3.2.1古典概型2
高中数学 3.2.1 古典概型课件2 新人教A版必修3
探要点、究所
探然究点一:与顺序有关的
古典概型 例 1 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是 5 的结果有多少种? (3)向上的点数之和是 5 的概率是多少?
概型公式,所求的概率是多少? 答 如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别,这时,所有可能的
结果将是(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)
(4,5)(4,6)(5,5)(5,6)(6,6)共有 21 种,和是 5 的结果有 2 个,它们是(1,4)(2,3),所求 的概率为 P(A)=A所包基含本的事基件本的事总件数的个数=221.
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
探要点、究所
探然究点一:与顺序有关的
古典概型 由表中可知同时掷两个骰子的结果共有 36 种.
(2)在上面的结果中,向上的点数之和为 5 的结果有 4 种,分别为(1,4),(2,3),(3,2),(4,1).
解 (1)掷一个骰子的结果有 6 种,我们把两个骰子标上记号 1,2 以便区分,由于 1 号骰子的结果都可以与 2 号骰子的任意一个结果配对,我们用一个“有序实数 对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示 1 号骰子 的结果,第二个数表示 2 号骰子的结果.(可由列表法得到)
3.2.1古典概型 (2)
最终,这个囚犯就这样利用概率的原理和一点运气得以 死里逃生。
基本概念 方法探究 典型例题 课堂训练 课堂小结
我们将具有这两个特征的概率模型称为 古典概率模型
简称:古典概型
基本概念 方法探究 典型例题 课堂训练 课堂小结
问题4:向一个圆面内随机地投射一个点, 你认为这是古典概型吗?为什么?
有限性
等可能性
基本概念 方法探究 典型例题 课堂训练 课堂小结
问题5:某同学随机地向一靶心进行射击,这一试验
的结果有:“命中10环”、“命中9环”、“命中8
31 P( A)
62
P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)
= 111 1 666 2
基本概念 方法探究 典型例题 课堂训练 课堂小结
古典概型的概率计算公式:
P(A)
A包含的基本事件的个数 试验的基本事件的总数
使用古典概型概率公式求概率的步骤: (1)判断是不是古典概型; (2)要找出随机事件A包含的基本事件的 个数和试验中基本事件的总数。
【例1】单选题是标准化考试中常用的题型, 一般是从A、B、C、D四个选项中选择一个准 确答案.如果考生掌握了考查的内容,他可以 选择惟一正确的答案.假设考生不会做,他随 机地选择一个答案,问他答对的概率是多少?
解:基本事件共有4个:选择A、选择B、选择 C、选择D.“答对”的基本事件个数是1个.
设事件A为:“他任选一个选项,选对”
试验1:掷一枚质地均匀的硬币一次,观察出现 哪几种基本事件? 2 种
高中数学 第3章 概率 3.2.1 古典概型 3.2.2(整数值)随机数(random numbe
学习资料3。
2 古典概型3。
2。
1古典概型3。
2.2(整数值)随机数(random numbers)的产生学习目标核心素养1.了解基本事件的特点,理解古典概型的定义.(重点)2.会判断古典概型,会用古典概型的概率公式解决问题.(重点、难点)3.理解用模拟方法估计概率的实质,会用模拟方法估计概率.(重点)1.通过古典概型的概率计算,培养数学运算素养.2.借助随机模拟估计概率,提升数学抽象素养.1. 基本事件(1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件.(2)特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.(2)古典概型的概率公式:对于任何事件A,P(A)=错误!.3.随机数与伪随机数(1)随机数要产生1~n(n∈N*)之间的随机整数,把n个大小形状相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.(2)伪随机数计算机或计算器产生的随机数是依照确定算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的并不是真正的随机数,我们称它们为伪随机数.4.整数值随机数的产生及应用(1)产生整数值随机数的方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBET_WEEN(a,b)可以产生从整数a到整数b的取整数值的随机数;也可用计算机中的Excel软件产生随机数.用计算机或计算器模拟试验的方法称为随机模拟方法.(2)整数值的随机数的应用利用计算器或计算机产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算器或计算机模拟试验的方法称为随机模拟方法或蒙特卡罗方法.思考:“在区间[0,10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?[提示]不是,因为在区间[0,10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.1.下列试验中,属于古典概型的是()A.种下一粒种子,观察它是否发芽B.从规格直径为250 mm±0.6 mm的一批合格产品中任意抽一根,测量其直径dC.抛掷一枚质地均匀的硬币,观察其出现正面或反面D.某人射击中靶或不中靶C[依据古典概型的特点,只有C项满足有限性与等可能性.]2.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有()A.1个B.2个C.3个D.4个C[基本事件有(数学、计算机),(数学、航空模型),(计算机、航空模型)共3个.]3.甲、乙、丙三名同学站成一排,乙站中间的概率是()A。
2020版高中数学第三章概率3.2.1古典概型3.2.2概率的一般加法公式(选学)课件新人教B版必修3 (1)
解 (1)用树状图表示所有的结果为:
所以所有不同的结果是 ab,ac,ad,ae,bc,bd,be,cd,ce,de. (2)记“恰好摸出 1 个黑球和 1 个红球”为事件 A, 则事件 A 包含的基本事件为 ac,ad,ae,bc,bd,be,共 6 个基本事件, 所以 P(A)=160=0.6, 即恰好摸出 1 个黑球和 1 个红球的概率为 0.6.
(1)记事件 A 为“三次颜色恰有两次同色”. ∵A 中含有基本事件个数为 m=6, ∴P(A)=mn =68=0.75.
(2)记事件 B 为“三次颜色全相同”. ∵B 中含基本事件个数为 m=2, ∴P(B)=mn =28=0.25. (3)记事件 C 为“三次摸到的红球多于白球”. ∵C 中含有基本事件个数为 m=4, ∴P(C)=48=0.5.
教材整理 2 概率的一般加法公式(选学) 阅读教材,完成下列问题. 1.事件 A 与 B 的交(或积): 由事件 A 和 B 同时发生 所构成的事件 D,称为事件 A 与 B 的交(或积), 记作 D=A∩B(或D=AB) . 2.设 A,B 是 Ω 的两个事件,则有 P(A∪B)= P(A)+P(B)-P(A∩B) ,这就 是概率的一般加法公式.
率的古典定义.
随手练 1.判断(正确的打“√”,错误的打“×”) (1)若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典 概型.( ) (2)“抛掷两枚硬币,至少一枚正面向上”是基本事件.( ) (3)从装有三个大球、一个小球的袋中,取出一球的试验是古典概型.( ) (4)一个古典概型的基本事件数为 n,则每一个基本事件出现的概率都是 1 n.( )
3.2.1 古典概型 3.2.2 概率的一般加法公式(选学)
1.理解古典概型及其概率计算公式,会判断古典概型.(难点) 2.会用列举法求古典概型的概率.(重点)
高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式学案北师大版3剖析
P(“出现不小于2点”)=“出现不小于2点”所包含的基本领件的个数÷基本领件的总数.
思索6:一般地,对于古典概型,事务A在一次试验中发生的概率如何计算?
P(A)=事务A所包含的基本领件的个数÷基本领件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.假如考生驾驭了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本领件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,依据下列条件求两张标签上的数字为相邻整数的概率:
(1)标签的选取是无放回的:
(2)标签的选取是有放回的:
归纳小结
1.基本领件是一次试验中全部可能出现的最小事务,且这些事务彼此互斥.试验中的事务A可以是基本领件,也可以是有几个基本领件组合而成的.
(2)掷一枚质地匀称的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中全部可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事务。我们把这类随机事务称为基本领件
综上分析,基本领件有哪两个特征?
例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的随意一个.假设一个人完全遗忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本领件,总共有10000个基本领件,它们分别是0000,0001,0002,…
数学北师大版必修3教案:3.2.1古典概型的特征和概率计算公式 Word版含解析
§2古典概型2.1 古典概型的特征和概率计算公式整体设计教学分析本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=事件A包含的可能结果数的使用条件——古典概型,体现了化归的重要思想.掌握列举法,试验的所有可能结果数学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.课时安排1课时教学过程导入新课思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标有号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2.将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好地解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”“抽到红心2”……“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心是“抽到红心1”“抽到红心2”……“抽到红心K”这13种情形之一时,事件B就发生,于是P (B )=1352=14.为此我们学习古典概型. 推进新课新知探究提出问题 试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由课代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录出现“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由课代表汇总.1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?3.什么是基本事件?基本事件具有什么特点?4.什么是古典概型?它具有什么特点?5.对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,最后师生共同汇总方法、结果和感受.讨论结果:1.用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.2.上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是16. 3.根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.4.在一个试验中,如果:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.如图1,向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?图1因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如图2,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?图2不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.5.古典概型,随机事件的概率计算对于试验一,出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”),由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.因此P (“正面朝上”)=P (“反面朝上”)=12, 即P (“出现正面朝上”)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数. 试验二中,出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”). 反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1,所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=16. 进一步,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=16+16+16=36=12, 即P (“出现偶数点”)=36=“出现偶数点”所包含的基本事件的个数基本事件的总数. 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为P (A )=事件A 包含的可能结果数试验的所有可能结果数. 在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.应用示例思路1例1 在一个健身房里,用拉力器进行锻炼时,需要选取2个质量盘装在拉力器上.有2个装质量盘的箱子,每个箱子中都装有4个不同的质量盘:2.5 kg,5 kg,10 kg 和20 kg ,每次都随机地从2个箱子中各取1个质量盘装在拉力器上后,再拉动这个拉力器.(1)随机地从2个箱子中各取1个质量盘,共有多少种可能的结果?用表格列出所有可能的结果.(2)计算选取的2个质量盘的总质量分别是下列质量的概率:①20 kg ;②30 kg ;③不超过10 kg ;④超过10 kg.(3)如果一个人不能拉动超过22 kg 的质量,那么他不能拉开拉力器的概率是多少? 解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以从4种不同的质量盘中任意选取.我们可以用一个“有序实数对”来表示随机选取的结果.例如,我们用(10,20)来表示: 在一次随机的选取中,从第一个箱子取的质量盘是10 kg ,从第二个箱子取的质量盘是20 kg.下表列出了所有可能结果.从表中可以看出,随机地从2个箱子中各取1个质量盘的所有可能结果共有16种.由于选取质量盘是随机的,因此这16种结果出现的可能性是相同的,这个试验属于古典概型. (2)①用A 表示事件“选取的2个质量盘的总质量是20 kg”,因为总质量为20 kg 的所有可能结果只有1种,因此,事件A 的概率P (A )=116=0.062 5. ②用B 表示事件“选取的2个质量盘的总质量是30 kg”,从表中可以看出,总质量为30 kg 的所有可能结果共有2种,因此,事件B 的概率P (B )=216=18=0.125. ③用C 表示事件“选取的2个质量盘的总质量不超过10 kg”.总质量不超过10 kg ,即总质量为5 kg,7.5 kg,10 kg 之一,从表中容易看出,所有可能结果共有4种,因此,事件C 的概率P (C )=416=14=0.25. ④用D 表示事件“选取的2个质量盘的总质量超过10 kg”.总质量超过10 kg ,即总质量为12.5 kg,15 kg,20 kg,22.5 kg,25 kg, 30 kg,40 kg 之一,从表中可以看出,所有可能结果共有12种,因此,事件D 的概率P (D )=1216=34=0.75. (3)用E 表示事件“不能拉开拉力器”,即总质量超过了22 kg.总质量超过22 kg 是指总质量为22.5 kg,25 kg,30 kg,40 kg 之一,从表中可以看出,这样的可能结果共有7种,因此,不能拉开拉力器的概率P (E )=716≈0.44. 点评:在这个例子中,我们用列表的方法列出了所有可能的结果.在计算古典概率时,只要所有可能结果的数量不是很多,列举法是我们常用的一种方法.例2 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?活动:学生阅读题目,搜集信息,交流讨论,教师引导,解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型.如果学生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定学生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D ,即基本事件共有4个,考生随机地选择一个答案是A ,B ,C ,D 的可能性是相等的.从而由古典概型的概率计算公式,得P (“答对”)=“答对”所包含的基本事件的个数基本事件的总数=14=0.25.点评:古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n 和事件A 所包含的结果数m ;(4)用公式P (A )=m n求出概率并下结论.变式训练1.抛掷两枚均匀硬币,求出现两个正面朝上的概率.解:试验的所有可能结果为:(正,正),(正,反),(反,正),(反,反).这里四个基本事件是等可能发生的,故属古典概型.故出现两个正面朝上的概率为14. 2.一次投掷两颗骰子,求出现的点数之和为奇数的概率.解法一:设A 表示“出现点数之和为奇数”,用(i ,j )记“第一颗骰子出现i 点,第二颗骰子出现j 点”,i ,j =1,2,…,6.显然出现的36个基本事件的概率是相等的,其中A包含的基本事件个数为k =3×3+3×3=18,故P (A )=12. 解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们发生的概率相等.基本事件总数n =4,A 包含的基本事件个数k =2,故P (A )=12. 解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},两者发生的概率也相等,基本事件总数n =2,A 所包含基本事件数为1,故P (A )=12. 点评:找出所有的基本事件,必须是等概率的.解法二中倘若解为:(两个奇),(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P (A )=13,错的原因就是它不是等概率的.例如P (两个奇)=14,而P (一奇一偶)=12.本例又告诉我们,同一问题可取不同的基本事件解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A )有4种,因此,由古典概型的概率计算公式可得P (A )=436=19. 例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?图3解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,所以P (“试一次密码就能取到钱”)=110 000. 发生概率为110 000的事件是小概率事件,通常我们认为这样的事件在一次试验中是几乎不可能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次输入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.思路2例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,问:(1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件〔摸到1,2号球用(1,2)表示〕:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=310. 即共有10个基本事件,摸到两个白球的概率为310. 变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数的和是3的倍数的概率是多少?分析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果.(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果.(3)记“向上点数和为3的倍数”为事件A ,则事件A 的结果有12种,因为抛两次得到的36种结果是等可能出现的,所以所求的概率为P (A )=1236=13. 解:(1)先后抛掷2次,共有36种不同的结果;(2)两数的和是3的倍数的结果有12种;(3)两数的和是3的倍数的概率为13. 点评:也可以利用图表来数基本事件的个数(如图4):图4例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 由(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件组成,因而P (A )=46=23. 思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B 包含了(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件.因而P (B )=49. 点评:(1)在连续两次取出过程中,(a 1,b 1)与(b 1,a 1)不是同一个基本事件,因为先后顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的. 变式训练现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为有放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P (A )=83103=0.512. (2)方法一:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336,所以P (B )=336720≈0.467. 方法二:可以看作不放回3次无顺序抽样,先按抽取顺序(x ,y ,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x ,y ,z ),(x ,z ,y ),(y ,x ,z ),(y ,z ,x ),(z ,x ,y ),(z ,y ,x )是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P (B )=56120≈0.467. 点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.知能训练本节练习1,2,3.拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.解:在1 000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,故(1)有一面涂有色彩的概率为P 1=3841 000=0.384;(2)有两面涂有色彩的概率为P 2=961 000=0.096;(3)有三面涂有色彩的概率为P 3=81 000=0.008. 答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式P (A )=事件A 包含的可能结果数试验的所有可能结果数. 3.求某个随机事件A 包含的基本事件的个数和试验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.作业本节练习4.设计感想本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题和解决问题的能力.在解决概率的计算上,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑.由此,整个教学设计可以在教师的期盼中实施.备课资料一、备选习题1.在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( ).A.3040B.1240C.1230D .以上都不对 解析:在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为1240. 答案:B2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( ).A.15B.14C.45D.110解析:从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以,所求概率为P (A )=810=45. 答案:C3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是________.解析:记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2),(红1,白3),(红2,白1),(红2,白2),(红2,白3),(白1,白2),(白1,白3),(白2,白3)共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为710. 答案:7104.抛掷2颗质地均匀的骰子,求点数和为8的概率.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1,2号骰子分别有6种不同的结果,因此同时掷两颗骰子的结果共有6×6=36种,在所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为536. 5.豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显现矮茎).解:由于第二子代的D ,d 基因的遗传是等可能的,可以将各种可能的遗传情形都枚举出来.Dd 与Dd 的搭配方式共有4种:DD ,Dd ,dD ,dd ,其中只有第四种表现为矮茎,故第二子代为高茎的概率为34=0.75. 答:第二子代为高茎的概率为0.75.思考:第三子代高茎的概率呢?二、古典概型经典案例分析如果说你们班里有50人,那么我愿意和你打赌,你们班里至少有一对生日相同的人,你愿意站在我的反面和我打赌吗?如果说你能够清楚地找到基本事件,分析好复杂事件包含了多少个基本事件,就能够通过有理数的除法计算出概率,当然,分析清楚基本事件不可缺少的就是一种顺序的观点,可能有时候,用顺序的观点看问题会产生一些不必要的麻烦,但是往往在你忽略了顺序的时候,产生了一种错觉,于是就使你的先进的思想在这里因为你的大意退化到了中世纪以前的水平.那么充分小心的你,可能也会犯错误,甚至会感到头疼,因为记数也是一门技术,不一定都很简单.好了言归正传,我们仍然讨论这个关于生日的赌局.我看起来是有着十分的把握(或者说接近十分的把握,因为十分就成了必然事件,显然,你看得出这个不是一个必然的事件,严格地说我有接近十分的把握),如果你曾经了解过一些关于这个问题的结论,你也可能不。
2017学年数学必修三:3.2.1 古典概型2
为1~10.把球搅匀,蒙上眼睛,从中任取一球.思考下面的问题:
(1)从容器中任取一球可能出现的不同情况有多少种?
提示:因为共有10个球,所以任取一球可能的情况有10种.
(2)每个编号的球被取出的机会是否相等? 提示:相等,因为这些球的大小、形状完全相同,所以10个球 中,任意一个球被取出的机会相等,均为 (3)这样的随机试验是古典概型吗? 提示:是古典概型.试验的结果共有10个,为有限个;每个基本 事件出现的可能性均等,故是古典概型.
提示:抛掷两枚硬币的结果有:(正,正),(正,反),(反,正), (反,反)共4种可能结果.抛掷3枚硬币有:(正,正,正),(正,正, 反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反, 正),(反,反,反)共8种可能结果.
探究2:上述试验中的每一个结果都是随机事件,我们把这类事 件称为基本事件.在一次试验中,任何两个基本事件是什么关系? 提示:由于任何两种结果都不可能同时发生,所以它们的关系 是互斥关系.
1 A. 8 3 B. 8 5 C. 8 7 D. 8
)
【解析】选D.共有8个基本事件,只有三次全是反面不合要
求.故至少一次正面朝上的概率是 7 .
8
2.从甲、乙、丙三人中任选两名代表,甲被选中的概率为
_________.
【解析】甲、乙、丙三人中选取两人,包含的基本事件为(甲、 乙),(甲、丙),(乙、丙)共三个,其中含有甲的基本事件数为2 个,所以P= 2 . 答案: 2
2.列举基本事件的注意点 列举时,要注意分清“有序”还是“无序”,按一定次序进行列 举,防止重复和遗漏.采用列表、树状图等直观手段是防止重复 与遗漏的有效方法.
类型二
古典概型的判断 .
高中数学必修三 3.2.1古典概型(二) 教学课件PPT
3.2.1 古典概型(二)
学习目标
1.加深对基本事件与古典概型概念的理解; 2.进一步熟悉用列举法写出随机事件所包含的基本事件及个数; 3.能应用古典概型计算公式求复杂事件的概率.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 与顺序有关的古典概型 思考 同时掷两枚质地均匀的硬币,出现“一正一反”的概率与“两枚正 面”的概率哪个大? 答案 基本事件有(正,正),(正,反),(反,正),(反,反),“一正一反”
解析答案
(2)摸出的2只球都是白球的概率是多少? 解 上述10个基本事件发生的可能性相同,且只有3个基本事件是摸到 两只白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=130. 故摸出2只球都是白球的概率为130.
解析答案
返回
达标检测
1 2345
1.右图是某公司10个销售店某月销售 某产品数量(单位:台)的茎叶图,则 数据落在区间[22,30)内的概率为( B )
答案
知识点三 古典概型的解题步骤 1.求出总的 基本事件 数; 2.求出事件A所包含的 基本事件 数,然后利用公式
P(A)=A包含基的本基事本件事的件总的数个数.
答案
返回
题型探究
重点难点 个个击破
类型一 树状图
例1 有A、B、C、D四位贵宾,应分别坐在a、b、c、d四个席位上,现在 这四人均未留意,在四个席位上随便就坐, (1)求这四人恰好都坐在自己的席位上的概率; (2)求这四人恰好都没坐在自己的席位上的概率; (3)求这四人恰好有1位坐在自己的席位上的概率.
反思与感悟 解析答案
跟踪训练1 先后抛掷两枚大小相同的骰子. (1)求点数之和出现7点的概率; (2)求出现两个4点的概率; (3)求点数之和能被3整除的概率.
5.古典概型(二).pptx
过 不合格产品。 依次不放回从箱中取出 2 听饮料,得到的两个标记分别记为 x 和 y,
程 则(x,y)表示一次抽取的结果,即基本事件。由于是随机抽取,所以 抽取到任何基本事件的概率相等。用 A 表示“抽出的 2 听饮料中有不合
A A 及 格产品”, 表示“仅第一次抽出的是不合格产品”, 表示“仅第
1
2
学生活动
A 方
二次抽出的是不合格产品”,
表示“两次抽出的都是不合格产品”,
12
A A A 法
则
,
1
和
2
是互斥事件,且
12
A A A A A A A 1 2 12 ,从而 P(A) P( 1) P( 2) P( 12) .
A A A 因为 中的基本事件的个数为 8, 中的基本事件的个数为 8,
1
2
12
中 的 基 本 事 件 的 个 数 为 2 , 全 部 基 本 事 件 的 总 数 为 30 , 所 以
P( A) 8 8 2 0.6 . 30 30 30
三、课堂练习:P123 练习 1、2 题
教 学 小 古典概型的概念及其概率公式的应用。 结
课 后 反 思
2
那么取款机将“没收”储蓄卡。另外,为了使通过随机试验的方法取到 储蓄卡中的钱的概率更小,现在储蓄卡可以使用 6 位数字作密码。
教 例 5 : 某种饮料每箱装 6 听,如果其中有 2 听不合格,问质检人员从中 随机抽出 2 听,检测出不合格产品的概率有多大?
学 解:我们把每听饮料标上号码,合格的 4 听分别记作:1,2,3,4,不合 格的 2 听分别记作 a,b,只要检测的 2 听中有 1 听不合格,就表示查出了
1 什么是古典概型?请举例说明. 2 古典概型的两个特点? (2)概率的计算公式? 2、例题讲解: 例 4 : 假设储蓄卡的密码由 4 个数字组成,每个数字可以是 0,1,2,…,9 十个数字中的任意一个.假设一个人完全忘记了自己 的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱 的概率是多少?
高中数学第三章概率3.2古典概型3.2.1古典概型的特征和概率计算公式3.2.2建立概率模型
答案
(2)从袋中的 6 个球中任取两个,其中一个是红球,而另一个是白球,其 取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共 8 种.
∴取出的两个球一个是白球,另一个是红球的概率为185.
12/11/2021
第二十三页,共四十七页。
答案
[变式训练3] 先后抛掷两颗骰子,求: (1)点数之和是 4 的倍数的概率; (2)点数之和大于 5 小于 10 的概率. 解 从图中容易看出基本事件与所描点一一对应共 36 种.
12/11/2021
第十一页,共四十七页。
答案
解法二:采用列表法 设 5 只球的编号为:a、b、c、d、e,其中 a,b,c 为白球,d,e 为黑球.列 表如下:
12/11/2021
第十二页,共四十七页。
答案
由于每次取两个球,每次所取两个球不相同,而摸(b,a)与(a,b)是相同 的事件,故共有 10 个基本事件.
12/11/2021
第十页,共四十七页。
[解] (1)解法一:采用列举法分别记白球为 1、2、3 号,黑球为 4、5 号, 有以下基本事件:(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、 (4,5)共 10 个(其中(1,2)表示摸到 1 号,2 号时).
(1)从袋中的 6 个球中任取两个,所取的两球全是白球的方法总数,即是 从 4 个白球中任取两个的方法总数,共有 6 个.即为(1,2),(1,3),(1,4),(2,3), (2,4),(3,4).
∴取出的两个小球全是白球的概率为 P(A)=165=25.
12/11/2021
第二十二页,共四十七页。
高一数学人教A版必修3课件:3.2.1 —3.2.2古典概型2
练习: 用三种不同的颜色给图中的3个矩形 随机涂色,每个矩形只能涂一种颜色,求 (1)3个矩形的颜色都相同的概率; (2)3个矩形的颜色都不同的概率.
解 : 本题的等可能基本事件共有27个 (1)同一颜色的事件记为A,P(A)=3/27 =1/9;
(2)不同颜色的事件记为B,P(B)=6/27 =2/9
例、某人有4把钥匙,其中2把能打开门。现随 机地取1把钥匙试着开门,不能开门的就扔掉, 问第二次才能打开门的概率是多少? 如果试过的钥匙不扔掉,这个概率又是多少? 有无放回问题
在前面学习中,同学们做了大量的试验,有没 有其他的方法可以代替试验呢?
3.2.2(整数值)随机数的产生
要产生1~25之间的随机整数,怎么做? 抛掷硬币试验. 称用计算机或计算器模拟试验的方法为随机模拟方 法或蒙特卡罗方法.
=IF(OR(AND(A1<4,B1<4,C1>3),AND(A1<4,B1>3, C1<4),AND(A1>3,B1<4,C1<4)),1,0)
=IF(OR(AND(A1<4,B1<4,C1>3),AND(A1<4,B1>3,C1<4),AND(A1> 3,B1<4,C1<4)),1,0)
(2)标签的选取是有放回的。
有无放回问题。
Hale Waihona Puke 2.一个密码箱的密码由5位数字组成,五个 数字都可任意设定为0-9中的任意一个数 字,假设某人已经设定了五位密码。 (1)若此人忘了密码的所有数字,则他一 次就能把锁打开的概率为____________ 1/100000 (2)若此人只记得密码的前4位数字,则一 次就能把锁打开的概率____________ 1/10
人教B版必修三3.2.1古典概型
例1:将一个骰子先后抛掷2次,观察向上的点数。 问: (1)共有多少种不同的结果? (2)两数之和是3的倍数的结果有多少种? (3)两数之和是3的倍数的概率是多少? 解:(1) 第 二 次 抛 掷 后 向 上 的 点 数
由表可知,等可能基 本事件总数为36种。
6 5 4 3 2 1
(6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (5.1) (5.2) (5.3) (5.4) (5.5) (5.6) (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (1.1) (1.2) (1.3) (1.4) (1.5) (1.6)
归纳上述三个试验的特点:
(1)有限性 在一次试验中,可能出现的结 果只有有限个,即只有有限个不同的基本事件。 (2) 等可能性 每个基本事件发生的可能 性是均等的. 我们把具有这样两个特征的随机试验的数 学模型称为古典概型。
1、向一个圆面内随机地投一个点,如果该点落 在每一个点都是等可能的,你认为这是古典 概型吗?为什么?
.... .... .... .... .... .
....... ......
.... .
不是古典概型。 因为结果有无 限多个。
2、如图,射击运动员向一靶心进行射击,这一 试验的结果只有有限个:命中10环、命中9环…… 命中1环和命中0环。你认为这是古典概型吗?为 什么?
不是,因为每个 基本事件发生的 可能性不是均等 的。
3.2.1
古典概型
掷硬币实验
掷骰子实验
转盘实验
2 试验一、抛掷一枚均匀的硬币,试验的结果有__ 0.___. 5 出现“反面 个,其中“正面朝上”的概率= 0. 5 朝上”的概率 =___. 6 试验二、掷一粒均匀的骰子,试验结果有___ 1/6 个,其中出现“点数5”的概率= ___. 8 试验三、转8等份标记的转盘,试验结果有___ 个,出现“箭头指向4”的概率= ___. 1/8 上述三个试验有什么特点?
高中数学 3.2.1古典概型(2)课件 新人教A版必修3
•
2
• ②在抛掷一枚质地均匀的骰子试验中,“出 现点数为1”的概率是多少? 1
•
6
• ③在抛掷一枚质地均匀的骰子试验中,“出 现偶数点”的概率是多少?
31 62
假设把钱误存进了一张长期不用的银行 卡中,并且他完全忘记了该卡的密码,该 密码由四个数字组成,问他在自动提款机 上随机地输入密码,一次就能取出钱的概
有:“命中10环”、“命中9环”、“命中8环”、
“命中7环”、“命中6环”、“命中5环”和“不中
环”。
你认为这是古典概型吗?
5
为什么?
6
有限性
7
8
9
等可能性
5 6 7 8 9 10 9 8 7 6 5 9 8
7
6
5
问题4:在古典概率模型中,如何求随机事件出现的概率?
试验2: 掷一颗均匀的骰子,
事件A为“出现奇数点”,请问事件 A的概率是多少?
数有哪几种结果? 6 种
1点
2点
3点
4点
5点
6点
我们把上述试验中的这类随机事件称为基本事件,它 是试验的每一个可能结果。
构成的基本事件有哪些特点?
⑴任何两个基本事件是互斥的 ⑵任何事件(除不可能事件)都可以表示成基本事件的和
问题1:
(1)在一次试验中,会同时出现“1点” 与 “2点”
这两个基本事件吗? 不会 任何两个基本事件是互斥的
P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件 基本事件出现的可能性
试 验 “正面朝上” 1 “反面朝上”
两个基本事件 1
的概率都是 2
海南省海口市第十四中学2014高中数学 3.2.1 古典概型(第2课时)导学案 新人教版必修3
海南省海口市第十四中学2014高中数学 3.2.1 古典概型(第2课时)导学案新人教版必修31.进一步熟悉用列举法写出随机事件所包含的基本事件及个数;2.能从集合的角度理解古典概型的概率计算公式;3.能应用古典概率计算公式求复杂事件的概率.【学法指导】利用列表、数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏.培养运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强数学思维情趣,形成学习数学知识的积极态度.【知识要点】1.古典概型的适用条件:(1)试验中所有可能出现的基本事件 ;(2)每个基本事件出现的可能性 .2.古典概型的解题步骤:(1)求出总的数;(2)求出事件A所包含的数,然后利用公式P(A)= .【问题探究】探究点一与顺序有关的古典概型问题1 在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?例1同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少??问题 2 为什么要把两个骰子标上记号?如果不标记号会出现什么情况?若用古典概型公式,所求的概率是多少?问题3 在例1中所求的概率和问题2中所求的概率相同吗?哪种求法不符合古典概型?为什么?小结古典概型问题包含的题型较多,但都必须紧扣古典概型的定义,进而用公式进行计算.列举法是求解古典概型问题的常用方法,借助于图表等有时更实用有效.训练1 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他在自动取款机上随机试一次密码就能取到钱的概率是多少?探究点二与顺序无关的古典概型例2现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.小结在应用古典概型概率计算公式求概率时,有些事件用文字书写较麻烦,我们常用一些字母或数字来表示事件,为解题带来方便.训练2 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?【练一练】1.若书架上放有数学、物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为( ) A.15B.310 C.35D.122.从甲、乙、丙三人中任选2人作代表,则甲被选中的概率为 ( ) A.12B.13C.23D.1 3.有100张卡片(标号为1~100),从中任取1张,取到卡片上的号码是7的倍数的概率是( )A.750B.7100C.748D.3204.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则lo g 2X Y =1的概率为( )A.16B.536C.112D.12 5.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( )A.14B.13C.38D.126.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________.7.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是________.8.设袋中有a 1,a 2两支好签,b 1,b 2两支坏签,四人依次从袋中无放回地任抽一签,分别求他们抽到好签的概率.9.同时掷两枚骰子,求向上的点数之和恰为6这一事件的概率.点数和为多少时,概率最大?并求出此概率.。
3.2.1古典概型 (2)
2 求摸出两个球都是红球的概率;
3求摸出的两个球一红一黄的概率。
变式1:求摸出两个球恰有一个是红球的概率;
变式2:求摸出两个球至少有一个是红球的概率;
变式3:求摸出两个球至多有一个是红球的概率;
变式4:将上题“依次摸出”改为“一把摸出”,结果一样吗?有多少个基本事件?
变式5:将上题“取出后不放回”改为“每次取出后放回”,结果一样吗?
古典概型(题单)
(一)掷骰子问题:
1.掷一粒均匀的骰子,落地时向上的点数为偶数的概率是多少呢?
2、将一个骰子先后抛掷2次,观察向上的点数。
(1)共有多少个基本事件?
(2)两数之Biblioteka 是5包含哪些基本事件?(3)两数之和是5的概率是多少?
变式:两数之和是3的倍数的概率是多少?
思考:(1)“将一个骰子先后抛掷2次”和“同时掷两粒骰子”,结果一样吗?基本事件数是多少?
练习2(2013广东理17)
某车间共有 名工人,随机抽取 名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本均值;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间 名工人中有几名优秀工人;
(3)从该车间 名工人中,任取 人,求恰有 名优秀工人的概率.
(2)“将一个骰子先后抛掷k次”和“同时掷k粒骰子”的基本事件数呢?
练习1(2016江苏7)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.
(二)摸球问题:
1.一个口袋内装有大小和形状完全相同的4个红球和2个黄球,从中依次摸出两个球,每次取出后不放回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(A)= A所包含的基本事件的个 数
基本事件的总数
作业: 课本133页A组1,2,3,4,5,6, 相应学案
谢谢观看
所以:
P( A) 1 10000
例5:某种饮料每箱装6听,如果其中有2听不合格,问质检人员从 中随机抽出2听,求检测出不合格产品的概率。
把6听饮料编号1~6,假设5, 6号为不合格产品,列表如下:
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1)
(2,3) (2,4) (2,5) (2,6)
甲、乙两人玩出拳游戏一次(石头、剪刀、
布),则该试验的基本事件数是___9___种,
1
平局的概率是____3______,甲赢乙的概率是
1
1
____3____,乙赢甲的概率是______3_____。
用红、黄、蓝三种不同的颜色给两个 矩形随机涂色,每个矩形只能涂一种颜色, 求: (1)两个矩形的颜色都相同的概率; (2)两个矩形的颜色都不同的概率。
解 : 本题的等可能基本事件共有9个。
(1)同一颜色的事件记为A,P(A)=1/3 ;
(2)不同颜色的事件记为B,P(B)=2/3。
一个袋中装有序号为1,2,3的三个形状大小 完全相同的小球,从中一次性摸出两个,有哪些 基本事件?
{1,2}{1,3}{2,3}
变式1: 从中先后摸出两个球,有哪些基本事件?
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为: (1,4),(2,3),(3,2),(4,1)
(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果 (记为事件A)有4种,因此,
{1,2}{2,1}{1,3}{3,1}{2,3}{3,2}
变式2: 从中有放回地摸出两个球,有哪些基本事件?
▪{1,1}{1,2}{1,3} ▪{2,1}{2,2}{2,3} ▪{3,1}{3,2}{3,3}
1.知识点:
小 (1)基本事件的两个特点 结 ①任何两个基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基 本事件的和。 (2)古典概型的定义和特点
21
考察两种解法, 第一种解法给出的36个基本事件是等可能发生的, 第二种解法给出的21个基本事件不是等可能发生的.
【例4】储蓄卡的密码由4位数字组成, 每个数字可能是0,1,2,3,4,5,6,7,8,9十 个数字中的任意一个,某人完全忘记 密码,问他随机试一次密码,能取到 钱的概率是多少?
〖解〗每个密码相当于一个基本事件,共有10000个基本事 件,即0000,0001,0002,…,9999.是一个古典概型.其 中事件A“试一次密码就能取到钱”由1个基本事件构成.
(3)向上的点数之和是5的概率是多少?
成的结果
的列举。
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1, 2以便区分,它总共出现的情况如下表所示:
2号骰子
1号骰子
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2)
(3,4) (3,5) (3,6)
(4,1) (4,2) (4,3)
(4,5) (4,6)
(5,1) (5,2) (5,3) (5,4)
(5,6)
(6,1) (6,2) (6,3) (6,4) (6,5)
解:记A1为“第一次抽出不合格产品”,A2为“第二次抽出不合格产品”, A12为“两次抽出不合格产品”,则检测出不合格产品事件A A1∪A2∪A12, 因此P( A) P( A1) P( A2 ) P( A12 ) P( A) 8 8 2 0.6
P(A)= A所包含的基本事件的个数 = 4 =1
基本事件的总数
36 9
思考:为什么要把两个骰子标上记号?
标上记号后相当于把同时掷两个骰子看成是先抛一个,再抛一个 这样基本事件的总数是6 6=36个
如果不标记号会出现什么情况?
如果不标上记号,类似于(1,2),(2,1)的结果将没有区别,这时 所有可能的结果是21个,和是5的结果有2个,所求概率变为: P(A)= 2
3.2.1古典概型
古典概型的解题步骤; ①求出总的基本事件数;
不重不漏
②求出事件A所包含的基本事件数;
③利用公式P(A)=
A包含的基本事件的个数 基本事件的总数
注意:所有基本事件等可能.
例3. 同时掷两个骰子,计算:
列表法一
(1)一共有多少种不同的结果?
般适用于
(2)其中向上的点数之和是5的结果有多少种? 分两步完
30 30 30
解法2:(提示) 没有检测出不合格产品是检测出不合格产品的对立事件
用A表示“没有检测出不合格产品” 用B表示“检测出不合格产品” 则P(A)= 4 3 = 12 = 4
6 5 30 10 则P(B) 1 4 6
10 10 小结: 直接计算较繁琐时,可间接由对立事件入手,
练习:
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有36种.
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) ((1,1,4)4)(1,5) (1,6)
2
(2,1) (2,2) ((22,,33)) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
((4,4,1)1) (4,2) (4,3) (4,4) (4,5) (4,6)