弹塑性力学中的边值问题
薄圆筒、柱 弹塑性力学详解
(6 11)
(6 12)
du i d u i ;
vi)弹塑性交界处的连接条件:如果交界面 的法向为ni ,则在 上有: (a)法向位移连续条件 du i (b)应力连续条件
(E)
ni du i ni ;
( p)
( p)
(6 13)
(6 14)
d ij ni d ij ni ;
无量纲化后得到:
(6-19)
d d d , d d 20)
消去 d 得:
(6 21)
简单的弹塑性问题
2 由(6-18)式知 1 及 d d 0,
故
d d d / 1 2
塑性力学
第六章 简单的弹塑性问题
§6.1
弹塑性边值问题的提法
§6.2 “薄壁筒”的拉、扭联合变形
§6.5 “柱体”的弹塑性自由扭转
§6.6 受内压的“厚壁圆筒”
简单的弹塑性问题
§6.1 弹塑性边值问题的提法
一、弹塑性全量理论边值问题
设在物体V内给定体力 Fi ,在应力边界 ST 上给定面力Ti ,在位移 边界Su 上给定位移 u i ,要求应力 ij ,应变 ij ,位移 ui ,它们满足 以下方程和边条件:
(E)
上标(E)和(P)分别表示弹性区和塑性区。
简单的弹塑性问题
§6.2 “薄壁筒” 的 拉、扭变形
考察薄壁圆筒承受拉力P 和扭矩T 联合作用的弹塑性变形问题。采用圆柱坐 标,取z 轴与筒轴重合。设壁厚为h ,筒的内外平均半径为R ,则筒内应力 为:
z P / 2Rh , z T / 2R 2 h,
(6-10)
1 2v d kk d kk , E d d ij 0, 0, ij d hd , d d 0, ij ij
弹性力学边值问题及有限元法(PPT)
0
Ni y Ni x
N j x 0
N j y
0
N j y N j x
N m x 0
N m y
0
N m y N m x
ui
vi
u v
j j
um vm
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
B Bi B j
ui
bm 0 cm
0 cm bm
a
u
v
N
ae
INi
I
1 0
0 1
IN j INm ae
位移模式需满足以下三个条件: 1、位移模式必须反映单元的刚体位移 2、位移模式必须反映单元的常量应变 3、位移模式应尽可能反映位移的连续性
单元应变函数
u
x y
xy
x u
y
u y
v x
Ni
x
0
Ni
y
) xy
x
E
1 2
( x
y)
y
E
1 2
(
x
y)
xy
2(1 E
)
xy
E
1 2
1
2
xy
x y
xy
E
1 2
1
0
1 0
1
0
0
xxyy
2
D DBae
D
E
1 2
1
0
1 0
0
0
1
2
在数学上,要将某个微分方程的定解问题 转化为一个变分问题求解,必须针对已给的定 解问题构造一个相应的泛函,并证明定解问题 的解与泛函极值问题的解等价。
工程塑性力学(第四章)弹塑性力学边值问题的简单实例
σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2
,
p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给
弹塑性力学 第05章弹性力学问题的建立和一般原理
应力分量
M O
τ xz = −αGy ,τ yz = αGx σ x = σ y = σ z = τ xy = 0
代入平衡微分方程
τ zy
ϕ
τ
x
τ zx
∂σ x ∂τ yx ∂τ zx + + + Fbx = 0 ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fby = 0 ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fbz = 0 ∂x ∂y ∂z
假设弹性体受已知体力作用,在物体的边界上,或者面 力已知,或者位移已知,或者一部分上面力已知,而另一部 分上位移已知,则弹性体平衡时,体内各点的应力分量与应 变分量是唯一的,对于后两种情形,位移也是唯一的。
这一定理以这样一个假设为依据:当物体不受外力作用 时,体内的应变能为零,应力分量和应变分量也全为零。当
∫∫τ
∫∫τ
zx
dxdy = 0
dxdy = 0
M O
τ zy
ϕ
τ
x
zy
M = ∫∫ (xτ zy − yτ zx )dxdy
将应力分量代入
τ zx
τ yz = αGx
y
τ xz = −αGy
σ x = σ y = σ z = τ xy = 0
∫∫τ zx dxdy = 0
∫∫τ
zy
τ xz = −αGy
1 ε ij = (1 +ν )σ ij −νσ kk δ ij E
或
[
]
σ ij = λε kk δ ij + 2Gε ij
弹塑性力学简答题
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+。
4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。
2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
3、应力状态是否可以位于加载面外?为什么?不可以。
保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
谈弹塑性分析在ANSYS WORKBENCH中的数值模拟
下进行三维结构的静力分析 , 得 出了结构 的应 力、 位移等变化形式 , 体现 了弹塑性分 析在 工程数值 模拟 中的应用与价值 。
关键词 : 弹塑性分析 , A N S Y S WO R K B E N C H, 结构
中图 分 类 号 : T U 3 1 3 文献标识码 : A
・
3 2 l 4年 6月
山 西 建 筑
S HANXI ARC HI I EC T URE
Vo 1 . 4 0 N o . 1 8
J u n . 2 0 1 4
文章编号 : 1 0 0 9 — 6 8 2 5 ( 2 0 1 4 ) 1 8 — 0 0 3 2 ・ 0 3
两种不 同的形式 J 。 定从 自然状态开始 的全部边界条件变化过程 的情 况下 , 才 可 能跟
1 弹 塑性 力学 边值 问题
4 加 强层 的设 置
由于结构 的侧 向刚度不 能满 足要 求 , 根据 建筑 竖 向功能 布
踪 给定 的加载历 史 , 确 定物体 内应力 和位移 的变化过程 。此时 ,
0 引言
一
1 . 1 全 量分析
在物体 Q 内给定 体力 , 边界 厂 盯上给 定面力 , 边 界 上
般情况下 , 弹塑性 问题会涉及 到复杂 的非 线性本构 方程而
难以得到解析解答 。但在一些 问题 中 , 材料在 一些简单 的应力 状 给定位移 。在适宜采用全量本构 方程 的情 况下 , 要 求确 定物体 态且其主应力大小次序 明确 , 如果再假定材 料是理想 的弹塑性 或 内各点 的应力 o r , 应 变 和位移 u 使其满足 控制方程 和边界条 线性硬化的 , 则 它们就 成为可简 单求 解 的问题 , 例如 一些 梁 的横 件 。在形式上 , 弹塑性 问题全量 分析 与线 弹塑性 分析 一 样 , 只是 向弯 曲、 厚壁 圆筒承 受压力 、 柱 体扭转 等问题 。在这 些 问题 的求 本构方程不用 , 其 中控制方程 1 5个 , 未 知量也是 1 5个 , 故在 给定
弹塑性力学名词解释
弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。
2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。
一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。
3.体积力:作用在物体每一点的外力。
比如每一点都有的重力。
4.面力:作用在物体表面的外力。
比如水给大坝表面的压力。
5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。
物体表面的任一点的应力和该点的面力是相同的大小和方向。
6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。
直角坐标下的方程形式上简单,其它坐标的复杂些。
7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。
8.位移:分析一点:一点变形前后的位置差值。
变形体研究的位移是该点空间位置的连续函数。
9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。
直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。
10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。
直角坐标下的方程形式上简单,其它坐标的复杂些。
11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。
12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。
13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。
第四章 结构弹塑性分析
(4.26)
(4.27)
当截面全部成为塑性区时,变形可无限制地流动 → 塑性铰,结构变为机构(破坏) 。此时 设极限荷载为 q0 ,跨中极限弯矩(全部塑性 ξ = 0 )为:
M max
所以:
1 2 bh 2 = q0 l = σs 2 4
(4.28)
bσ q0 = s 2
⎛⎞ ⎜ ⎟ ⎝l⎠
2
(4.29)
李遇春编
如图 4.5,X 方向上配筋所产生的抵抗(分布)弯矩为 M ux (这个弯矩可根据钢筋混凝土 结构理论确定) ,在长度 L sin θ 上的总抵抗弯矩为 M ux L sin θ ,这个弯矩在屈服线上的分量为:
M u1 = ( M x L sin θ ) ⋅ sin θ = M x L sin 2 θ
图462屈服线计算理论i屈服线上的抵抗弯矩图47如图47x方向上配筋所产生的抵抗分布弯矩为ux这个弯矩可根据钢筋混凝土结构理论确定在长度sin上的总抵抗弯矩为uxsinsin443同理y方向上的配筋抵抗弯矩在屈服线上的分量为
同济大学水利工程系
李遇春编
第四章 结构弹塑性分析
1、弹塑性力学边值问题的提法 (1)全量理论边值问题
(ⅳ)边界条件: 在应力边界 sσ 上:
dσ ij l j = dPi
(4.13) (4.14) (4.15)
(4.16)
在位移边界 su 上: dui = dui
(4.17)
同济大学水利工程系
李遇春编
2、 梁的弹塑性弯曲
图 4.2 如图 4.2 的简支梁,梁的变形满足平截面假设。根据材料力学(弹性力学) ,梁内的应力 状态为: σ x = σ (≠ 0) , σ y ≈ 0 (与其它量比,可忽略不计) , τ xy = τ
弹塑性力学第五章分析解析
平衡方程
1
几何方程
2 1 3
2018/7/31
变形协调方程
22
第五章 简单弹塑性力学问题
二、考虑加载路径对桁架变形的影响——比例加载
P 3 2 1 A 2 2 P 2 2 A 2 2 P 1 2 3 A 2 2
塑性极限荷载
得
由于此时三根杆都已屈服,变形已不再受到任何约束,桁架进入 无限制塑性变形阶段 ,结构丧失进一步承载的能力,所以,又表示桁 架的 极限承载能力 。从上式可以发现, Ps 与材料的弹性模量无关。这 表明,如果采用理想刚塑性模型,则求出的 Ps 仍是一样的。这就为结 构的极限分析带来了极大的方便。
2018/7/31 5
第五章 简单弹塑性力学问题
【解】1、弹性阶段-弹性解和弹性极限荷载( 0<P≤ Pe )
N1 N3
N1 cos N 2 N3 cos P
平衡关系
N3 N1 N2 1 , 2 , 3 A A A
1 3 2 1 cos 2 P / A
第五章 简单弹塑性力学问题
福州大学土木工程学院 卓卫东 教授
第五章 简单弹塑性力学问题
引
言
简单桁架问题 梁的弹塑性弯曲问题 平面问题
2018/7/31
2
第五章 简单弹塑性力学问题
引 言
从本章开始,我们将应用前几章的基础理论和一般性原 理,解决工程实践中遇到的弹塑性力学问题。已经知道,经 过抽象化处理后,一个实际的弹塑性力学问题在数学上总是 归结为一个偏微分方程组的边值问题。因此,需要在严格的 边界条件下求解复杂的偏微分方程组。由于往往难以克服数 学上的困难,所以在一般情况下,很难求得问题的解析解或 精确解,而只有一些简单的问题,才存在解析解。 本章将通过几个简单的问题,说明弹塑性力学问题的理 论求解方法。
(完整word版)弹塑性力学总结
弹塑性力学总结弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:一、弹性力学1、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量.求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解.因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。
(1)假设物体是连续的.就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示.(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形.而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的.就是说整个物体是由同一种质地均匀的材料组成的。
这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变.(4)假设物体是各向同性的。
也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的.(5)假设物体的变形是微小的。
即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。
塑力 5、弹塑性力学边值问题的简单实例
4)、梁跨长比横向尺寸大得多。 根据上述假设,只考虑梁横截面上正应力对材料屈 服的影响,用Tresca和Mises条件均为:
x s
二、梁的纯弯曲 如图所示,研究具有两个对称轴的等截面梁,设y、z为 横截面的对称轴,x为梁的纵轴,xoy为弯曲平面。 M M
h/2 Z
h/2
Z
1、理想弹塑性材料 纯弯曲时,随着弯矩M的增加,塑性变形由梁截面边缘 对称地向内部发展,在梁的任一横截面上弹性区和塑性区 是共存的。在弹性区,应力按线性分布;在塑性区,应力 按 ( ) 分布;而在两者的交界处,正应力 应等 于屈服应力 。
2 0 h/ 2
ysysS p 源自yb( y)dy2
为塑性区对中性轴的静矩
I p 2
h/2
ys
y b( y)dy 为塑性区对中性轴的惯性矩;
梁横截面为b×h的矩形,则有:
h2 2b 3 2b h 3 2 3 Ie y s ; S p b y s ; I p y s 2 3 3 8
y
y
s
1) 对于理想弹塑性材料,在塑性区 则沿横截面高度,应力分布为:
( ) s ,
s
-
s
( y)
y s ys
h y ys 2
ys y ys
s
h ys y 2
y
+
式中, s y (>0)为横截面的中性层到弹、塑性分界面的距离。
④、卸载后塑性铰消失,由于存在残余变形,结构 不能恢复原状;而结构铰不变。
塑性铰的出现,使得梁成为几何可变的,丧失了继 续承载的能力。此时对应的载荷称为塑性极限载荷。 可令(1)式中x=0
塑性力学问题及主应力解法
(3)在应用米塞斯屈服准则时,忽略切应力和摩擦力的影响, 将米塞斯屈服准则二次方程简化为线性方程。即在主应力法中 所采用的屈服准则为:
对于平面应变问题,习惯用剪切屈服强度k表示,即
σ������ − σ������ =±2������ 对于轴对称问题,习惯用屈服应力σ������ 表示,即 σ������ − σ������ =± σ������ (4)接触表面上的摩擦力分布采用简单的模型,例如库伦摩
的主要研究内容,也是分析塑性力学问题时依据的物理关系。
屈服条件是判断材料处于弹性阶段还是处于塑性阶段的根 据。对于理想塑性模型,在经过塑性变形后,屈服条件不变。 但如果材料具有强化性质,则屈服条件将随塑性变形的发展而 改变,改变后的屈服条件称为后继屈服条件或加载条件。
对于处于单向拉伸(或压缩)的物体,当应力达到屈 服极限时,材料开始进入塑性状态,对于处于复杂应力状 态的物体,由弹性状态过渡到塑性状态的临界条件称为屈
4.3 主应力法
金属塑性成形中经常采用的一种简化方法,对于平面应 变问题将屈服条件简化为
σ x −σ y = 2k
分析中还假设应力在一个方向的分布是均匀的。计算中
所用的数学形式比较简单。这种简化方法有时不仅能求
出各种工艺过程中的应力,而且还可求出应力分布规律, 以及某些因素的影响。
4.4 主应力法基本原理
行归纳并提出合理的假设和简化模型,确定应力超过弹性极 限后材料的本构关系,从而建立塑性力学的基本方程。解出 这些方程,便可得到不同塑性状态下物体内的应力和应变。
二、塑性力学中的基本假设
(1)连续性假设:变形体内均由连续性介质组成,即整个变形
体内不存在任何空隙。 (2)均匀性假设:变形体内各质点的组织、化学成分、物理性 能都是相同的。 (3)各向同性假设:变形体内各质点在各个方向上的物理性能、
三维弹塑性问题的比例边界有限元法
04
比例边界有限元法的实现 过程
网格划分与节点生成
网格划分
将三维空间离散化为有限个小的单元,每个单元由节点连接。
节点生成
根据几何形状和边界条件,在关键区域布置节点,确保计算的精确性。
比例边界条件的处理
边界条件转换
将比例边界条件转换为等效的节点力约束。
节点力平衡
确保所有节点力在平衡状态下,以实现真实比例边界条件的模拟。
材料属性
根据实际问题,设置材料属性,如弹性模量、泊松比、密度等 。
力学行为
考虑弹性和塑性行为,建立相应的本构关系和屈服条件。
边界条件与载荷施加
边界条件
根据实际问题,施加相应的边界条件,如固定边界的位移约束、滑动边界的 摩擦力约束等。
载荷施加
根据实际问题,施加相应的外部载荷,如重力、压力、扭矩等。同时考虑惯 性效应,如质量、阻尼等。
三维弹塑性问题的有限元 建模
有限元模型的建立
几何模型
根据实际物理模型,建立相应 的几何模型,包括三维实体、
表面等。
网格划分
根据模型复杂程度和计算精度要 求,选择合适的网格类型和密度 进行划分。
边界定义
根据实际问题,定义模型的边界条 件,如固定边界、滑动边界等。
单元选择与属性设置
单元类型
根据实际问题,选择合适的有限元单元类型,如四面体单元、 六面体单元等。
三维弹塑性问题的比例边界 有限元法
2023-11-06
目 录
• 引言 • 三维弹塑性理论基础 • 三维弹塑性问题的有限元建模 • 比例边界有限元法的实现过程 • 三维弹塑性问题的算例分析 • 结论与展望 • 参考文献
01
引言
研究背景与意义
弹塑性力学第五章线弹性力学问题的基本解法和一般性原理
*
§5-1 基本方程和边界条件的汇总
a. 几何方程
指标符号表示
衣凹啦修仪让洛莉攘擞沥庶利礼通谊耸跑观值帧淡敞商蹲注献蔑摔铀嘻针《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
b. 变形协调方程
指标符号表示
§5-1 基本方程和边界条件的汇总
*
*
§5-2 位移法
上式代入平衡微分方程,得到位移法的基本方程
在V上
或
在V上
(拉米-纳维叶方程)
及芽孰松茄桔甭稿窒刮录羌格累态赡傀眉守恐苟究屏巩掠冗课阿朴错卡吞《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
1.3 本构(物理)方程(六个)
指标符号表示
上述所有方程为 ij 、 ij、ui在V上必须满足的方程,同时在S上(边界上)有边界力或边界位移。
必局洲斟死法广呆坞渤扣图审漓逆乓湾浩嗣废桥调擒卢贸违晶那舀乍汞跟《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
力的边界条件转为用ui的偏微分表示的。这类边界条件从形式上看可以处理,但实际操作上有时较难处理。
撩末辰问苯接恒辙肾顿陶说马证以毕石钢编岗宿捷丹腮敖笆崖蒸司群戒俏《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
位移法求解思想:
硕士生弹塑性力学复习题(2007)
硕士生弹塑性力学复习题一、 判断题1、 对于单个弹性材料组成的物体,其平面应力问题的应力与位移解答都与弹性体的材料常数有关。
( )2、 应力轴对称问题的位移解答也一定是轴对称的。
( )3、 应变状态,是可能的。
( )3,,x y xy Axy By C Dy εεγ===−24、 第一边值问题的所有解答(应力、应变、位移)都是唯一的。
( )5、 弹性体保持连续(不发生相互脱离或侵入现象)的条件是满足应变协调方程。
( )6、 作用在半无限体上的集中力对离作用力位置较远的地方会产生较大的应力集中。
( )7、 对梁端部作用一附加平衡力系,则该力系对作用点附近的应力分布会产生明显的影响。
( )8、 弹性薄板上的扭矩可以等效为分布及集中剪力。
( )9、 薄板的Navier 解法只适用于四边支承的矩形板。
( ) 10、薄板的Levy 解法适用于任意支承的矩形板。
( )11、满足应力相容方程的一组应力分量,也一定满足平衡方程。
12、最大正应力作用面上的剪应力为零,最大剪应力作用面上的正应力为零。
( ) 13、应力不变量与坐标系的选择无关。
( )14、薄板弯曲时,若满足了自由边合剪力与弯矩等于零的边界条件,则弯矩M 、扭矩xy M 、横向剪力Q 都分别为零。
( )15、Tresca 屈服条件是:当最大拉应力达到某一数值时,材料就发生屈服。
( ) 16、当八面体上的剪应力达到某一数值时,材料就会产生屈服现象。
( )二、 填空题1、 弹性力学的基本假设有 , , , , , 。
2、弹性力学的三类边值问题是:(1) ,(2) ,(3) 。
3、对于平面应变问题,只需将对应的平面应力问题的解答作材料常数的替换即可,即 E → ,γ→ 。
4、弹性薄板的弹性曲面方程为: 。
5、弹性力学问题有 和 两种基本解法,前者以 为基本未知量,归结为在 条件下求解 ,后者以 为基本未知量,归结为在 条件下求解 。
6、对于平面应变问题z σ= ,z ε= ;对于平面应力问题z σ= ,z ε= 。
弹塑性力学第四章弹性力学的求解方法
• 利用圣维南原理可放宽边界条件,扩大弹 性力学的解题范围。
END
1. 位移法:以位移作为基本未知量用,位移表述平
衡方程——位移法控制方程
2. 应力法:以应力作为基本未知量。将相容方程用 应力表示——应力控制方程
3. 应力函数法:先引入应力函数,相容方程用应力
函数表示法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。不需要用 相容方程。
3、对非线弹性或弹塑形材料,应力应变关系是非线 性的,叠加原理不成立。
4、对载荷随变形而变的非保守力系或边界为 用非线性弹簧支承的情况,边界条件是非 线性的,叠加原理也将失效。
二. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体, 其内部各点的应力、应变解是唯一的,如物体刚 体位移受到约束,则位移解也是唯一的。
无论何方法求得的解,只要能满足全部基本方 程和边界条件,就一定是问题的真解。
三.圣维南原理: 提法一:若在物体的一小部分区域上作用一自平衡力系,则
此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。
提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。
位移控制方程指标表示:
力边界条件也可用位移表述。
3个位移表述的平衡微分方程,包含3个位 移未知数。
结合边界条件,解上述方程,可求出位移分 量,由几何方程求应变,再由本构方程求应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 弹塑性力学中的边值问题
塑性本构关系有全量和增量两种理论,简单分析一下这两种理论的边值问题的提法及解法、全量理论的边值问题及解法。
设在物体V 内给定体力 ,在应力边界 上给定面力 ,在位移边界 上给定 ,要求物体内部各点的应力 、应变 、位移 。
确定这些未知量的基本方程组有: 1) 2) 3) , ,
4) 5) 求解方法和弹性问题一样,可以用两种基本方法:按位移求解或按应力求解。
在全量理论适用并按位移求解弹塑性问题时,依留申提出的弹性解法显得很方便。
将 代入用位移表示的平衡
微分方程得:
其中 或
在弹性状态时,上式右端等于零,可得到弹性解。
将它作为第一次近似解,代入上式右端作为已知项,又可以解出第二次近似解。
重复以上过程,可得出所要求精度内接近实际的解。
在小变形情况下,可以证明解能够很快收敛。
在很多问题第二次近似解已能给出较为满意的结果。
增量理论的边值问题及解法
设在加载阶段的某一瞬时,已求得物体内各点的 ,求在此基础上,
给定体力增量 、 上面力增量 、 上位移增量 时,物体内部各点的应
力增量 、应变增量 、位移增量 。
确定这些增量的基本方程组有: 1) 2)
3)本构关系(理想弹塑性材料) 弹性区 塑性区 4)
5)
此外,在弹塑性交界面上还应满足一定的连续条件和间断性条件。
在给定加载历史时,可以对每时刻求出增量,然后用“积分”(累计)的方法得出应力和应变等分布规律。
塑性力学中比较简单的问题,包括用平衡微分方程、屈服条件和应力边界条件就能完全确定应力场的所谓静定问题,以及屈服条件为线性的情况,求解时并不需要处理整套方程(因为其中许多方程已自动满足),需要处理的方程也可用较简单的数学方法求解属于这类问题的有纯拉伸、纯弯曲、纯扭转平面弯曲、厚壁筒和旋转圆盘等。
,0
ij i j f σ+=(),,12ij i j j i u u ε=+ij i j l f σ=i i u u =()21ij ij S G e ω=-i ij ij u 、、εσi df T S i f d u S i u d ij d σij d εi du ,0
ij i j d df σ+=()0ij f σ〈2ij ij kk ij d d d G E σμεσδ=-ij i j d l df σ=i f T S i f u S i u ij σij εi u ()0ij f σ=。