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。

2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。

这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。

二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。

通过对概率密度函数乘以x后再积分,即可得到期望值。

2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。

这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。

三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。

1.正态分布的概率密度与分布函数

1.正态分布的概率密度与分布函数
P( X 100 1.2) 1 P( X 100 1.2) 1 P( X 100 2) 0.6
1 P(2 X 100 2) 1[ (2) (2)]
0.6 1[0.9772 (1 0.9772)] 0.0456 4.56%.
概率论与数理统计
§4.1 正态分布的概率密度与分布函数
1
(
t) et2
2dt
2 π
e t2 2dt
t
e t 2
2dt.
2 π
2 π
因为 e t2 2dt 2 π , t et2 2dt 0 ,所以
E(X ) .
概率论与数理统计
§4.2 正态分布的数字特征
D(X ) 1
(x
)2
e(
x )2 2 2
dx
2 π
2 t 2 et2 2dt . 2 π
当 y 0 时,
FY ( y) 0 ;
概率论与数理统计
§4.1 正态分布的概率密度与分布函数
当 y 0 时,
y
FY ( y) P( y X y)
y
1
y x2
e 2 dx
2π y
所以,Y 的分布函数为
y o
yx
FY ( y)
2
y x2
e 2 dx ,
2π 0
0,
y 0; y 0.
e
(
x )2 2 2
,
x
.
2.标准正态分布N(0 ,1)的概率密度与分布函数:
(x) Φ(x)
1
x2
e 2,

x
.
1
x t2
e 2 dt.
2 π
概率论与数理统计

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

标准正态分布概率密度函数积分

标准正态分布概率密度函数积分

标准正态分布概率密度函数积分
1.标准正态分布密度函数公式:f(x)=exp(-(x-μ)^2/2α^2)/α(2Π)^(-0.5)正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

2.若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。

3.其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

4.当μ=0,σ=1时的正态分布是标准正态分布。

5.图形特征:集中性:正态曲线的高峰位于正中央,即均数所在的位置。

6.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不和横轴相交。

7.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

8.曲线和横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。

9.即频率的总和为100%。

数学期望和方差

数学期望和方差
第四章
数学期望和方差
第四章 数学期望和方差
分布函数能够完整地描述随机变量的统计特 性,但在实际问题中,随机变量的分布函数较 难确定,而它的一些数字特征较易确定.并且 在很多实际问题中,只需知道随机变量的某些 数字特征也就够了.
另一方面,对于一些常用的重要分布,如二 项分布、泊松分布、指数分布、正态分布等, 只要知道了它们的某些数字特征,就能完全确 定其具体的分布.
8 8
9 10 11 12 7 15 10 10 50
则这 50 个零件的平均直径为
8 8 9 7 1015 1110 1210 50 10.14cm
第四章
数学期望和方差
换个角度看,从这50个零件中任取一个,它 的尺寸为随机变量X , 则X 的概率分布为 X P 8

x
| x| 但 | x | f ( x ) dx dx 发散. 2 (1 x )
它的数学期望不存在.
注:虽然f(x)是偶函数,但不能用定理1.1.
第四章
数学期望和方差
§4.2 数学期望的性质
设已知随机变量X的分布,我们需要计算的不 是X的数学期望, 而是X的某个函数的数学期望, 比如说g(X)的数学期望. 那么应该如何计算呢? 更一般的,已知随机向量(X1 , X2 …,Xn ) 的联合分布, Y= g(X1, X2 …,Xn ) 是 (X1 , X2 …,Xn ) 的函数, 需要计算Y 的数学期 望,应该如何计算呢? 我们下面就来处理这个 问题.
8 50
12
9
7 50
10
15 50
12
11
10 50
12
10 50
则这 50 个零件的平均直径为

正态分布的期望和方差公式

正态分布的期望和方差公式

正态分布的期望和方差公式
期望:Eξ=x1p1+x2p2+……+xnpn
方差公式:s=1/n{(x1-x)+(x2-x)+……+(xn-x)}。

正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力
扩展资料:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。

因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。

样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。

标准差为方差的算术平方根,用S表示。

复习对于连续型随机变量,我们需要掌握那些内容

复习对于连续型随机变量,我们需要掌握那些内容

复习:对于连续型随机变量,我们需要掌握那些内容?1、对于连续型的随机变量,我们考察事件X = x 的概率没有什么意义,而必须了解事件a ≤X ≤ b 的概率,这个概率是一个积分形式:()()()()baP a x b f x dx F b F a ≤≤==-⎰2、清楚什么是概率密度函数:f (x )我们用密度函数f (x )在[a , b ]区间上的面积来表示随机变量X 落在该区间的概率 解释:为什么f (x )被称为概率密度函数?根据导数的定义可知,0()()()limx F x x F x f x x∆→+∆-=∆(是不是很类似我们以前学过的频率密度公式?)3、清楚什么是累积分布函数:F (x ))()(x X P x F ≤=⎰∞-=xdt t f )(4、分布函数)(x F 与概率密度函数)(x f 的关系⎰-==≤≤baa Fb F dx x f b x a P )()()()(5、理解均匀分布,指数分布和伽玛分布及其它们的应用,并会用Excel 求指数分布和伽玛的概率值§3 随机变量的数字特征在前面,我们看到,对于离散型的随机变量,我们可以作出它的概率分布图,对于连续型随机变量,我们可以作出它的概率密度图,这些都非常类似于我们在描述统计中学到的频率或频数分布图。

这意味着对于随机变量,我们也可以来研究类似于平均数、方差这样的数字特征。

与平均数相对应的概念是数学期望,它反映随机变量取值的平均,另一个仍然是方差,它反映随机变量分布偏离期望的分散程度。

一、随机变量的数学期望1、定义:设X 是离散型随机变量,X 取值x x x i 12,......,其相应的概率为p p p i 12,,...,...,则称∑=iii px X E )(为X 的数学期望。

若X 是连续型随机变量,有概率密度函数f (x ),则称⎰+∞∞-=dx x xf X E )()(为X 的数学期望。

令i ξ为无限分割后区间[]i i x x ,1-的组中值, (回忆一下运用分组资料计算平均数的情形:iki iw X X ∑==1)[]()()i i i i i iiE X p x f ξξξ≈=∆∑∑,当0→∆i x 时,i i x →ξ对上式求极限得到:∑⎰+∞∞-→∆=∆=ii i ix dx x xf x f X E i )()(lim)(0ξξ从随机变量数学期望的定义看出,随机变量的数学期望就是随机变量所有可能取值的加权平均数,类似于我们前面学过的一组数字的算术平均数。

正态分布的概率密度分布函数数学期望与方差

正态分布的概率密度分布函数数学期望与方差

13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y .当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.N (0,1)则Y=X^2~卡方分布X^2(1) 所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^5)=0.pdf 概率密度函数关于y 对称.用定义求解而不是性质,X4次方当成一个g(x)函数,根据定义,E (X4次方)=积分符号g(x)f(x)dx,其中f(x)是标准正态分布的概率密度.用分部积分法求解,不过运算很麻烦.还有另一种解这种复杂积分的方法,用一个叫F (符号我打不出来)函数的性质解,前提你熟悉这个F 函数,在浙大教材P79有提过这个函数因为 X 的均值为N ,方差为D ,所以有 E(X^2)= D(X) +[E(X)]^2= D +N^2令 Y = (X-N)/(D^0.5),则Y 服从标准正态,即均值为0,方差为1。

数学正态分布

数学正态分布

正态分布是概率论中最重要的一种连续型随机变量分布,也被称为高斯分布。

它的概率密度函数呈钟形曲线,因此也被称为钟形曲线分布。

正态分布的概率密度函数可以表示为:
f(x) = (1/σ√2π) * e^(-(x-μ)^2 / 2σ^2)
其中,μ表示均值,σ表示标准差,e表示自然对数的底数。

这个公式表明,正态分布的概率密度函数关于均值对称,且随着离均值的距离增加而逐渐减小。

正态分布在统计学和科学领域中有着广泛的应用。

例如,在描述自然现象、人类行为和社会现象等方面,很多数据都呈现出正态分布的特征。

此外,许多统计方法都基于正态分布假设,例如参数估计、假设检验等。

分布函数与概率密度函数分析:概率密度函数的数学性质

分布函数与概率密度函数分析:概率密度函数的数学性质

分布函数与概率密度函数分析:概率密度函数的数学性质概率密度函数(Probability Density Function,简称PDF)是描述随机变量连续型分布的函数。

在概率论和统计学中,概率密度函数常常与分布函数(Cumulative Distribution Function,简称CDF)一起使用,以便分析和描述随机变量的数学性质。

一、概率密度函数的定义概率密度函数是描述连续型随机变量X在某一取值x附近的概率分布情况的函数。

设X为一个连续型随机变量,其概率密度函数为f(x),则对于任意的x,有以下性质:1. 非负性:概率密度函数f(x)始终大于等于零,即f(x)≥0。

2. 归一性:概率密度函数f(x)的积分(面积)等于1,即∫f(x)dx=1。

二、概率密度函数与分布函数的关系概率密度函数和分布函数是两个相互关联的概念。

分布函数F(x)表示随机变量X取值小于或等于x的概率,可用概率密度函数f(x)表示为:F(x) = ∫f(t)dt,其中t为X的取值范围。

根据概率密度函数的定义可知,概率密度函数是分布函数的导数。

即概率密度函数f(x)等于分布函数F(x)的导数:f(x) = dF(x)/dx三、概率密度函数的数学性质1. 区间概率:概率密度函数f(x)在区间[a, b]上的积分表示随机变量X落在该区间内的概率:P(a≤X≤b) = ∫[a,b]f(x)dx2. 期望值:随机变量X的期望值E(X)可以通过概率密度函数f(x)计算得出:E(X) = ∫xf(x)dx3. 方差:随机变量X的方差Var(X)可以通过概率密度函数f(x)计算得出:Var(X) = ∫(x-E(X))^2f(x)dx四、案例分析以正态分布为例,其概率密度函数为:f(x) = (1/(σ√(2π))) * e^(-(x-μ)^2/(2σ^2))其中,μ为期望值,σ为标准差。

根据正态分布的概率密度函数可推算出一些重要的数学性质:1. 正态分布的概率密度函数关于平均数μ对称,即f(x) = f(μ+x)。

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)+生存分析+贝叶斯概率公式+全概率公式

数学期望:随机变量最基本的数学特征之一。

它反映随机变量平均取值的大小。

又称期望或均值。

它是简单算术平均的一种推广。

例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。

也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。

可以简单的理解为求一个概率性事件的平均状况。

各种数学分布的方差是:1、一个完全符合分布的样本2、这个样本的方差概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。

比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。

下图为概率密度函数图(F(x)应为f(x),表示概率密度):离散型分布:二项分布、泊松分布连续型分布:指数分布、正态分布、X2分布、t分布、F分布抽样分布抽样分布只与自由度,即样本含量(抽样样本含量)有关二项分布(binomial distribution):例子抛硬币1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验)2、3、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即二项分布泊松分布(possion distribution):1、一个单位内(时间、面积、空间)某稀有事件2、此事件发生K次的概率3、P(X=0), P(X=1), P(X=3), ……….所有可能的概率共同组成了一个分布,即泊松分布二项分布与泊松分布的关系:二项分布在事件发生概率很小,重复次数n很大的情况下,其分布近似泊松分布均匀分布(uniform distribution):分为连续型均匀分布和离散型均匀分布离散型均匀分布:1、n种可能的结果2、每个可能的概率相等(1/n)连续型均匀分布:1、可能的结果是连续的2、每个可能的概率相等()连续型均匀分布概率密度函数如下图:指数分布(exponential distribution):用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

概率分布(数学期望,平均值,方差,标准差)2018

概率分布(数学期望,平均值,方差,标准差)2018

概率分布(数学期望,平均值,方差,标准差)2018展开全文我们已经了解概率的基础,概率中通常将试验的结果称为随机变量。

随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。

掷硬币就是一个典型的离散型随机变量,离散随机变量可以取无限个但可数的数值。

而连续变量相反,它在某一个区间内能取任意的数值。

时间就是一个典型的连续变量,1.25分钟、1.251分钟,1.2512分钟,它能无限分割。

既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。

相对应的,有离散型概率分布和连续型概率分布。

对于离散型随机变量x,定义一个概率函数叫f(x),它给出了随机变量取每一个值的概率。

拿出一个骰子,掷到6的概率是f(6) = 1/6,掷到1和6的概率则是f(1)+f(6) = 1/3。

数学期望(均值)理解一:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。

是最基本的数学特征之一。

它反映随机变量平均取值的大小。

其公式如下:xk :表示观察到随机变量X的样本的值。

pk : 表示xk发生的概率。

数学期望反映的是平均水平。

通过它,我们能够了解一个群体的平均水平(比如说,一个班平均成绩80)。

但另外一个方面,它所包含的信息也是十分有限的,首先是个体信息被压缩了,其次如果单纯看期望的话,是看不出样本的数量。

(平均成绩为80,在1人班和100人班的含义是不一样的)通过这个问题想说明,在刻画群体特征的时候,多个数字特征配合才能达到效果。

(上面的例子:可以是期望 + 数量)理解二:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和严格的定义如下:2.数学期望的含义这个很重要,我们一定要明白概念的含义,联系到实际的应用场景中表达的真正意义,数学期望的存在是为了表达什么?答:反映随机变量平均取值的大小3.数学期望(均值)和算术平均值(平均数)的关系(期望和平均数的关系)谈谈我对于这两个概念的理解(1)平均数是根据实际结果统计得到的随机变量样本计算出来的算术平均值,和实验本身有关,而数学期望是完全由随机变量的概率分布所确定的,和实验本身无关。

人教版高中数学选修2-3第6讲:数学期望与方差及正态分布(教师版)

人教版高中数学选修2-3第6讲:数学期望与方差及正态分布(教师版)

人教版高中数学 数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称1122n n x p x p x p +++为离散型随机变量X 的数学期望,记为()E X ,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=一般地,若离散型随机变量X 的概率分布如下表所示,则称2221122()()()n n x p x p x p μμμ-+-++-为离散型随机变量X 的方差,记为()V X ,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=1122n n x p x p x p +++;V (X )=221122()()x p x p μμ-+-+2()n n x p μ+-;σ=.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=0(k 为常数); (2)2();V k k V ξξ= (3)();V k V ξξ+=(4)2()(,).V a b a V a b ξξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以x 轴为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡. (4)在正态曲线下方和x 轴上方范围内的区域面积为1.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0 B.-1C.13-D.12-[答案] C[解析] 由111()(1)01236E X =-⨯+⨯+⨯=1.3-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示)[答案]47[解析] ξ可取0,1,2,因此252710(0),(1)21C P P C ξξ=====11522710,21C C C = 22271101014(2),012.212121217C P E C ξξ====⨯+⨯+⨯=类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:[解析] 因为E (X )=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以22()(0 2.5)0.1(1 2.5)0.15(2V X =-⨯+-⨯+-222.5)0.25(3 2.5)0.25⨯+-⨯+2(4 2.5)0.15(5-⨯+-22.5)0.1 2.05.⨯=练习1:甲、乙两名射手在同一条件下进行射击,分布表如下:射手乙:谁的射击水平比较稳定.[解析] 1()100.290.680.29,E X =⨯+⨯+⨯=2221()(109)0.2(99)0.6(89)0.2V X =-⨯+-⨯+-⨯0.20.20.4,=+= 2()100.490.280.49,E X =⨯+⨯+⨯=2222()(109)0.4(99)0.2(89)0.40.8V X =-⨯+-⨯+-⨯=,因为12()(),V X V X <所以射手甲的射击水平比较稳定.类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3 B.6,0.4 C.2,0.2 D.5,0.6[答案] B[解析] 由np =2.4,np (1-p )=1.44,解得n =6,p =0.4.练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [解析]13,,7E nP P ξ===13721,(1)217n D nP P ξ∴=⨯==-=⨯118(1).77-=类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3 [答案] A[解析] 答对题数为,ξ成绩为4.ξ先分析ξξ⋅~B (25,0.8),所以E ξ=25×0.8=20,所以(4)480,E E V ξξξ===25×0.8×0.2=4,所以(4)V ξ=2464,V ξ=8.=练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1[答案] A [解析] 11111012363E ξ=-⨯+⨯+⨯=-,17(23)232333E E E ηξξ=+=+=-⨯+= 类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表; (2)设η为这个人的途中遇到红灯的次数,求η的期望和方差; (3)求这个人首次停止前已经过两个交通岗的概率. [解析] (1)ξ的取值为0,1,2,3,4,5,6,212121(0),(1),(2)(),33333P P P ξξξ====⨯==⨯342121(3)(),(4)(),(5)3333P P P ξξξ==⨯==⨯==56212(),(6)().333P ξ⨯==所以ξ的分布表如下:(2)由题意知:1~(6,),3Bη则162,(13E V npηη=⨯==114)6(1).333p-=⨯⨯-=(3)由(1)知4 (2).27 Pξ==练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.[解析]若该运动员投篮1次,则P(ξ=1)=0.6;若投篮2次,则说明他第1次没有投进,而第2次投进,P(ξ=2)=0.4×0.6=0.24;若投篮3次,则说明他前2次没有投进,而第3次投进,P(ξ=3)=0.42×0.6;若投篮4次,则说明他前3次没有投进,而第4次投进,P(ξ=4)=0.43×0.6;若投篮5次,则说明他前4次没有投进,而第5次投进与否均可,所以概率为P(ξ=5)=0.44×1.所以ξ的概率分布为:所以,投篮次数的数学期望为Eξ=1×0.6+2×0.24+3×0.096+4×0.0384+5×0.0256=1.6496.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的是()A.1个B.2个C.3个D.4个[答案] C[解析]①、②、④都正确,③不正确,应该是当μ一定时,σ越小,总体分布越集中,σ越大,总体分布越分散.练习6:若2(1)2(),xf x x R--=∈,则下列判断正确的是()A.f(x)有最大值,也有最小值B.f(x)有最大值,无最小值C.f(x)无最大值,有最小值D.f(x)无最大值,也无最小值[答案]B[解析]这个函数就是正态分布N(1,1)的概率密度函数.类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.[答案]1[解析]区间(-3,-1)与(3,5)的长度相等,这说明正态曲线在两个区间上对称,易知两区间关于x=1对称,所以正态分布的数学期望是1.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.975[答案] C[解析] 由( 1.96)1(1.96)0.025Φ-=-Φ=,得(1.96)0.975Φ=,(|| 1.96)(1.96)( 1.96)0.9750.025P ξ<=Φ-Φ-=-=0.951.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6 B .1.2C .1.3D .0.8[答案] B2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0 B.12C.13D.23[答案] C3.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定[答案] B4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5C .1D .不确定[答案] B5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.5 [答案] B6.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______. [答案]237.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望. [答案] (1)因为抽取比例为311,102,510555=⨯=⨯+由115=得,应在甲组抽取2人,在乙组抽取1人.(2)从甲组抽取的工人中恰有1名女工人的概率11462108.15C C P C ⋅== (3)ξ的可能取值为0,1,2,31234211056(0),75C C P C C ξ==⋅=1112146342212110510528(1),75C C C C C P C C C C ξ==⋅+⋅=21622110510(3),75C C P C C ξ==⋅=31(2)1(0)(1)(3).75P P P P ξξξξ==-=-=-==分布列如下表:数学期望282810123 1.6.757575E ξ=⨯+⨯+⨯= 8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望. [答案] 依题意知,比赛场数ξ的取值为4,5,6,7.411(4)2,28P ξ∴==⨯=3341112(5)()2,2228P C ξ==⋅⨯⨯⨯= 33251115(6)()()2,22216P C ξ==⋅⋅⨯⨯=33361115(7)()()2.23216P C ξ==⋅⋅⨯⨯=从而随机变量ξ的分布列为:∴随机变量专的数学期望为1255934567.88161616E ξ=⨯+⨯+⨯+⨯=__________________________________________________________________________________________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定[答案] B2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.95[答案] B3.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+ D.34,32E E D D ηξηξ=+=+[答案] A4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125B.116 C.87D.23[答案] B5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [答案] 1821;76.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.[答案] 0.87.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.[答案] 258.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. [答案] (1)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=.(2)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=(1)()()()P X P ABC P ABC P ABC ==++2221321232035535535575=⨯⨯+⨯⨯+⨯⨯=.(2)()()()P X P ABC P ABC P ABC ==++2322231333335535535575=⨯⨯+⨯⨯+⨯⨯=.23318(3)()35575P X P ABC ===⨯⨯=.X 为分布列为:4()0123757575757515E X =⨯+⨯+⨯+⨯==.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( ) A .0.0729 B .0.00856 C .0.91854 D .0.99144[答案] D2.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B3.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.[答案] 0.34.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.[答案]545.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.[答案]12n + 6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.[答案] (1)1315(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=13×25=215,P (X =100)=13×35=315,P (X =120)=23×25=415,P (X =220)=23×35=615.故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615300480132021001401515++===. 7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.11[答案] (1)107; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B , 于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()P X C ===,3303141(3)()()125P X C ===,故X 的分布列为 X 的数学期望为()355E X =⨯=. 8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.[答案] (1)设“选出的3名同学来自互不相同的学院”为事件A ,则()120337373104960C C C C P A C ??==.所以,选出的3名同学来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.()346310k k C C P x k C -×==()0,1,2,3k =. 所以,随机变量X 的分布列是随机变量X 的数学期望()12362103050E X ??=+??.。

概率论正太分布及其定理

概率论正太分布及其定理

概率论与数理统计
正态分布与极限定理
例3 若 X ~ N , 2 ,求X 落在区间 k , k 内的概率,
其中 k 1, 2, 3, 。
解 P k X k P X k
k
k
k
k
2 k 1
查表得 P X 21 1 0.6826
概率论与数理统计
§4.2 二维正态分布
正态分布与极限定理
①若X与Y均服从正态分布且相互独立,则(X,Y)服从二维正态分布.
②若(X,Y)服从二维正态分布,则X与Y的边缘分布都是正态分布,
X与Y相互独立 X与Y不相关.
16
2020年10月21日3时52分
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
正态分布与极限定理
定理2 (1) 若随机变量 X 与 Y 独立,且都服从正态分布,则
证明
服从二维正态分布.
(2) 若 (X,Y) 服从二维正态分布,如果 X 与 Y 不相关
则 X 与 Y 独立.
(2)
设随机变量(X,Y)~
N
( 1 , 12
;
2
,
2 2
;
)
f (x, y)
1
e
1
2 (1
2
)
(
1
PX
80
1
80 d 0.5
0.99
80 d 0.5
0.01
(2.33) 0.9901 ቤተ መጻሕፍቲ ባይዱ2.33) 0.01
80 d 2.33 0.5
d 81.165 故设定温度d至少为81.165度.
10
2020年10月21日3时52分
山东建筑大学理学院信息与计算科学教研室

标准正态分布数学期望

标准正态分布数学期望

标准正态分布数学期望标准正态分布是统计学中非常重要的概念,它在各个领域都有着广泛的应用。

在理解标准正态分布的数学期望之前,我们需要先了解一些基本概念和定义。

首先,正态分布又称高斯分布,是一种连续概率分布。

它的概率密度函数具有一个峰值,呈现出钟型曲线,左右对称。

正态分布的均值μ决定了峰值的位置,标准差σ决定了钟型曲线的宽窄。

当均值为0,标准差为1时,我们称之为标准正态分布。

标准正态分布的数学期望,简单来说就是随机变量在标准正态分布下的平均取值。

数学期望可以看作是随机变量取值的平均水平,它是对随机变量整体特征的一个衡量。

在标准正态分布中,数学期望为0。

这是因为标准正态分布是左右对称的,其平均值自然就是0。

换句话说,标准正态分布的随机变量在0附近取值的概率最大。

数学期望的计算公式为E(X) = ∫xf(x)dx,其中f(x)为概率密度函数。

对于标准正态分布来说,概率密度函数的具体形式为f(x) = (1/√(2π)) e^(-x^2/2)。

将这个函数带入数学期望的计算公式中,可以得到标准正态分布的数学期望为0。

标准正态分布的数学期望对于统计学和概率论有着重要的意义。

它不仅可以帮助我们理解随机变量的平均取值,还可以用来推导其他重要的统计量,比如方差和协方差等。

除了理论意义之外,标准正态分布的数学期望在实际应用中也有着广泛的价值。

比如在财务领域,我们可以利用数学期望来评估投资组合的收益水平;在工程领域,我们可以利用数学期望来分析产品的质量控制;在医学领域,我们可以利用数学期望来研究疾病的传播规律。

总之,标准正态分布的数学期望是一个重要的概念,它不仅有着理论上的意义,还有着广泛的实际应用。

通过对数学期望的深入理解,我们可以更好地应用统计学和概率论的知识,为各个领域的问题提供有效的解决方案。

正态分布划为标准正态的公式

正态分布划为标准正态的公式

正态分布划为标准正态的公式
正态分布是一种概率分布,是具有两个参数μ和σ^2的连续型随机变量的分布,若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。

其概
率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ = 0,σ = 1时的正态分布是标准正态分布。

服从正态分布的变量的频数分布由μ、σ完全决定。

正态曲线呈钟型,两头低,中
间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

正态分布具有以下特征:
集中性:正态曲线的.高峰坐落于正中央,即为均数所在的边线;
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交;
光滑变动性:正态曲线由均数所在处已经开始,分别向左右两侧逐渐光滑上升。

标准正态分布的方差

标准正态分布的方差

标准正态分布的方差标准正态分布是统计学中非常重要的一种概率分布,它具有许多重要的性质和特点。

在实际应用中,我们经常需要对标准正态分布的方差进行分析和计算。

本文将对标准正态分布的方差进行深入的探讨,希望能够为读者提供一些帮助。

首先,我们来回顾一下标准正态分布的定义。

标准正态分布又称为Z分布,它的概率密度函数是一个关于均值为0,标准差为1的正态分布。

其概率密度函数的表达式为:f(x) = (1/√(2π)) e^(-x^2/2)。

其中,e是自然对数的底,π是圆周率。

标准正态分布的概率密度函数是一个关于x的偶函数,其图像关于y轴对称。

标准正态分布的均值为0,标准差为1,其分布曲线呈钟型,且在均值处达到最大值。

接下来,我们来探讨标准正态分布的方差。

方差是衡量随机变量离散程度的一个重要指标,它描述了随机变量与其均值之间的离散程度。

对于标准正态分布来说,其方差为1。

这意味着标准正态分布的数据点相对于其均值的离散程度是已知的,这为我们在实际应用中的数据分析提供了便利。

在实际应用中,我们经常需要计算标准正态分布的方差。

为了计算标准正态分布的方差,我们可以利用方差的定义公式:Var(X) = E((X-μ)^2)。

其中,Var(X)表示随机变量X的方差,E表示数学期望,μ表示随机变量X的均值。

对于标准正态分布来说,其均值为0,因此方差的计算可以简化为:Var(X) = E(X^2)。

接下来,我们来计算标准正态分布的方差。

由于标准正态分布的概率密度函数是一个偶函数,因此其在整个实数轴上的积分值是1。

我们可以利用这一性质来计算标准正态分布的方差。

利用方差的定义公式,我们可以得到:Var(X) = ∫(x^2 f(x))dx。

其中,f(x)是标准正态分布的概率密度函数。

将标准正态分布的概率密度函数代入上式,进行积分计算,即可得到标准正态分布的方差。

通过计算,我们可以得到标准正态分布的方差为1。

这一结果与我们之前的预期是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13 正态分布的概率密度、分布函数、数学期望与方差
一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .
解:(1) )4.22
1
3.1()8.416.2()8.56.1(<-≤
-=<-≤-=<≤-X P X P X P 8950
.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12
1
78.2(1)56.4(1)56.4(<-<
--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--
二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )
之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .
而)26
.0100
2()6.02.16.01006.02.1(
)2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .
三、测量到某一目标的距离时发生的误差X (m)具有概率密度
3200
)20(22401)(--
=
x e
x f π
求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为
}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次
因为)40,20(~2
N ξ,所以由事件的相互独立性,有
31,01,033)]25
.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(3
3
≈=--= 于是有
86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.
四、设随机变量),(~2
σμN X ,求随机变量函数X e Y =的概率密度(所得的概率分布称为对
数正态分布).
解:由题设,知X 的概率密度为
)(21)(22)(+∞<<-∞=
--
x e
x f x X σμσ
π
从而可得随机变量Y 的分布函数为
)()()(y e P y Y P y F X Y ≤=≤=.
当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y .
当0>y 时,有
dx e
y X P y F y
x Y ⎰∞
---
=
≤=ln 2)(2
221
)ln ()(σμσ
π.
此时亦有2
2)(ln 21)(σμσπ--
=
'y Y e
y
y F .
从而可得随机变量Y 的概率密度为
⎪⎩
⎪⎨⎧>≤=--.
0,21;0,
0)(22
2)(ln y e y
y y f y Y σμσπ
五、设随机变量X 与Y 独立,),(~211σμN X ,),(~2
22σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.
解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有
(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=;
2
2
2212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;
)()()()()()()()(2
2222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2
2
2
2
Y E X E Y E Y D X E X D -++= )()()()()()(2
2
X E Y D Y E X D Y D X D ++=
212
22
22
12
22
1μσμσσσ++=.
N (0,1)
则Y=X^2~卡方分布X^2(1) 所以EX^2=1
E(X^4)=DY+(EY)^2=2+1=3
E(X^5)=0.pdf 概率密度函数关于y 对称.
用定义求解而不是性质,X4次方当成一个g(x)函数,根据定义,E (X4次方)=积分符号g(x)f(x)dx,其中f(x)是标准正态分布的概率密度.用分部积分法求解,不过运算很麻烦.还有另一种解这种复杂积分的方法,用一个叫F (符号我打不出来)函数的性质解,前提你熟悉这个F 函数,在浙大教材P79有提过这个函数
因为 X 的均值为N ,方差为D ,
所以有 E(X^2)= D(X) +[E(X)]^2= D +N^2
令 Y = (X-N)/(D^0.5),则Y 服从标准正态,即均值为0,方差为1。

则 E(Y^3) = 0 又
X = Y * D^0.5 +N
X^3 = [(Y*D^0.5) + N]^3 = Y^3 * D^1.5 + 3* Y^2 *D*N + 3*Y*N^2*D^0.5 + N^3 所以
E(X^3) = 3 *D*N E(Y^2) + N^3 = 3 DN + N^3。

相关文档
最新文档