开关电源保护电路

合集下载

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路
开关电源是开关稳压线性电源的简称,以前的电源产品是采用线性电源,这是一种晶体管线性稳压电源,由于效率低下等原因已逐渐被开关电源取代。

开关电源,顾名思义就是通过控制开关管的导通时间以及关断时间来维持输出电压的稳定的电源,已逐渐向小型化、效率化、模块化、高可靠性等方向发展。

对于开关电源,输入保护电路很重要,开关输入保护电路具有过流保护、过压保护以及浪涌抑制等功能,对于电网的电压冲击以及EMC等具有至关重要的作用。

下面列举6种开关电源输入保护电路
一、保险丝形式
保险丝有普通型的也有快速型的,具有熔点低、熔断速度快特点,但是在熔断时候会产生火花、冒烟,甚至有玻璃管的会爆裂,因此安全性较差。

仅有保险丝的输入保护电路,只有过流保护作用,一般选择保险丝时候实际的熔断电流要等于额定电流的1.5倍左右。

二、保险丝、压敏电阻形式
这种电路多了压敏电阻,压敏电阻规格有07471、10471、14471等规格,具有浪涌抑制功能,因此这种电路有过压、过流保护功能,有些还具有防雷击保护
三、熔断电阻器、压敏电阻形式
熔断电阻器与保险丝作用相同,都是起到过流保护,但是与保险丝不同的是熔断电阻器熔断时候不会产生火花以及烟雾,就安全性来说安全高一点;而压敏电阻具有浪涌电压吸收作用,因此这种电路形式具有过压、过流保护功能
四、保险丝、NTC热敏电阻形式
热敏电阻采用的是负温度系数的,它的阻值随温度的升高为降低,它具有抑制电路的浪涌电流能力
五、压敏电阻、NTC热敏电阻形式
六、保险丝、压敏电阻、NTC热敏电阻形式。

开关电源保护电路的故障分析

开关电源保护电路的故障分析

开关电源保护电路的故障分析
1、保险丝熔断,大概是大家最常见的电源故障。

这主要是因为家里同时使用的电器过多,它长期处于一种高电压、大电流的状态下,电压一瞬间的波动就会让保险丝熔断。

另外一种常见的情况其实在大学宿舍里挺多的,因此一些大功率的电器学校往往是禁止使用的。

2、用电时没有直流电压输出,这主要是在用电时出现了电路短路现象,而过流保护电路又除了问题,导致振荡电路没有处在工作状态,这也会导致开关电源出现故障。

3、电源的负载能力差,也会让开关电源出现问题。

现在这种情况出现的其实并不多,它主要是存在在一些老旧电路中,一些电器元件老化了,不能承担现实的用电需求,因此经常会出现电源故障。

4.无直流电压输出或电压输出不稳定
如果保险丝是完好的,在有负载的情况下,各级直流电压无输出。

这种情况主要是以下原因造成的:电源中出现开路,短路现象,过压,过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。

开关电源安全保护电路原理图解

开关电源安全保护电路原理图解

开关电源安全保护电路原理图解对于开关电源而言, 平安、牢靠性历来被视为重要的性能之一. 开关电源在电气技术指标满意电子设备正常使用要求的条件下, 还要满意外界或自身电路或负载电路消失故障的状况下也能平安牢靠地工作. 为此, 须有多种爱护措施. 对爱护电路的特点分析, 对存在不足期盼克服, 盼望设计出更平安、更牢靠的爱护电路。

1 浪涌电流电路剖析浪涌电流是由于电压突变所引起. 如电子设备在第一次加电压时, 由于大容量电源电容器充电引起的涌入初始电流开机浪涌电流; 又如直击雷、感应雷沿着电源线进入开关电源的突变电压所产生瞬态电流雷浪涌电流. 浪涌电流上升时间特别快, 持续时间特别短, 破坏作用特别大. 为防止或减轻浪涌电流的破坏, 设置抑制浪涌电流或将浪涌电流转移到地线等方式来爱护开关电源避开浪涌电流的损害。

1. 1 启动限流爱护开关电源的初级整流电路有大容量滤波电容,开机瞬间整流管向这些大电容充电, 使整流管瞬时电流超过额定值. 为减小开机启动限流( 浪涌电流) ,开关电源通常都设有抗冲击电路. 如图1 电路, 在开机瞬间, 开关电源变压器的3、4 绕组电压为0V, VD5截止, 晶闸管VD6 的G、K 极间电压为0V, VD6 截止.充电电流路径: AC220V→VD1-4 正极→大电容C1→地→R2→VD1- 4 负极. 由于R2 有阻碍大电流作用( 一般设为3. 3Ω) , 因此能有效限制开机浪涌电流。

开关电源正常工作后, 开关电源变压器的1、2绕组上产生感应电压, 对C2 充电( 充电时间常数约等于R3×C2) , 使VD6 导通, 整流电流不再经R2, 而是经VD6 的A、K 极返回整流桥VD1- 4 的负极. 也就是说, 在正常工作状态, VD6 将R2 短路, 防止R2产生功耗.R2 仅在开机瞬间起作用。

用晶闸管作启动限流爱护平安牢靠, 但电路比较简单些, 从电路成本和电路简捷等角度来说用温控电阻作启动限流爱护, 它既经济又简洁更平安牢靠, 如图3。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

开关电源电路详解图

开关电源电路详解图

开关电源电路详解图、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源的各种过压保护电路

开关电源的各种过压保护电路

开关电源的各种过压保护电路开关电源输出过压保护电路,有通过控制自身电源来调节的,也有防止外部电压过高带来的电源损伤,自身调节一般是指,过压电路是在反馈环路出现问题的时候,控制输出电压不至于太高,或者是关闭开关电源控制,来避免输出电解电容与后级的用电设备损坏。

那我们就要知道当过压时,是限制电压不要超过一个电压还是要求关闭电源。

只有知道了要求后就根据要求来设计电路。

图1是输出保护电路的一种,这种电路应用非常多,他是用TL431与光耦的搭配,靠光耦的导通来控制原边的控制芯片停机,实现过于保护,的他的好处是过压保护电压精度高,一般应用到后级需要严格控制电源的电源。

他的成本是比较高的。

图2也是一种输出保护电路,这种电路就是在上一个电路的基础上进行了变动,原理是本来利用TL431来检测输出电压的电路改成了一个稳压管,稳压管的精度是没有TL431高的,但是价格比TL431便宜,这也就是他的优势,缺点是他的精度不高,对于这种电路一般应用在没有要求具体多少电压过压的电源,就是在出现过压的时候起到一个保护电解电容的作用,不至于电解电容坏。

上面的两种方法,我们一直看到有一个光耦的存在,这是应为我们的电源是隔离的原因,但是光耦的价格也是不便宜的。

如果不需要过压精度很高,那么我们是不是可以想办法吧光耦去除,而且是能检测输出电压的办法,是不是最好了,那有什么好的办法了,隔离不用光耦,我们是不是就想到用互感器等磁芯器件,但是这又违背了价格便宜的问题,最好是在不增加其他器件的基础上就能实现过压保护功能。

隔离电源我们都会有一个隔离变压器,这是每一个开关电源都有的,那么我们是不是可以利用这一个开关变压器来实现,我们知道电源是有VCC绕组,我们能不能用VCC绕组来实现过压保护了,肯定是可以的,只是精度与一致性不好,但是价格便宜,如果在你的接受范围内的话,是不是很好。

那么就有了下面的电路图,下面Latch脚是芯片检测过压的脚。

上面的三种电路都是对于电源自身反馈环路有问题的时才有作用,那要是输出电压被外电压强制提高怎么办了,很多的时候就想到了,看下面的图,是不是增加了一个TVS,这一个TVS 只能够钳位过压非常短的时间,要是长时间的,可能会坏,但是他的价格便宜。

开关电源过流保护电路原理

开关电源过流保护电路原理

开关电源过流保护电路原理在电子设备中,开关电源是一个常见的电源供应形式。

然而,由于各种原因可能导致电路中的电流超过设计值,这就需要过流保护电路的应用。

过流保护电路旨在检测电路中的电流超过额定值时,立即切断电源以防止电路元件损坏。

过流保护原理过流保护电路通常由电流传感器、比较器、触发器和开关元件等部分组成。

当电路中的电流超过设定的阈值时,电流传感器会检测到这一超额电流,并将信号传递给比较器。

比较器用于比较电流传感器输出的信号与预设阈值,并在检测到超额电流时触发触发器。

触发器受到比较器的信号后,将立即切断开关元件,使电路中的电流降至安全范围内。

在某些设计中,过流保护电路还可以配备延时器,以确保在电流波动较大但仍在可接受范围内时不误触发保护电路。

过流保护电路的应用过流保护电路广泛应用于各种电子设备中,特别是对于需求高稳定性和可靠性的设备更是必不可少。

例如,计算机电源、家用电器、通信设备等都需要过流保护电路来确保设备在异常电流情况下得以安全运行。

对于开关电源而言,过流保护电路更是必备的一部分。

由于开关电源通常工作在较高频率下,一旦发生过流现象,元件可能会迅速损坏,进而导致整个电源系统崩溃。

因此,过流保护电路的可靠性和高效性对于开关电源的稳定性起着至关重要的作用。

总结过流保护电路是一种关键的电路保护部件,能够有效地保护电子设备免受因过大电流而产生的损坏。

通过适当设计和应用过流保护电路,不仅能提升电子设备的安全性和稳定性,也能延长设备的使用寿命。

在电子设备设计和制造过程中,考虑到过流保护电路的合理性和可靠性将对产品质量和用户体验产生积极的影响。

1。

开关电源的基本组成

开关电源的基本组成

开关电源的基本组成开关电源是一种将交流电转换成直流电的电源装置。

它由多个基本组成部分组成,包括变压器、整流器、滤波器、稳压器和保护电路。

1. 变压器:开关电源的变压器主要用于将输入的交流电转换为所需的电压。

它由铁芯和线圈组成,通过磁感应原理实现电压的转换。

变压器可以将输入电压变高或变低,以适应设备的工作电压要求。

2. 整流器:开关电源的整流器用于将交流电转换为直流电。

常见的整流器有二极管整流器和桥式整流器。

二极管整流器通过二极管将交流电的负半周截去,只保留正半周,从而实现了交流到直流的转换。

桥式整流器则通过四个二极管组成的桥路,可以同时将正半周和负半周都转换为直流电。

3. 滤波器:开关电源的滤波器用于平滑直流输出电压。

在整流后的直流电中,仍然存在一定的脉动,滤波器的作用就是通过电容器和电感器对脉动进行滤波,使输出电压更加稳定。

4. 稳压器:开关电源的稳压器用于保持输出电压的稳定。

稳压器可以根据负载的变化自动调节输出电压,确保稳定在设定的数值。

常见的稳压器有线性稳压器和开关稳压器,其中开关稳压器的效率更高,使用更广泛。

5. 保护电路:开关电源的保护电路用于保护电源和负载设备不受过电流、过电压、过温等因素的损害。

常见的保护电路包括过流保护、过压保护、过温保护等,它们可以通过监测电流、电压和温度等参数来及时切断电源或降低输出电压,以保护电源和负载设备的安全运行。

开关电源的基本组成部分相互配合,共同实现了将交流电转换为直流电,并提供稳定的输出电压给负载设备使用。

通过合理设计和选择不同的组件,可以满足各种不同负载设备的需求,例如家用电器、电子设备、通信设备等。

开关电源具有高效、稳定、可靠的特点,被广泛应用于各个领域。

开关电源短路保护电路

开关电源短路保护电路

开关电源短路保护电路
1、在输出端短路的状况下,PWM掌握电路能够把输出电流限制在一个平安范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。

2、短路爱护电路通常有两种,下图是小功率短路爱护电路,其原理简述如下:
当输出电路短路,输出电压消逝,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。

UC3842停止工作后①脚电位消逝,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。

当短路现象消逝后,电路可以自动恢复成正常工作状态。

3、下图是中功率短路爱护电路,其原理简述如下:
当输出短路,UC3842①脚电压上升,U1 ③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842 停止工作,输出电压为0V,周而复始,当短路消逝后电路正常工作。

R2、C1是充放电时间常数,阻值不对时短路爱护不起作用。

4、下图是常见的限流、短路爱护电路。

其工作原理简述如下:
当输出电路短路或过流,变压器原边电流增大,R3 两端电压降增大,
③脚电压上升,UC3842⑥脚输出占空比渐渐增大,③脚电压超过1V时,UC3842关闭无输出。

5、下图是用电流互感器取样电流的爱护电路,
有着功耗小,但成本高和电路较为简单,其工作原理简述如下:输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842 停止工作,周而复始,当短路或过载消逝,电路自行恢复。

开关电源保护电路有几种方法?

开关电源保护电路有几种方法?

开关电源保护电路有几种方法?1防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达IOOA以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

这种现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析说明,电子元器件温度每升高2七,可靠性下降10%,温升50。

C时的工作寿命只有温升25。

C时的1/6,为了防止功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3缺相保护电路由于电网自身原因或电源输入接线不可靠,开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相开展保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器开展比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

4短路保护开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护摘要:一、开关电源保护电路的概述二、开关电源常用的保护电路1.过流保护2.过压保护3.过热保护4.短路保护5.空载保护三、保护电路在开关电源中的重要性四、选择合适的保护方案和电路结构正文:开关电源是电子设备中不可或缺的组成部分,其性能直接影响着设备的稳定性和可靠性。

为了保证开关电源的正常工作,保护电路的设计尤为重要。

本文将详细介绍开关电源常用的几种保护电路。

首先,开关电源的保护电路主要包括过流保护、过压保护、过热保护、短路保护和空载保护。

这些保护电路可以防止电源因异常工作状态而损坏,确保电源的稳定性和可靠性。

1.过流保护:过流保护是开关电源中最常见的保护方式。

当电源负载电流超过额定电流时,过流保护电路会立即切断电源,以保护电源和负载设备。

2.过压保护:过压保护主要针对输入电压过高的情况。

当输入电压超过电源的额定电压时,过压保护电路会启动,切断电源,以防止电源因电压过高而损坏。

3.过热保护:过热保护主要针对开关电源内部器件的过热情况。

当电源内部器件的温度超过额定值时,过热保护电路会启动,切断电源,以防止电源因过热而损坏。

4.短路保护:短路保护主要针对电源负载短路的情况。

当负载短路时,短路保护电路会立即切断电源,以防止电源因负载短路而损坏。

5.空载保护:空载保护主要针对电源在无负载情况下的保护。

当电源处于空载状态时,空载保护电路会启动,切断电源,以防止电源因长时间空载而损坏。

保护电路在开关电源中的重要性不言而喻。

合适的保护电路可以有效延长电源的使用寿命,提高电源的稳定性和可靠性。

因此,在设计开关电源时,应根据实际需求选择合适的保护方案和电路结构。

总之,开关电源的保护电路是电源稳定性和可靠性的重要保障。

UC3842,3843系类开关电源常见保护电路的分析与设计

UC3842,3843系类开关电源常见保护电路的分析与设计

UC3842,3843系类开关电源常见保护电路的分析与设计引言UC3842是美国Unltmde公司生产的一种性能优良的电流控制型脉宽调制芯片,它具有管脚数量少,外围电路简单等特点,因而得到了广泛的应用。

但随着UC3842开关频率的提高,由它所构成的开关电源的保护电路也出现了很多问题。

本文分析了UC3842保护电路的缺陷及改进的方法。

用UC3842做的开关电源的典型电路见图1。

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Va ux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。

这被称为“打嗝”式(hicc up)保护。

在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。

仔细调整这个电阻的数值,一般都可以达到满意的保护。

使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1.在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;2.在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3.在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。

这时如果采用辅助电路来实现保护关断,会达到更好的效果。

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路:1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、 DC输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖

各种开关电源电路原理详细解剖开关电源是一种通过开关器件对输入电压进行快速开关来稳定输出电压的电源。

它可以将输入电压转换成较低或较高的输出电压,并具有体积小、效率高、稳定性好等优点。

以下将详细解剖开关电源的原理。

1.输入电路:开关电源的输入电路通常有电源滤波电路和整流电路组成。

电源滤波电路用于滤除输入电压中的噪声,提供干净的电源给整流电路使用。

整流电路一般采用桥式整流器,它将交流电转换为脉冲形式的直流电。

2.开关器件:开关电源的核心部分是开关器件,一般有开关管(如MOS管、IGBT)或晶闸管等。

开关器件通过控制开关管的导通和截止状态来调节输出电压和电流。

3.控制电路:控制电路用于监测输出电压和电流,并根据需求向开关器件发送开关信号,控制开关器件的开关状态。

常见的控制电路有反馈电路和PWM控制电路。

反馈电路通过比较输出电压和参考电压的差异来调节开关器件的开关状态,以保持输出电压稳定。

PWM控制电路则通过调节开关器件的导通时间和截止时间来控制输出电压的大小。

4.输出电路:输出电路用于将开关器件产生的脉冲电压转换为稳定的直流电。

输出电路通常由输出滤波电路和稳压电路组成。

输出滤波电路用于滤除输出电压中的脉动,提供稳定的输出电压。

稳压电路则通过反馈电路来调节开关器件的开关状态,保持输出电压的稳定。

5.保护电路:开关电源还需要一些保护电路来保护开关器件和其他电路免受异常工作条件的损害。

常见的保护电路有过压保护电路、过流保护电路和短路保护电路等。

综上所述,开关电源的原理是通过控制开关器件的开关状态来调节输出电压和电流。

开关器件由控制电路根据输出电压和电流的需求发送开关信号,控制开关器件的导通和截止。

输入电路和输出电路分别用于提供稳定的输入电源和转换输出电压。

保护电路则用于保护开关器件和其他电路免受异常工作条件的损害。

通过这些环节的协同工作,开关电源可以实现高效率、稳定性好的能量转换。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

开关电源芯片启动过压保护电路原理

开关电源芯片启动过压保护电路原理

开关电源芯片启动过压保护电路原理
开关电源芯片的过压保护电路通常是用来保护电路不受过大的
输入电压影响,以防止损坏电路元件或设备。

其原理主要包括以下
几个方面:
1. 过压检测,过压保护电路首先需要对输入电压进行检测,通
常会使用电压比较器或者其他传感器来监测输入电压是否超过设定
的阈值。

一旦检测到输入电压超过设定范围,保护电路会立即做出
响应。

2. 触发保护动作,当过压保护电路检测到输入电压超过设定范
围时,会立即触发保护动作,通常是通过控制开关电源芯片的工作
状态,使其停止工作或者减小输出功率,以减轻输入电压对电路的
影响。

3. 输出短路,有些过压保护电路还会通过输出短路的方式来保
护电路。

一旦检测到输入电压过高,保护电路会立即将开关电源芯
片的输出短路,以消耗过高的输入能量,保护电路和设备不受损害。

4. 自恢复功能,一些过压保护电路还具有自恢复功能,当输入
电压恢复正常范围后,保护电路会自动解除保护状态,使开关电源芯片恢复正常工作。

总的来说,过压保护电路的原理是通过检测输入电压、触发保护动作、输出短路等方式来保护开关电源芯片和其他电路元件,以确保整个电路系统的安全稳定运行。

开关电源中几种过流保护电路

开关电源中几种过流保护电路

开关电源中几种过流保护方式2005年02月23日 0引言电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。

一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。

1开关电源中常用的过流保护方式过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。

过电流的设定值通常为额定电流的110%~130%。

一般为自动恢复型。

中表示电流下垂型,表示恒流型,表示恒功率型。

图1①②③图1过电流保护特性1.1用于变压器初级直接驱动电路中的限流电路在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。

图2是在这样的电路中实现限流的两种方法。

图2电路可用于单端正激式变换器和反激式变换器。

图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。

图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。

首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较小,这样就减小了功耗,提高了电源的效率。

(a)晶体管保护(b)限流比较器保护图2在单端正激式或反激式变换器电路中的限流电路当AC输入电压在90~264V范围内变化,且输出同等功率时,则变压器初级的尖峰电流相差很大,导致高、低端过流保护点严重漂移,不利于过流点的一致性。

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

开关电源常用保护电路-过热、过流、过压以及软启动保护电路

1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。

同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。

但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。

为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。

2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。

功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。

它主要由开关三极管和高频变压器组成。

图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。

实际上,直流开关电源的核心部分是一个直流变压器。

2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。

因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。

直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。

由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。

电路中的开关电源保护电路有什么作用

电路中的开关电源保护电路有什么作用

电路中的开关电源保护电路有什么作用电路中的开关电源保护电路,作为电路设计中的关键组成部分,在现代电子设备中起着至关重要的作用。

它的主要功能是保护电路中的元器件免受过电流、过电压和过温等因素的损害,并确保电路的稳定工作。

本文将从这几个方面来详细探讨开关电源保护电路的作用。

一、保护电路不受过电流的损害开关电源保护电路的第一个作用是保护电路免受过电流的损害。

在电路中,如果电流超过了元器件所能承受的额定电流,很容易导致元器件过载、烧毁,甚至引起火灾等危险情况。

因此,开关电源保护电路通过检测电流大小,当电流超过预设值时,会自动切断电源,从而起到保护电路的作用。

二、保护电路不受过电压的损害除了过电流,过电压也是电路中常见的问题之一。

过高或过低的电压都会对电路的正常工作产生不利影响。

开关电源保护电路通过监测电压的变化,当检测到电压超出安全范围时,会自动切断电源,以避免电路中元器件因电压问题而受到损坏。

三、保护电路不受过温的损害在电路运行的过程中,一些元器件可能会因长时间工作而产生过热情况。

过高的温度会引起元器件的老化、烧毁等问题,从而导致整个电路的不稳定甚至故障。

为了避免这种情况的发生,开关电源保护电路会通过监测温度的变化,在温度达到一定阈值时及时进行保护措施,如切断电源或启动风扇进行散热。

四、保护电路稳定工作除了保护元器件免受损害,开关电源保护电路还能保证电路的稳定工作。

在电源输入瞬间或输出瞬变时,保护电路能够发挥作用,保证电路的稳定性,避免因电压波动或电流突变而引起电子设备的异常情况。

综上所述,电路中的开关电源保护电路在现代电子设备中具有重要作用。

它能够保护电路免受过电流、过电压和过温等因素的损害,确保电路的稳定工作。

对于电子设备的正常运行和使用寿命的延长起到了关键的作用。

因此,在电路设计和实际应用中,合理配置和使用开关电源保护电路是非常必要的。

开关电源保护电路

开关电源保护电路

开关电源保护电路§2.3 保护电路一过流保护电路1 过流保护电路的功能和组成* 功能发生过流时,立即某种方式消除过流,保护电路器件不会损坏。

* 产生过流的原因①负载过载或输出短路②整流器件失效③开关管失效④干扰等因素造成的误导通* 简单的保护方法利用熔断器,但动作慢,不足以实现快速保护,一般使用由电子元器件构成的保护电路。

* 组成电流信号检测电路过流信号处理电路封锁开关脉冲电路2 过流保护电路的设计(1)电流传感器检测过流保护电路* 电流信号检测电路D RRS CS CUS①脉冲电流前沿尖峰是由次级整流二极管的反向恢复造成的变压器次级暂时短路引起的。

②脉冲电流后沿尖峰是开关管关断时的初级漏感和引线电感造成的。

③加两级滤波后脉冲电流的前后沿尖峰明显减小。

* 过流信号处理电路①过流一般都是不正常现象,或者是故障,所以过流保护应该是不可以自恢复的。

USR1 R3 U1REF②实现方式,反馈自锁。

UR2③可自锁的处理电路* 封锁开关脉冲电路US R1D1R4R3 U1REF把过流信号处理电路的输出加到集成PWM控制器的保护信号输入端即可。

UR2(2)功率开关管过流状态的自动识别* 根据:GTR、GTO、IGBT等的导通压降是和导通时通过的电流有关的,当管子中电流增加时,其导通压降也会明显上升。

* 功率MOSFET是阻性负载,导通压降也和导通时的电流有关。

* 注意,与截止时的电压相区别。

* 具有快速、可靠、方便的优点。

二输出过压、欠压保护电路1 过压、欠压状态的判断U CC R4 * 比较器A用于输出过压判断。

* 比较器B用于输出欠压判断。

*、调整电阻R1、R2、R3可改变保护点。

U0R1AUBR2上限UHR2 R3 R 2 R 3 R1UCR3B下限ULR3 R 2 R 3 R1UC* 正常时,UB=“0”;保护时,UB=“1”。

2 保护把过压、欠压判断电路的输出加到集成PWM控制器的保护信号输入端即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源保护电路为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。

关键词:开关电源;保护电路;可靠性1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。

取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。

N1.3为过热比较器,R T为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,R T阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。

N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。

由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。

如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路2.3 缺相保护电路由于电网自身原因或电源输入接线不可靠,开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM 信号。

图5 三相四线制的缺相保护电路图6是一种用于三相三线制电源缺相保护电路,A、B、C缺任何一相,光耦器输出电平低于比较器的反相输入端的基准电压,比较器输出低电平,封锁PWM驱动信号,关闭电源。

比较器输入极性稍加变动,亦可用高电平封锁PWM信号。

这种缺相保护电路采用光耦隔离强电,安全可靠,R P1、R P2用于调节缺相保护动作阈值。

图6 三相三线制的缺相保护电路2.4 短路保护开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。

IGBT(绝缘栅双极型晶体管)兼有场效应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件。

IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。

短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率d i/d t过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可在器件内部产生擎住效应使IGBT锁定失效,同时高的过电压会使IGBT击穿。

因此,当出现短路过流时,必须采取有效的保护措施。

为了实现IGBT的短路保护,则必须进行过流检测。

适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流I c,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降V ce,因为管压降含有短路电流信息,过流时V ce增大,且基本上为线性关系,检测过流时的V ce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。

在短路电流出现时,为了避免关断电流的d i/d t过大形成过电压,导致IGBT锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。

在检测到过流信号后首先是进入降栅保护程序,以降低故障电流的幅值,延长IGBT的短路承受时间。

在降栅动作后,设定一个固定延迟时间用以判断故障电流的真实性,如在延迟时间内故障消失则栅压自动恢复,如故障仍然存在则进行软关断程序,使栅压降至0V以下,关断IGBT的驱动信号。

由于在降栅压程序阶段集电极电流已减小,故软关断时不会出现过大的短路电流下降率和过高的过电压。

采用软降栅压及软关断栅极驱动保护,使故障电流的幅值和下降率都能受到限制,过电压降低,IGBT的电流、电压运行轨迹能保证在安全区内。

在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。

为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。

下面介绍几种IGBT短路保护的实用电路及工作原理。

图7是利用IGBT过流时V ce增大的原理进行保护的电路,用于专用驱动器EXB841。

EXB841内部电路能很好地完成降栅及软关断,并具有内部延迟功能,以消除干扰产生的误动作。

含有IGBT过流信息的V ce不直接送至EXB841的集电极电压监视脚6,而是经快速恢复二极管V D1,通过比较器IC1输出接至EXB841的脚6,其目的是为了消除V D1正向压降随电流不同而异,采用阈值比较器,提高电流检测的准确性。

如果发生过流,驱动器EXB841的低速切断电路慢速关断IGBT,以避免集电极电流尖峰脉冲损坏IGBT器件。

图7 采用IGBT过流时V ce增大的原理进行保护图8是利用电流传感器进行过流检测的IGBT保护电路,电流传感器(SC)初级(1匝)串接在IGBT 的集电极电路中,次级感应的过流信号经整流后送至比较器IC1的同相输入端,与反相端的基准电压进行比较,IC1的输出送至具有正反馈的比较器IC2,其输出接至PWM控制器UC3525的输出控制脚10。

不过流时,V A<V ref,V B=0.2V,V C<V ref,IC2输出低电平,PWM控制器正常工作。

当出现过流时,电流传感器检测的整流电压升高,V A>V ref,V B为高电平,C3充电使V C>V ref,IC2输出高电平(大于1.4V),关闭PWM控制电路。

因无驱动信号,IGBT关闭,而电源停止工作,电流传感器无电流流过,使V A<V ref,V B=0.2V,C3经R1放电,当C3放电到使V C<V ref时,IC2又输出低电平,电源重新进入工作状态,如果过流继续存在,保护电路又回复到原来的限流保护工作状态,反复循环使PWM控制电路的输出驱动波形处于间隔输出状态,如图8(b)所示波形。

电位器R P1调整比较器过流动作阈值。

电容器C3经D5快速充电,经R1慢速放电,只要合理地选择R1,C3的参数,使PWM驱动信号关闭时间t2>>t1,可保证电源进入睡眠状态。

正反馈电阻R7保证IC2只有高、低电平两种状态,D5,R1,C3充放电电路,保证IC2输出不致在高、低电平之间频繁变化,即IGBT不致频繁开通、关断而损坏。

(a) 电路原理图(b) PWM控制电路的输出驱动波形图图8 利用电流传感器进行过流检测的IGBT保护电路图9是利用IGBT(V1)过流集电极电压检测和电流传感器检测的综合保护电路,电路工作原理是:负载短路(或IGBT因其它故障过流)时,V1的V ce增大,V3门极驱动电流经R2,R3分压器使V3导通,IGBT 栅极电压由V D3所限制而降压,限制IGBT峰值电流幅度,同时经R5C3延迟使V2导通,送去软关断信号。

另一方面,在短路时经电流传感器检测短路电流,经比较器IC1输出的高电平使V3导通进行降栅压,V2导通进行软关断。

图9 综合过流保护电路图10是应用检测IGBT集电极电压的过流保护原理,采用软降栅压、软关断及降低工作频率保护技术的短路保护电路。

相关文档
最新文档