Delta并联机器人的机构设计1
Delta并联机器人本体尺寸及结构参数优化设计研究
总723期第二十五期2020年9月河南科技Henan Science and TechnologyDelta并联机器人本体尺寸及结构参数优化设计研究张萌(辽宁装备制造职业技术学院机械工程系,辽宁沈阳110161)摘要:本文主要对Delta并联机器人本体尺寸及结构参数优化设计进行分析,在尺寸参数优化的基础上运用机器人学、多体动力学和结构拓扑优化方法进行综合分析,对机器人本体结构进行轻量化设计,以最大工作空间为优化目标,把工作空间内的全域工作灵活性作为约束条件,采用随机搜索的方法求解到最优结构参数。
关键词:Delta机器人;结构设计;参数优化中图分类号:TP242文献标识码:A文章编号:1003-5168(2020)25-0027-02 Research on the Optimal Design of Body Size and StructuralParameters of Delta Parallel RobotZHANG Meng(Department of Mechanical Engineering,Liaoning Equipment ManufacturingVocational and Technical College,Shenyang Liaoning110161)Abstract:This paper mainly analyzed the size and structural parameter optimization design of delta parallel robot. On the basis of size parameter optimization,it used robotics,multi-body dynamics and structural topology optimiza⁃tion methods to carry out a comprehensive analysis.The lightweight design of the robot body structure was carried out with the maximum working space as the optimization objective and the global working flexibility in the workspace as the constraint the optimal structural parameters were obtained by random search.Keywords:Delta robot;structure design;parameter optimizationDelta机器人是一种具有3个平动自由度的高速并联机器人[1],也是目前商业应用最成功的并联机器人之一。
并联delta机器人算法演示
具有高刚度、高精度、高速度、高加 速度等优点,同时具有结构紧凑、占 用空间小、运动范围大等优点。
工作原理与结构
工作原理
并联delta机器人的工作原理是基 于并联机构的运动学和动力学特 性,通过控制各运动链的运动, 实现机器人的整体运动。
结构
通常由底座、主动臂、从动臂和 末端执行器等部分组成,其中主 动臂和从动臂通常采用平行四边 形机构或正弦机构。
05
并联delta机器人的未来发展
技术发展趋势
智能化
随着人工智能和机器学习技术的进步,并联delta机器人将更加智 能化,能够自主进行任务规划和决策。
模块化设计
为了满足不同应用场景的需求,并联delta机器人的设计将趋向模 块化,使得机器人的结构和功能更加灵活多变。
新材料应用
新型材料如碳纤维、钛合金等将在并联delta机器人的制造中得到广 泛应用,提高机器人的强度和轻量化。
03
ห้องสมุดไป่ตู้并联delta机器人算法演示
演示准备
硬件设备
01
并联delta机器人、控制器、电源、电脑等。
软件工具
02
机器人算法演示软件、示波器等。
场地准备
03
宽敞的场地,以便于机器人移动和操作。
演示步骤
1. 连接硬件
将并联delta机器人与控制器、电脑等设备连接,确 保电源和信号线连接正确。
2. 启动软件
并联delta机器人算法演 示
汇报人: 202X-01-04
目录
• 并联delta机器人简介 • 并联delta机器人算法 • 并联delta机器人算法演示 • 并联delta机器人算法优化 • 并联delta机器人的未来发展
并联机器人构型方法 (1)
并联机器人机构构型方法研究
1-3-5基于集合的综合方法
高峰
[139]
使用复合铰链综合具有确定运动特征支链的方法综合了多种少自由度并联机构,并提出了
一种特殊的Plücker坐标,用于描述机构和支链的运动特征。在此基础上,宫金良、高峰
[140-142]
进的机器人机构构型分析方法,使用四种运动基(移动基、转动基、左螺旋基
定义并联机构中第j个分支总的自由度数为
j
C,则有下式成立
=1 =1
∑=∑
mg
j i
j i
C f (1.4)
将(1.4)代入(1.3)消去
i
f后得到
∑= +
m
j
j
C M d l (1.5)
对于分支运动链结构相同,且分支数等于机构自由度数的对称并联机构,又有以下条件成立
m = M且l = M−1 (1.6)
标记法、哈明数法、对称群理论、图论法等,这些理论研究积累了丰富的经验,综合并创新了多种机构
[77-83]
。到目前为止,已经形成了比较完善的平面机构构型理论和方法。
近年来,国内外机构型研究主要集中在并联机器人机构构型问题上。并联机构的结构属于空间多环
河北工业大学博士学位论文
11
度的非线性约束,才能确定动平台运动输出特性,而自由度的非线性约束增加了型综合的难度。
形统一描述基本运动副和串、并联机构末端执行器运动类型的理论框架。该方法可被认为是李群代数法
delta机器人结构设计说明书
摘要随着机器人技术的快速发展,并联机械手的应用领域越来越广,已成为当今机器人领域新的研究热点。
针对并联机械手机构比传统串联机械手更复杂的问题,本文以一种轻型高速的三自由度Delta并联机械手为例,在完成其运动学的基础上,对并联机械手进行了建模以及装配。
首先,本文介绍了三自由度并联机械手机构的工作原理,并对其进行了运动学分析。
其中,对机构的自由度进行的计算,采用几何法求得了其运动学正解以及其运动学逆解。
其次,对机构进行了速度模型及雅克比矩阵的分析。
实现了solidworks对机构的零部件与装配图三维建模。
最后,通过个零部件的配合,实现了三自由度并联机械手的装配。
关键词:并联机械手;三自由度;3D建模ABSTRACTWith the rapid development of robot technology, parallel manipulator used more and more widely, has become the hot spot in the field of new robots today. In view of the parallel manipulator mechanism more complex than the traditional serial manipulator problem, based on a lightweight high-speed three degree of freedom parallel manipulator as an example, the Delta at the completion of its kinematics, on the basis of the parallel manipulator has carried on the modeling and assembly.First, this paper introduces the working principle of three degrees of freedom parallel manipulator mechanism, and carries on the kinematics analysis. Among them, the institution of degree of freedom for the calculation of geometric method is used to obtain the positive kinematics solution and its inverse kinematics solution. Second, the institutions for the velocity model and the Jacobi matrix analysis. Implements the solidworks for spare parts and assembly drawing 3 d modeling of the organization. Finally, by a spare parts, implements the three degree of freedom parallel manipulator assembly.Keywords: Parallel manipulator;Three degrees of freedom;3D modeling目录摘要 (I)ABSTRACT (II)第1章引言 (1)1.1 课题背景 (1)1.2 课题目的及意义 (1)1.3 课题研究内容 (1)第2章并联机械手的概述 (3)2.1 关于并联机械手 (3)2.1.1 并联机械手的定义与特点 (3)2.1.2 并联机械手的研究现状 (4)2.2 并联机械手的工业应用 (6)2.3 本章小结 (6)第3章三自由度并联机械手的运动学分析 (7)3.1 机构简介 (7)3.2 自由度分析 (7)3.3 运动学分析 (8)3.3.1 运动学逆解 (9)3.3.2 运动学正解 (9)3.3.3 速度模型及雅克比矩阵 (11)3.4 本章小结 (12)第4章delta机器人的结构设计.. ..... ..... ..... ..... ..... (14)4.1 delta机器人的总体结构设计 (14)4.2 上顶板 (14)4.3 电机座设计 (15)4.4 电机选取 (16)4.5 减速器选择与设计 (17)4.6 轴承校核 (18)4.7 本章小结 (19)第5章并联机械手的建模与装配 (21)5.1 三维建模软件solidworks简介 (21)5.2 并联机械手的三维建模 (21)5.3 并联机械手零件实体造型 (21)5.4 并联机械手装配 (22)5.5本章小结 (24)总结.....................................................................................,. (25)参考文献 (26)致谢 (27)第1章引言1.1课题背景翻开整个人类的历史,就会发现这是一部不断认识世界、改造世界的发展历史,一部伴随生产工具不断提高的生产力进步史。
delta型并联机器人运动学正解几何解法
delta型并联机器人运动学正解几何解法Delta型并联机器人是一种高速、高精度的机器人,广泛应用于工业生产线上的自动化生产。
在机器人的运动学中,正解几何解法是一种常用的方法,可以用来计算机器人的末端执行器的位置和姿态。
本文将介绍Delta型并联机器人运动学正解几何解法的原理和应用。
Delta型并联机器人由三个平行的臂构成,每个臂上都有一个关节,臂与臂之间通过球形关节连接。
机器人的末端执行器位于三个臂的交点处,可以在三个平面内自由移动。
Delta型并联机器人的运动学正解几何解法是通过计算机器人的三个臂的长度和末端执行器的位置和姿态来确定机器人的运动状态。
Delta型并联机器人的运动学正解几何解法可以分为两个步骤。
第一步是计算机器人的三个臂的长度,这可以通过测量机器人的关节角度和臂的长度来实现。
第二步是计算机器人的末端执行器的位置和姿态,这可以通过三角函数和向量运算来实现。
在计算机器人的末端执行器的位置和姿态时,需要使用三角函数来计算机器人的关节角度和末端执行器的位置。
同时,还需要使用向量运算来计算机器人的末端执行器的姿态。
通过这些计算,可以得到机器人的运动状态,从而实现机器人的自动化生产。
Delta型并联机器人运动学正解几何解法的应用非常广泛,可以用于机器人的轨迹规划、运动控制和姿态控制等方面。
在工业生产线上,机器人的运动学正解几何解法可以帮助企业提高生产效率和产品质量,降低生产成本和人力成本。
Delta型并联机器人运动学正解几何解法是一种重要的计算方法,可以帮助企业实现机器人的自动化生产,提高生产效率和产品质量。
随着机器人技术的不断发展,Delta型并联机器人运动学正解几何解法将会得到更广泛的应用。
并联机器人控制技术流程..
气动系统设计
气动系统设计方案如右图 所示,气源泵(空气泵) 产生压缩气体,经过滤减 压阀过滤、定压,分为两 支路,一路气体通过真空 发生电磁阀到达真空发生 器用于产生真空;另一路 气体经过真空破坏电磁阀 直接与吸盘相通。 两个电磁阀的通断信号来自控制器的开关量信号,当吸盘到达待抓取物体 的正上方时,真空发生电磁阀打开,真空发生器产生真空,吸盘将物体吸 住;到达放置位置时,真空破坏电磁阀打开,吸盘气压高于大气压,物体 被“放下”。
(2)PLC控制器。对控制器的要求,主要是能够实现多轴
运动控制和一些开关量的控制,市场上很多运动控制卡 及PLC都能满足要求,这里介绍一种大工计控生产的 PEC6000控制器。该控制器采用高速总线通讯,具有直 线、圆弧和样条三种插补算法支持单轴、多轴和轴组运 动控制,并且支持G代码。主要参数如下: • 2路RS485通讯,1路以太网通讯; • 16路普通/8路高速(4路AB相)数字量输入,12路普通 /4路高速数字量输出。
图1.2 机器人控制系统整体框图
上位机
上位机是指可以 直接发出操控指令 的计算机。其屏幕 上显示各种信号变 化(角度,压力, 温度 等)
图1.3 上位机屏幕显示
图1.4 机器人系统及视觉系统示意图
机器人视觉系统
机器视觉系统大多是指通过机器视觉产品(即图 像摄取装置,分CCD和CMOS两种)把图像抓 取到,然后将该图像传送至处理单元,通过数 字化处理,根据像素分布和亮度、颜色等信息 ,来进行尺寸、形状、颜色等的判别。进而根 据判别的结果来控制现场的设备动作。
1.控制系统设计
在前面机械系统 的基础上,要想 实现机器人的抓 取操作,还必须 有控制系统
图1.1 Delta并联机器人本体与控制柜
机械原理课程设计-Delta-ahut并联机械手设计
(IT)
式中,
由
F——机构的自由度
n——机构的构件数
g--- 运动副数
Z ——第i个运动副的相对自由度
这就是著名的Kutzbach Grubler公式。
通过分析Delta-ahut并联机械手可知,可以考虑将与每一个支链从动臂相连
接的创新皎链当成两个虎克皎,再根据式(1-1)来计算该并联机构的自由度个
(2-4)
展开后,有
(r-cz.)r(r-q)-2Z1(r-q)ruz. +1;-l;=0
(2-5)
将", =(cos&cosQ m&.cosQ -sinQ)『代入上式,并转变成三角函数式
A. sin + B. cos+ Cz = 0 的形式。式中,
A=2L(r — q)W
Bj= 一2« (r-q)r (e1 cos R + e2 sin x(w. x wz) 3 vzr x(w. x wz) (vzr x(w. x wz))2
将式(2-16)两边右叉乘螺,整理得第,个支链的角加速度:
.r
.2
)
绥=| 明. x 1 - 4 Q (叫 x(V- X % )) - /]耳(叫 x % ) 〃2
X (、. X )) - 0:)(叫 X〃z)]〃2
1机构运动简图的测绘与自由度的计算
1.1机构运动简图的测绘
Delta-ahut高速并联机械手参数测算结果如下表所示:
表1T几何参数
(单位:m)
k
4
rb
h
R
H
0
0.245 0.950 0.082 0.212 0.200 0.880 0.8060 36
76
delta机器人
一、Delta并联机器人1. Delta并联机器人概述Delta机器人属于高速、轻载的并联机器人,一般通过示教编程或视觉系统捕捉目标物体,由三个并联的伺服轴确定抓具中心(TCP)的空间位置,实现目标物体的运输,加工等操作。
Delta机器人主要应用于食品、药品和电子产品等加工、装配。
Delta机器人以其重量轻、体积小、运动速度快、定位精确、成本低、效率高等特点,正在市场上被广泛应用。
2. Delta并联机器人特点Delta机器人是典型的空间三自由度并联机构,整体结构精密、紧凑,驱动部分均布于固定平台,这些特点使它具有如下特性:承载能力强、刚度大、自重负荷比小、动态性能好。
并行三自由度机械臂结构,重复定位精度高。
超高速拾取物品,一秒钟多个节拍。
3. Delta并联机器人应用系统Delta并联机器人应用系统主要由三个部分组成:机器人、输送线及机器人安装框架。
其布局如下图1。
3.1 组成机器人由基板、电机罩、旋转轴、主机械臂、副机械臂、抓具中心等组成,如下图2所示。
图1 Delta机器人整体布局图2 Delta机器组成图3 Delta机器人输送装置3.2 输送线机器人配套输送线采用电机输送带方式,输送线如图3所示。
通过机器人视觉系统定位与输送线编码器反馈位置的方式,实现机器人对目标工件的位置、姿态识别和准确抓取。
根据节拍与现场需要,可并行多条输送线同时操作。
3.3 机器人安装框架机器人安装框架用来固定机器人机构,其结构及安装方式根据现场应用进行定制。
4. Delta并联机器人工作空间Delta机器人的工作空间由主机械臂及副机械臂的长度、动平台与静平台半径,以及主动臂活动角度范围这几个参数来确定。
以负载为一公斤的delta机器人工作空间为例,如下图所示。
5. Delta并联机器人运动轨迹Delta机器人基本的运动轨迹如下图,由S1、S2、S3构成门字形的三部分轨迹组成,分别为拾取、平移、放置三个阶段。
Delta机器人进行抓取目标工件时主要以走门字形运动轨迹,也可根据不同的应用要求,规划不同的运动轨迹。
三自由度Delta并联机器人的设计与仿真
目录摘要 (2)第1章引言 (6)1.1. 我国机器人研究现状 (8)1.2. 工业机器人概述: (9)1.3. 本论文研究的主要内容 (10)第2章机器人方案的设计 (15)2.1. 机器人机械设计的特点 (15)2.2. 与机器人有关的概念 (15)2.3. 工业机器人的组成及各部分关系概述 (16)2.4. 工业机器人的设计分析 (17)2.5. 方案设案 (18)2.6. 自由度分析 (18)2.7. 机械传动装置的选择 (20)2.7.1. 滚珠丝杠的选择 (20)第3章零部件设计与建模 (22)3.1. Croe软件介绍 (22)3.2. 关键零部件建模 (22)3.3. 各部分的装配关系 (36)第4章仿真分析 (39)第5章致谢 (43)参考文献 (44)摘要工业技术水平是工业用机器人现代化水平的重要指标,从研究和研究领域发展的结论,提高现代产业的要求,提高产业控制和控制任务的复杂性,提出了很高的要求。
理论上,我国末期输送能力和定位精确度高、小误差、惯性误差、反应速度快、工业工作并行、快速准确、现有工业工程预计会进一步增加,本文将研究并行研究、实用化并行以企业工学实用化为目标。
从摩擦接口、外乱和不确定性来看,如果没有连锁和动力学模型化的负担,传统的控制战略将难以得到基于控制有效性模型的预期。
通常,与一系列平行于更复杂的运动模型相比,动态测试和控制机制将更加复杂。
因此,有必要研究并联机构的动力学建模及其控制问题。
这是一个新的机器人,机器人的刚性。
承载能力高。
高精度。
小负荷的重量。
具有良好的性能和广泛的应用,是robotów.spokojnie系列的补充。
有一个固定的一部分,在特点和实验室条件下的动力学加速度(重力加速度),.终端控制机制,原来的三角洲是最有效的机制平行安装“电子项目机器人是机器人的控制和规划动力学研究的基础上,发挥着重要的作用,在“.badania kinematykę反向动力学和由简单到przodu.odwrotnie相对平行前进,kinematykę相对skomplikowane.na结构分析的基础上,建立了三角洲机器人模型,机器人的机器人。
DELTA并联机器人工作空间求解
有空间三个平移 自由度。 机器人工作空间定义为 , 在 结构限制下末端操作器 能够 达到的所有位置 的集 合。 求解工作空间是 D E L T A机器人数学建模和控制 等必须解决的关键问题。 计算 D E L T A工作空间的传 统方法有搜索法 、 作图法等。 文献 [ 1 ] 利用 D E L T A机 器人的运动学反解方程 ,提 出了一种工作空间的求 法。 文献 [ 2 ] 通过 C A D作为工具对 D E L T A的工作空
机 电控 制 。
2 0 1 7年第 1 1 期
陈统 书: D E L T A并联机器人工作空间求解
如上页图 2 所示 , 三个平移矢量 P , O ’ 、 P 2 O 。 、 P 3 D ’
坐标 为 : 式中:
F O I 册’ I ・ n . I F O ’ l = 、 /
平台组成 , 静平台的三条边通过三条相同的运动支 链分别连接到动平台的三个边上。每条运动链 中均
有 一个 由 四个 球 铰 与 杆 件 构 成 的平 行 四边形 闭环 。
三个平行四边形闭环的应用保证了动平台与静平 台 始终保持平行 , 消除了动平台的转动 自由度 , 保 留了
动平 台三个 平移 自由度 。
一
( 1 1 ) ,
1 一 r c 0 s 1
.
D f _ r s i n =
l 0 J
式 中: r 为 动平 台外 接 圆半 径 。 G 三 点矢 量 为
_ 1 , 2 , 3 . ( 1 )
耵 一
G ×C 3 C 1
’
这样 , 求取 了 O F和 F O ’ , 由式( 5 ) 可求解得三棱
出D E L T A工作空间中离散点求解过程 , 而没有很直 观地将 D E L T A的工作空间表达 出来 。 本文介绍一种 能直观表达 D E L T A工作空间大小的方法 。
最新Delta并联机器人的机构设计1汇总
D e l t a并联机器人的机构设计1零件的设计与选型1 定平台的设计定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度 20cm。
定平台的等效圆半径为 210mm。
材料选用铸铁,铸造加工,开口处磨削加工保证精度。
最后进行打孔的工艺。
图一定平台设计图2 驱动杆的设计具体参数为长* 厚* 宽:880mm*10mm*20mm。
孔的参数为φ 10*10mm。
材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。
图二驱动杆的设计图3 从动杆的设计具体参数为长* 宽* 高:620*20*10mm。
孔参数为φ 10*10mm。
材料选用铝合金。
图三从动杆的设计图4 动平台的设计参数如下图,考虑到重量因素,采用铝合金,切削加工。
动平台的等效圆半径为 50mm,分布角为21.5°。
图四动平台的设计图5 链接销的设计45号钢,为主动杆和定平台的连接销:φ 9*66mm。
6 球铰链的选型目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。
球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。
它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。
所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。
球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。
本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。
且有很好的可维护性。
本文选用了伯纳德的 SD 系列球铰链,相对运动角为60°。
7 垫圈的选型此处我们选用标准件。
GB/T 97.1 10‐140HV ,10.5*1.6mm。
8 电机的选型本设计的 Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。
因此,以下做电动机的选型处理。
由于需要对角度的精确控制,因此决定选用伺服电机。
交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立即停止运转,这也是 Delta 机构需要的。
并联Delta机器人算法演示
利用动态规划技术,对算法进行优化,以减少计算量 和时间复杂度。
并行计算优化
将算法中的计算任务进行并行处理,提高算法的计算 速度和效率。
算法稳定性优化
鲁棒性增强
通过增加算法的鲁棒性,降低外部干扰和异常情况对算法稳定性的 影响。
自适应调整
根据实际情况对算法参数进行自适应调整,以提高算法的适应性和 稳定性。
运动学算法
01
02
03
运动学正解
根据机器人的连杆长度和 关节角度,计算末端执行 器的位置和姿态。
运动学反解
已知末端执行器的位置和 姿态,求解机器人的关节 角度。
运动学算法的应用
用于机器人的轨迹规划和运动控制,实现精确的位 置和姿态控制。
动力学算法
动力学正解
根据机器人的质量、惯性参数和 关节力矩,计算机器人的动态运
控制系统
配置并联delta机器人的控制系统,包括控制器、驱动器、通信模 块等。
编程环境
安装并配置机器人算法演示所需的编程环境,如MATLAB、ROS等。
运动学算法演示
运动学建模
01
建立并联delta机器人的运动学模型,包括连杆长度、关节角度
等参数。
正运动学
02
根据给定的目标位置和姿态,计算出机器人各关节的运动参数。
并联delta机器人算法演示
目录
• 并联delta机器人简介 • 并联delta机器人算法基础 • 并联delta机器人算法实现 • 并联delta机器人算法演示 • 并联delta机器人算法优化
01 并联delta机器人简介
并联delta机器人的定义
定义
并联delta机器人是一种具有并联结 构的机器人,通常由三个或更多完全 相同的分支组成,每个分支的长度和 角度都可以独立调整。
Delta并联机器人的参数优化设计研究_724
【Delta并联机器人的参数优化设计研究】摘要:结构参数优化是并联机器人运动学设计的最终目标。
本文针对Delta 机器人提出了一种结构参数优化设计方法。
首先对机构进行运动学分析得到局部灵活度的性能评价指标,其次将局部性能评价指标综合为全域性能指标,将尺度综合问题归结为一类参数优化问题。
该方法对这类以及其他并联机构的运动学设计理论有一定指导意义。
关键词:并联机器人参数优化工作空间一、前言Delta机器人是一种具有3个平动自由度的高速并联机器人,也是目前商业应用最成功的并联机器人之一,该并联机器人有较广阔的操作空间,适应多种应用场合。
例如:轻工业中的包装、pick-and-place操作;医学手术等。
机器人结构参数优化设计是一个综合性很强的问题,需要考虑各个方面的要求,包括工作空间、灵活性、负载能力、条件数和刚度等,以确保机器人操作性能趋向最优。
事实上雅克比矩阵条件数已被公认为误差分析以及运动灵巧性的衡量指标,据此本文以Delta机器人为研究对象,在运动学层面上提出一种可使全域综合操作性能最优的机器人结构参数优化设计研究方法,该方法以雅可比矩阵条件数为目标,采用数值方法对机构参数优化并将其应用到实例中,最后通过算例证实其有效性。
二、系统简介如图1所示,Delta机构由静平台、动平台、3根主动杆、3个平行四边形从动支链组成。
主动杆与静平台通过转动副相连接,从动杆一端通过2个自由度的转动副与主动杆相连,另一端通过球铰与动平台相连。
3个这样的平行四边形从动支链保证了动平台只能有3个方向的平动自由度。
在静平台和动平台上分别建立坐标系oxyz、o'x'y'z'如图2所示。
点o'的位矢r=[xyz]T在oxyz可表示为r=bi-ai+l1ui+l2wi (1)式中bi,ai——节点Bi和Ai分别在oxyz和o'x'y'z'中的位置向量;l1,l2,——主动臂和从动臂长;ui,wi,——主动臂和从动臂的单位矢量;rb,ra,——静、动平台半径。
并联机器人的设计讲义
并联机器人的设计讲义并联机器人是一种由多个自由度机械臂通过并联机构连接并协同运动的机器人系统。
它通过将多个自由度机械臂的末端连接在同一平面上或在三维空间内,实现更高自由度的运动灵活性和操作精度。
本文将介绍并联机器人的设计讲义。
一、机器人整体结构设计1.机器人基座和支撑结构:机器人的基座是机器人的主要支撑结构,需要具备足够的稳定性和刚度。
基座采用高强度材料制造,并结合有限元分析进行优化设计;2.并联机构设计:并联机构是机器人的核心构件,用于连接多个自由度机械臂。
设计并联机构时需要考虑运动灵活性和刚度之间的平衡,以及机构的可制造性;3.自由度机械臂设计:自由度机械臂是并联机器人的执行器,用于完成各种操作任务。
机械臂的设计需要考虑负载能力、工作范围和操作精度等因素;4.控制系统设计:机器人的控制系统包括传感器、控制算法和驱动器等。
根据任务需求选择合适的传感器和控制算法,并设计相应的驱动系统。
二、运动学建模与分析1.机器人的运动学建模:通过建立机器人的联动关系和几何条件,得到机器人各个运动部件之间的运动学方程;2.运动学分析:利用运动学方程分析机器人的位置、速度和加速度等运动特性,包括正逆运动学分析和运动学仿真。
三、动力学建模与分析1.动力学建模:通过建立机器人的动力学方程,研究机器人在执行任务过程中的力矩、力和加速度等动力学特性;2.动力学分析:利用动力学方程分析机器人的受力、运动规律和运动过程中的惯性力等特性;四、控制系统设计1.模型驱动控制:根据机器人的动力学和运动学模型,设计相应的控制算法,实现对机器人的运动控制;2.传感器选择和数据采集:根据任务需求选择合适的传感器,如力传感器、位置传感器等,并设计数据采集系统;3.控制器设计:设计合适的控制器来实现对机器人的高精度控制,并选择合适的驱动器来驱动机器人的各个关节;4.控制算法优化:根据实际应用需求,对控制算法进行优化和改进,提高机器人的运动控制性能。
delta并联机器人
可靠性优化
基于可靠性分析和优化算法, 提高机器人的可靠性和耐久性
,降低故障率。
delta并联机器人的实验验证
实验环境
搭建实验平台,模拟实际生产 环境,以便对机器人进行真实
场景下的性能测试和验证。
实验方法
采用合理的实验方法,包括性能 测试、精度测量、负载试验等, 以全面评估机器人的性能。
实验结果分析
控制器软件
编写或集成控制算法,如PID控制 器或模糊逻辑控制器,以实现机 器人的稳定和高效运动。
delta并适合机器人编程的语言,如C或 Python,以便于编写、调试和维护程 序。
开发环境
使用集成开发环境(IDE)或机器人操 作系统(ROS)等工具,以提高编程效 率和代码质量。
05
delta并联机器人的未来发展
delta并联机器人的研究方向
运动学与动力学研究
深入研究delta并联机器人的运动学和动力学模型,以提高其运动 精度和效率。
优化设计与控制
通过优化delta并联机器人的结构设计和控制算法,实现更快速、 准确和稳定的运动。
传感器与感知技术
研究新型传感器和感知技术,以实现delta并联机器人的自主导航、 避障和目标识别等功能。
delta并联机器人具有较强的环境适应能力,可在不同温度、湿度和光照条件下进行作业。
然而,delta并联机器人的研发和制造成本较高,且对控制算法和机械加工精度要求严格。 此外,由于其并联结构的特点,delta并联机器人在进行大范围移动时可能会受到限制。
02
delta并联机器人的工作原理
delta并联机器人的结构
对实验结果进行分析和评估,对 比优化前后的性能差异,验证优 化算法的有效性和优越性。
delta并联机器人毕业设计
一、引言在当今工业自动化和智能制造的大环境下,机器人技术越来越受到关注和重视。
作为机械电子工程专业的学生,毕业设计是我在校学习和实践的一个重要环节。
在此次毕业设计中,我选择了设计一款delta 并联机器人。
二、delta并联机器人概述1.1 delta并联机器人的定义delta并联机器人,又称三角机器人,是一种具有特殊构型的并联机器人。
它由一个固定底座和三个活动连接臂组成,可以实现高速、高精度的运动。
1.2 delta并联机器人的优势(1)高速度和高精度:由于采用了并联结构,delta机器人可以实现快速、精准的运动,适用于需要大量重复动作的生产线。
(2)稳定性好:机器人的三个连接臂相互协调,具有较好的稳定性和平衡性。
(3)适应性强:delta机器人适用于各种工业制造场景,可以完成装配、搬运、喷涂等多种任务。
1.3 delta并联机器人的应用领域目前,delta机器人已经被广泛应用于电子、汽车、食品等行业。
其高速、高精度的优势使其成为自动化生产线上的热门选择。
三、delta并联机器人的设计2.1 机械结构设计在设计机器人的机械结构时,我充分考虑了机器人的稳定性、承载能力以及工作空间。
采用了轻质材料和优化设计,保证了机器人的结构强度和刚度。
2.2 传动系统设计传动系统是机器人的重要组成部分,直接影响到机器人的运动性能。
我选择了高精度的伺服电机和减速器,并采用了闭环控制技术,保证了机器人的高速、高精度运动。
2.3 控制系统设计为了实现机器人的自动化控制,我设计了一套完善的控制系统,包括运动控制、传感器反馈和人机交互界面等。
通过PLC和上位机软件的编程,实现了机器人的各种工作模式和任务规划。
2.4 软件系统设计机器人的软件系统是其智能化的核心,我使用了ROS等开源软件评台,开发了机器人的运动控制、路径规划、视觉识别等功能,使机器人具备了一定的智能化能力。
四、delta并联机器人的性能测试3.1 运动性能测试为了验证机器人的运动性能,我对其进行了速度、加速度、定位精度等方面的测试。
自由度的Delta并联机构
天文望远镜
采用6杆并联 机构平台的 天文望远镜 (德国)
2019/12/5
南京工程学院
7
医用并联机构机器人
并联机器人
• 德国洪堡大学医学院 手术室
内窥镜
2019/12/5
患者
南京工程学院
8
3. 主要研究方向
1)串、并联机器人机构创新设计理论研究 主要为计算机辅助创新设计,机构运动学和动 力学特性分析、参数优化及性能评价指标 体系研究,完成了并联机构智能化型综合软件
• 可控阻尼减振器 可用于多维减振系统、汽车悬架变阻尼无级
调节,实现悬架的减振,获机械工业联合会三等 奖,江苏省镇江市科技进步二等奖。
2019/12/5
南京工程学院
20
• 可控两自由度五连杆机构 用于二维坐标测量机、曲线曲面加工机
床及雕刻机
• 汽车门锁操作力测量机 可用于各类起动门锁操作力大小的测
南京工程学院
19
4. 研究成果
• 多自由度减振系统 用于车辆、船舶、飞行器及其它多维防振系
统。
• 并联机器人 可应用于虚拟轴机床、虚拟轴三维测量机、
虚拟装配机器人、秧苗移栽机器人、护理机器人、 中医推拿机器人、全柔性微动并联机器人、机器 人腿、多维力传感器。
的设计;
2019/12/5
南京工程学院
9
2)串、并联机器人机构应用研究
① 复合环境试验中多维振动台设计理论和 产品开发
2019/12/5
南京工程学院
10
② 多维振动控制装置设计理论和产品开发
根据不同场合选择不同的方案,先后研究了被动弹性阻尼系统、永磁加 电磁控制变刚度半主动系统和磁流变阻尼器变阻尼半主动系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零件的设计与选型
1 定平台的设计
定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。
定
平台的等效圆半径为210mm。
材料选用铸铁,铸造加工,开口处磨削加工保证精度。
最后进行打孔的工艺。
图一定平台设计图
具体参数为长* 厚* 宽:880mm*10mm*20mm。
孔的参数为φ10*10mm。
材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。
图二驱动杆的设计图
3 从动杆的设计
具体参数为长* 宽* 高:620*20*10mm。
孔参数为φ10*10mm。
材料选用铝合金。
图三从动杆的设计图
参数如下图,考虑到重量因素,采用铝合金,切削加工。
动平台的等效圆半径为50mm,分布角为21.5°。
图四动平台的设计图
5 链接销的设计
45号钢,为主动杆和定平台的连接销:φ9*66mm。
6 球铰链的选型
目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。
球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。
它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。
所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。
球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。
本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。
且有很好的可维护性。
本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。
7 垫圈的选型
此处我们选用标准件。
GB/T 97.1 10‐140HV ,10.5*1.6mm。
8 电机的选型
本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。
因此,以下做电动机的选型处理。
由于需要对角度的精确控制,因此决定选用伺服电机。
交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立即停止运转,这也是Delta 机构需要的。
交流伺服电动机运行平稳、噪音小。
但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。
在本设计中,电动机的功率计算如下:机构的最高速度不超过2m/s,考虑到运动杆件重量,摩擦力等。
综合载重5kg。
则,P=FV=5kg*10m/s2*2m/s=100W。
取安全因子为1.2,则每个电机的功率为 1.2*100W/3=40W。
故初步选用下面下表两款:
考虑到经济原因,在其它参数相似的情况下,我们在这里选择三菱的HC-MFS/kfso53k。
9 执行器的设计与选型
考虑选用电控吸盘或机械手。