循环群与置换群
群论中的置换群及其应用
群论中的置换群及其应用群论是数学中非常重要的一个分支,它主要研究群的性质及其应用。
而置换群作为群论中的一个基本概念,是群论研究的一个重要方向。
置换群是指某个集合中的所有元素在不同情况下的排列和变换所构成的一种群结构。
接下来,我将从置换群的概念、性质和应用三个方面进行详细介绍。
一、置换群的概念置换群的概念来源于群上的置换操作。
在数学中,置换指的是对于一个集合中的所有元素进行排列的一种操作。
这种操作可以看做是一个把集合内的所有元素重新排列的变化。
而一个置换群就是由集合中所有可能的置换操作构成的群结构。
在置换群中,每个置换操作都是一个置换元,而群结构就是由所有置换元的集合组成的。
置换群中的元素有两种表示方法,一是环形表达式,二是秩序表达式。
环形表达式指的是将元素描绘成一个环,按照环上的顺序进行排列,而秩序表达式则是按元素的秩序进行排列。
例如,一个置换群 {1, 2, 3} 就可以表示为 {(1 2 3), (1 3 2), (2 3), (1), (2), (3)}。
置换群有许多基本的性质,如封闭性、结合律、单位元、逆元等,同时还有一些特殊的性质,如循环群、置换群的阶等。
二、置换群的性质置换群不仅有基本性质,还有一些比较特殊的性质:1、置换群的循环群如果一个置换群中的元素可以由一个或多个置换循环所表示,那么这个置换群就是一个循环群。
循环群在加密算法中有着广泛的应用,可以支持数字签名、身份验证等多种功能。
2、置换群的阶置换群的阶指的是每个置换元的阶的最小公倍数。
其中,置换元的阶是指执行该置换元所需的最小步骤数。
阶在加密算法中也有很大的作用,例如可以用于求模运算的模数选择和随机数的生成。
3、可逆性置换群中的置换元有可逆和不可逆之分。
可逆的置换元可以通过执行逆置换来回到原始状态,而不可逆的置换元则无法回到原始状态。
可逆性在密码学中也有重要的应用,例如对称加密算法中使用的置换矩阵通常是可逆的。
三、置换群的应用置换群有着广泛的应用,特别是在密码学中。
群论中的循环群与置换群
群论是数学中的重要分支,研究群及其性质。
在群论中,循环群和置换群是两个重要的概念。
本文将介绍循环群和置换群的定义及其性质。
循环群是群论中最简单的一类群。
循环群的定义是由一个元素生成的群。
换句话说,循环群是由一个元素通过重复进行群运算得到的。
考虑一个群G和其中的一个元素a,如果我们用a对自身进行重复的群运算,直到得到的结果覆盖了G中的所有元素,那么我们可以说G是由元素a生成的循环群。
这样的元素a称为循环群G的一个生成元。
循环群可以用符号⟨a⟩来表示,其中⟨a⟩表示由元素a生成的循环群。
循环群有一个重要的性质,即循环群的阶(群中元素的个数)等于生成元素的次数。
例如,考虑一个由整数1生成的循环群,那么这个循环群的阶就是正整数的个数,即无穷大。
另一个例子是由元素a生成的循环群,如果a的次数为n,那么这个循环群的阶就是n。
与循环群相对应的是置换群。
置换群是指由有限个元素进行交换操作得到的群。
换句话说,置换群是由元素的排列组合形成的。
例如,考虑一个由4个元素{1, 2, 3, 4}构成的集合,通过对元素的交换操作,我们可以获得所有可能的排列组合,形成一个置换群。
置换群的元素可以表示为如下形式的置换:(1 2)(3 4),其中数字表示被交换的元素的位置。
置换群也有一些特殊的性质。
首先,每个置换群都有一个单位元,即空置换,不对任何元素进行置换。
其次,对置换群中的两个置换进行群运算,结果仍然是一个置换。
最后,置换群中每个置换都有一个逆元,即将置换中的每个元素的位置进行逆置。
循环群与置换群之间有一个重要的联系,即每个循环群都可以用置换群的形式表示。
例如,考虑一个由元素a生成的循环群⟨a⟩,我们可以定义一个置换群S,其中元素的排列由元素a的次幂定义。
换句话说,置换群S中的元素就是元素a进行有限次幂运算得到的结果。
由此可见,循环群和置换群是紧密相关的。
综上所述,循环群和置换群是群论中的重要概念。
循环群由一个元素生成,其阶等于生成元素的次数;置换群由有限个元素的排列组合生成,具有单位元、群运算封闭性和逆元等性质。
群置换循环
p1
p2
1 a1
2 ... a2 ...
n a1 an ba1
a2 ba2
... an
...
ban
1 2 ... n
ba1
ba2
...
ban
.
可以证明,[1,n]上所有的置换按上述乘法构成一个 群,即满足
1. 封闭 e 1
2 ... 2 ...
n n,
❖ 设G是群,H是G的子集,若H在G原有的运算之 下也是一个群,则称为G的一个子群。
2. 置换群
置换群是最重要的有限群,所有的有限群都可以用 它表示。 置换:[1,n]到自身的1-1变换:[1,n][1,n],
p:i ai , (ai aj, i j)
于是,a1a2…an是[1,n] 的一个全排列。称此置换为n 阶置换,它可如下表示:
例 二维欧式空间中的刚体旋转变换集合{Ta}构成群,
其中
Ta:x y1 1 csoisnaa
sinax cosay
❖ 前两例群元素的个数是有限的,称为有限群;
后一例群元素的个数是无限的,称为无限群。
❖ 有限群G的元素个数叫做群的阶,记做|G|。
❖ 若群G的任意二元素a,b恒满足ab=ba,则称G为 交换群,或Abel群。
1 2 3 44 3 2 1 =4 3 2 14 2 1 3
1 2 3 4
4
2
1
3.
显然有
p1p2p2p1.
于是我们定义乘法如下:
1 2 ... n
p1
a1
a2
...
an
,
p2 1 b 12 b2 ......b n n b a a 1 1
a2 ba2
交换群与循环群的关系
交换群与循环群的关系在数学领域中,交换群和循环群是两个重要的概念。
它们之间存在一定的联系和区别,本文将从不同的角度对这两个概念进行探讨。
一、交换群的定义和特点交换群,也称为阿贝尔群,是一个满足交换律的群。
群是一种代数结构,它由一组元素和一种二元运算组成。
对于任意的元素a和b,交换群中的运算符满足交换律,即a*b=b*a。
这意味着交换群中的元素可以以任意顺序进行运算,结果都是相同的。
交换群具有以下特点:1. 封闭性:交换群中的元素进行运算后的结果仍然属于该群。
2. 结合律:交换群中的运算符满足结合律,即(a*b)*c=a*(b*c)。
3. 存在单位元:交换群中存在一个特殊元素,称为单位元,它与该群中的任意元素进行运算得到的结果都是该元素本身。
4. 存在逆元:交换群中的每个元素都存在一个逆元,它与该元素进行运算得到的结果是单位元。
二、循环群的定义和特点循环群是一种特殊的群,它由一个元素生成。
这个元素称为生成元,它可以通过自身的运算和运算的次数来生成群中的所有元素。
循环群可以用一个生成元和运算符的指数形式来表示。
循环群具有以下特点:1. 封闭性:循环群中的元素进行运算后的结果仍然属于该群。
2. 存在单位元:循环群中存在一个特殊元素,称为单位元,它与该群中的任意元素进行运算得到的结果都是该元素本身。
3. 存在逆元:循环群中的每个元素都存在一个逆元,它与该元素进行运算得到的结果是单位元。
4. 生成性:循环群中的一个元素可以通过运算的次数和生成元来生成群中的所有元素。
5. 无穷性:循环群中的元素可以进行无限次运算,得到无穷多个元素。
三、交换群与循环群的关系交换群和循环群之间存在一定的联系和区别。
循环群是交换群的一种特殊情况,即循环群是满足交换律的群。
因此,循环群也具有交换群的特点,包括封闭性、结合律、存在单位元和逆元等。
然而,交换群并不一定是循环群。
交换群中的元素可以以任意顺序进行运算,而循环群中的元素则是由一个生成元按照一定的规律生成的。
离散数学第6讲置换群和循环群
在群<G,g*i>=中a,,如gj果=存b 在一个元素g∈G, 对于每一个元素 a∈G都有一个相应的正整数i∈I, 能把a表示成gi形式, 那么称<G , *>是一个循 环群,g那是该么循a环*b群=的gi生*g成j=元g。i+j=gj+i=gj*gi=b*a,因此,<G,*>是一个阿贝尔群。
以把每一旋转看成是三角形的顶点集合{1, 2, 3}的置换, 于是有
p1
1
1
2 2
3
3
( 旋转 0 )
p5
1
2
2 3
3
1
( 旋转 120 )
p6
1
3
2 1
3
2
( 旋转
240 )
一、置换群
例2 两面体群(续) 再将三角形围绕直线1A、2B、3C翻转。又得到顶点集合的置换:
2 31 2
2 3
1 31 3
2 2
1 3
11
2 3
3 2
◇
12
2 3
1312
2 1
33
一、置换群
不难验证: (右合成运算:◇, p1◇p2, 先p1置换, 再p2置换) (1) <Sn, ◇>是一个代数; (2) <Sn, ◇>是一个群。
给定集合A, (1) Sn关于运算◇封闭 (2) A上所有置换对运算◇而言满足结合律 (3) Sn关于运算◇存在么元—恒等置换,恒等函数,又称么置换 (4)每一置换都有逆置换——逆函数
p1
1 2
2 3
3 4
4 1
p2
1 3
2 4
3 1
循环群和置换群-置换群
1
置换群的元素都是一一对应的,即每个元素都有 一个唯一的逆元素。
2
置换群中的元素可以相乘,满足结合律和单位元 存在性。
3
置换群中的元素可以相逆,满足逆元存在性。
置换群的例子
01
02
03
置换群的一个简单例子 是$S_n$,即所有$n$个 元素的排列组成的群。
置换群也可以是有限集 合上的自同构群,例如 有限环上的模运算构成
定义
通过同态映射将置换群映射到另一个群或半 群上,从而将问题转化为更易于处理的形式 。
优点
能够将复杂问题简化,便于理解和分析。
缺点
同态映射的选择需要具备一定的理论基础和 实践经验,且可能引入额外的复杂性。
05
CATALOGUE
置换群的应用
在对称性物理中的应用
量子力学
置换群在量子力学中用于描述粒子的 对称性,例如在描述原子或分子的电 子排布时,置换群可以用来描述电子 的对称性。
在密码学中的应用
密码算法
置换群在密码学中被广泛应用于各种密码算法,例如AES、DES等对称加密算 法中都涉及到置换群的概念。
密钥管理
置换群可以用于密钥管理,例如通过对称加密算法中的置换操作来生成密钥, 保证通信的安全性。
THANKS
感谢观看
晶Hale Waihona Puke 结构在晶体物理学中,置换群被用来描述 晶体的对称性,例如空间群可以描述 晶体在三维空间中的对称性。
在组合数学中的应用
组合问题
置换群在组合数学中用于解决各种组合问题,例如排列、组合、划分等问题。
组合恒等式
置换群可以用来证明和推导组合恒等式,例如在证明帕斯卡恒等式时,置换群被用来证明组合数的对称性。
置换群的表示方法及循环
• 6.1 置换群 • 6.2 置换的表示方法:2-行法 • 6.3 循环 • 6.4 补充结论
变换群的一种特例,叫做置换群,在代数 里占一个很重要的地位.比方说,在解决方程 能不能用根号解这个问题时就要用到这种 群.这种群还有一个特点,就是它们的元 可以用一种很具体的符号来表示,使得这 种群里的计算比较简单.现在我们把这种 群讨论一下.
表示置换的第一个方法就是把以上这个置换写成
1
k1
2 k2
L L
n
kn
形式不唯一.在这种表示方法里,第一行的 n
个数字的次序显然没有什么关系,比方说以上的
我们也可用
213L n
k2
k1
L
kn
例1 n 3.假如
: a1 a2 , a2 a3, a3 a1
那么
123
231
132
1
我们再用归纳法.
I.当 不使任何元变动的时候,就是当 是
恒等置换的时候,定理是对的.
II. 假定对于最多变动 r 1(r n) 个元的 定理是对的.现
在我们看一个变动 r 个元的 .我们任意取一个被 变动
的元 ai1 ,从 ai1 出发我们找 ai1 的象 ai2,ai2 的象 ai3 ,这样找
们用符号
(i1i2 L ik ) ,(i2i3 L iki1) ,…或 (iki1 L ik1) 来表示.2-循环称为对换.
例3 我们看 S5 ,这里
12345
23145
123
231
312
12345
23451
12345
23451
L
51234
12345 12345
1
4-1 群、置换、循环
15岁参加声望很高的巴黎高等工科大学的入学考试 15岁 伽罗华失败了,不得不进入普通的师范学校。 时,伽罗华失败了,不得不进入普通的师范学校。 就是在这所学校,伽罗华写出了他的第一篇关于连 就是在这所学校, 分数的数学论文,显示了他的能力。 分数的数学论文,显示了他的能力。 他的下两篇关于多项式方程的论文遭到法国科学院 的拒绝。更糟的是, 的拒绝。更糟的是,两篇论文手稿还莫名其妙地被 丢失了。 丢失了。
1545年 卡尔达塔(Cardano)在他的《大术》 1545年, 卡尔达塔(Cardano)在他的《大术》 (ArsMagna)一书中公开发表了丰塔那的方法。这部 ArsMagna)一书中公开发表了丰塔那的方法。 书还讲述了费拉里(Ferrari)求解四次方程的方法。 书还讲述了费拉里(Ferrari)求解四次方程的方法。 但事情的发展似乎突然停了下来。 但事情的发展似乎突然停了下来。虽然有很多数学 家作出了努力,其中包括18世纪中叶伟大的瑞士数 家作出了努力,其中包括18世纪中叶伟大的瑞士数 学家欧拉(Euler) 但没有一个人能找出五次方程 五次方程的 学家欧拉(Euler),但没有一个人能找出五次方程的 求根公式。 求根公式。
在普通乘法下是群。 例 G={1,-1}在普通乘法下是群。 在普通乘法下是群 的加法下是群。 例 G={0,1,2,…,n-1}在mod n的加法下是群。 在 的加法下是群 二维欧式空间中的刚体旋转变换集合{T 构成群 构成群, 例 二维欧式空间中的刚体旋转变换集合 α}构成群, 其中 x1 cos α sin α x
给定一个集合G={a,b,c,…}和集合 上的二元运算 , 和集合G上的二元运算 给定一个集合 和集合 上的二元运算•, 满足如下条件: 满足如下条件: 1. 封闭性:若a,b∈G,则存在 ∈G使得 封闭性: 使得a•b=c; ∈ ,则存在c∈ 使得 ; 2. 结合律:(a•b)•c=a•(b•c); 结合律: ; 3. 存在单位元:G中存在一个元素 ,使得对于 的 存在单位元: 中存在一个元素 使得对于G的 中存在一个元素e, 任意元素a, 任意元素 ,恒有 a•e=e•a=a; ; 4. 存在逆元:对G的任意元素 ,恒有一个 ∈G, 存在逆元: 的任意元素a,恒有一个b∈ , 的任意元素 使得a•b=b•a=e,则元素 称为元素 的逆元素,记 称为元素a的逆元素 使得 ,则元素b称为元素 的逆元素, 为a-1。 则称集合G在运算 之下是一个 是一个群 则称集合 在运算•之下是一个群,或称 是一个群。 在运算 之下是一个群 或称G是一个
2.6 置 换 群
2.6 置 换 群上一节:任何n 阶群都与n S 的一个子群同构。
n S 的每一个子群都叫一个次置换群。
n S 中的每个元素都叫一个置换。
σ如果把1i 变成2i ,2i 变成3i , , 1k i -变成k i ,k i 变成1i ,其余元素保持不变,则称σ是一个k - 循环,记成()121k k i i i i σ-= 。
注意:()121k k i i i i σ-= 也可以写成()()231112k k k k i i i i i i i i σ--=== 。
例如(123)(231)(312)==。
当1k =时叫做1-循环,也就是恒等置换,记作(1)(2)()n ε==== 。
当2k =时叫做对换。
一般形式()12i i 。
无公共元素的循环称为不相交循环。
例如(135)与(24)不相交。
3S 的6个置换可以写成:1123(1)123ϕ⎛⎫== ⎪⎝⎭, 2123(23)132ϕ⎛⎫== ⎪⎝⎭,3123(12)213ϕ⎛⎫== ⎪⎝⎭, 4123(123)231ϕ⎛⎫== ⎪⎝⎭, 5123(132)312ϕ⎛⎫== ⎪⎝⎭,6123(13)321ϕ⎛⎫== ⎪⎝⎭, 于是{}3(1),(12),(13),(14),(123),(132)S =,注意这样写的好处是避免了对置换编号。
4S 的24个置换可以写成:(1)— 1-循环,1个;(12),(13),(14),(23),(24),(34)—2-循环,共6个;(123),(132),(124),(142),(134),(143),(234),(243)—3-循环,共8个; (1234),(1243),(1324),(1342),(1423),(1432)—4-循环,共6个;(12)(34),(13)(24),(14)(23)—2-循环乘2-循环,共3个。
合起来正好24个。
(1)不相交循环与不相交循环可以交换相乘;例如,12345(123)(45)(45)(123)23154⎛⎫== ⎪⎝⎭。
高等代数循环群与交换群
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
元素的阶
循环群与交换群是最简单的群. 我们来研究它们的结构与性质. 定理 设 G 是群,a ∈ G. 当 a 的任意两个方幂皆不相等时,
⟨a⟩ = {· · · , am, a−(m−1), · · · , a−1, a0 = e, a, · · · , am−1, am, · · · }
上面讨论循环子群 ⟨a⟩, a ∈ G,G 是乘法群形式. 而 ⟨a⟩ = {ak | k ∈ Z}. 当 G 是加法群形式时,乘法群时 a 的方幂要变成 a 的倍数:
k 为正整数时, ka = a + a + · · · + a; 0a = 0;
k个
k 为负整数时, ka = (−a) + (−a) + · · · + (−a) .
Gi = ⟨ai⟩ = {ai, a2i , · · · , ani −1, ani = eGi }, i = 1, 2,
其中 ai 的各个幂 aki (1 ≤ k ≤ n, i = 1, 2) 是不同的. 作映射 G1 −φ→ G2 ak1 −→ ak2,k = 1, 2, · · · , n.
代数结构与数理逻辑-变换群、置换群与循环群
• 作业: P171 12.(2) (3), 13
• 元素a的阶有限的特征:
若元素a的阶有限,则存在k,lZ(kl),使 ak=al,
• 如果a的任意两个幂都不相等, 则元素a的 阶无限。
• 定理13.12:G为群, aG, 阶为n, 则对 mZ,元素的阶都是有限的。
• 例:在有限群G中,阶大于2的元素数目 必是偶数。
(τ
1 (1))
2 σ (τ (2))
σ
(τ
n (n))
• 定义13.7:设|S|=n, Sn, 形如:
i1 i2
i2 i3
id 1 id
id i1
id id
1 in 1 in
其中2≤d≤n。这种形式的置换叫做循环置换 , 称其循环长度为d。上述可写为=(i1,…, id),其中在变换下的象是自身的元素就不 再写出。 • 特别, 当 d=2时称为对换。
•
共k-1个对换
• 所以当k是奇数时,该循环为偶置换
• 当k是偶数时,该循环为奇置换
• 推论13.2:一个长度为 k的循环置换, 当k为奇数时, 它是一个偶置换; 当k为 偶数时, 它是一个奇置换。
• 推论13.3:每个偶置换均可分解为若干个 长度为 3 的循环置换的乘积, 循环置换中 可以含有公共元。
• |An|=?
• 若n=1,Sn只有一个置换——恒等置换, 它也是An的元素,|An|=1。
• 若n>1,
•
|An|=|On|=
1 2
n
!
• 例:G={g1, g2, gn},[G;]是群,对任意 gG,定义映射g:GG,使得对任意
g'G,有g(g') =gg'。设={g|gG},则
第五章 4阿贝尔群 循环群 置换群
5-5 阿贝尔群、循环群和置换群
例6 (1)令A={2i|i∈Z},那么〈A,·〉(·为普通的数 乘)是循环群,2是生成元(2-1也是生成元)。 (2)〈Z8,+8〉为循环群,1,7是生成元。 (3) Klein四元群不是循环群。
eabc eeabc aaecb bbcea ccbae
练习:设
表示在平面
上几何图形绕形心顺时针旋转角度的六种可能,设
☆是R上的二元运算,a☆b表示平面图连续旋转a和 b得到的总旋转角度,并规定旋转360表示回到原来 状态。列出R上☆的运算表,并证明<R,☆>是循环 群。
5-5 阿贝尔群 循环群 置换群
幺元是0,60和300 是其生成元
5-5 阿贝尔群 循环群 置换群
ab = a-1b-1= (ba)-1 = ba, 所以〈G , 〉是一个阿贝尔群。
5-5 阿贝尔群 循环群 置换群
二、循环群(Cyclic Groups)
定义5-5.2 设 G, 是群,若G中存在元素a,使得 G中每个元素都由a的幂组成,则称 G, 为循环 群(Cyclic Groups) ,元素a称为该循环群的生成元 。
2 2
3 3
2
=
1 2
2 1
3 3
4
=
1 3
2 2
3 1
5
=
1 2
2 3
3 1
3
=
1 1
2 3
3 2
6
=
1 3
2 1
3
2
任意两个置换的运算 ,即两个可逆变换的 复合,从右往左计算,如:
S3
5-5 阿贝尔群、循环群和置换群
交换群与循环群的关系
交换群与循环群的关系交换群和循环群是抽象代数学中的两个重要概念,它们之间存在着密切的联系和相互关系。
首先,我们来介绍一下交换群和循环群的概念。
交换群,也叫做阿贝尔群,是由一组元素以及一个二元运算组成的代数结构。
这个二元运算通常表示为“+”,并且满足以下性质:1. 封闭性:对于任意的元素a、b∈G,有a+b∈G。
2. 结合律:对于任意的元素a、b、c∈G,有(a+b)+c=a+(b+c)。
3. 存在单位元素:存在一个元素0∈G,使得对于任意的元素a ∈G,有a+0=a。
4. 存在逆元素:对于任意的元素a∈G,存在一个元素-b∈G,使得a+b=0。
5. 交换律:对于任意的元素a、b∈G,有a+b=b+a。
而循环群则是由一个生成元a和一个二元运算组成的群,这个二元运算通常表示为“×”,并且满足以下性质:1. 封闭性:对于任意的元素ai、aj∈G,有ai×aj=ak∈G。
2. 结合律:对于任意的元素ai、aj、ak∈G,有(ai×aj)×ak=ai ×(aj×ak)。
3. 存在单位元素:存在一个元素e∈G,使得对于任意的元素ai ∈G,有ai×e=ai。
4. 存在逆元素:对于任意的元素ai∈G,存在一个元素aj∈G,使得ai×aj=e。
5. 生成性:对于任意的元素ai∈G,都可以表示成a的幂次方的形式,即ai=a^k,其中k为整数。
从定义可以看出,循环群是一种特殊的群,它的元素都可以表示成生成元的幂次方。
而交换群则是一种满足交换律的群,它的元素之间的运算顺序不影响最终结果。
接着,我们来探讨一下交换群和循环群的关系。
首先,循环群是一种群,因此它也是一种交换群。
因为循环群中的运算满足交换律,即ai×aj=aj×ai,所以循环群也是一个交换群。
另外,交换群和循环群之间还存在着更为深刻的联系,即任意一个有限交换群都可以表示成循环群的直积的形式。
循环群和置换群
定义11.16 对任意集合A定义
集合S S = {f fAA∧f
为双射} 那么群<S,○>及其子
群称为变换群.其中
○ 为函数的合成运 算.
定理11.29
每个群均同构
于一个变换群, 特别地,每一个 有限群均同构于 一个置换群.
离散1.1 循环群
定理 11.27 循环群的子群都是循环群.
定理11.28 设<G,>为g生成的循环群.
(1)若G为无限群,则G有无限多个子群, 它们分别由g0,g1,g2, g3,…生成.
(2)若G为有限群, G = n,且n有因子 k1,k2,k3,…,kr,那么G有r个循环子群,它们分别由 gk1,gk2,gk3,…生成.(注意这r个子群中可能有相同者.)
.
循环群和置换群
1.2 置换群
定义11.14
称有限集上的双射函数为置换. 称任意集合上的双射函数为变换.
定义11.15 将n个元素的集合A上的置换全体记为S,那么称
群<S, ○>为n次对称群(symmetric group),它的 子群又称为n次置换群(permutation group).
.
循环群和置换群
离散数学导论
.
循环群和置换群
1.1 循环群
定义11.13
称<G,>为循环群(cyclic group),
如果 G为群,且G中存在元素 g ,使 G以{g}为 生成集,即 G的任何元素都可表示为 g 的幂 (约定e = g0),这时g称为循环群G的
生成元(generater).
.
循环群和置换群
1.1 循环群
定理11.26 设<G,>为循环群,g为生成元,那么
§2变换群、置换群与循环群
• |An|=? • 若n=1,Sn只有一个置换——恒等置换
,它也是An的元素,|An|=1。 • 若n>1, • |An|=|On|=12 n !
2020/10/31
• 例:G={g1, g2, gn},[G;]是群,对任 意gG,定义映射g:GG,使得对任意 xG,有g(x) =gx。设={g|gG},则 [;•]是置换群。这里•是关于映射的复 合运算.Leabharlann ii1 2i2 i3
id1 id
id i1
iid d 1 1 iin n
其中2≤d≤n。这种形式的置换叫做循环置换 , 称其循环长度为d。上述可写为=(i1,…, id),其中在变换下的象是自身的元素就不 再写出。 • 特别, 当 d=2时称为对换。
2020/10/31
• 定理14.10:Sn中的任一个置换均可分解 为不含公共元的若干个循环置换的乘积 。
(1 4)(31)(26)(57)(85)
(1,4)(1(,22,)3)(2(,66,)1)(5(,88,)7)
• 说明分解不唯一
2020/10/31
• 定理14.11:任意一个置换可分解成对换 的乘积, 这种分解是不唯一的, 但是这些 对换的个数是奇数个还是偶数个却完全 由置换本身确定。
• 对一个置换,它可能有不同的对换乘积 ,但它们的对换个数的奇偶性则是一致 的。
变换称为置换。S上的某些置换关于乘法 运算构成群时, 就称为置换群。
• 若|S|=n,设S={1,2,,n},其置换全体组成 的集合表示为Sn;
• [Sn;•]是一个置换群, n次对称群。
2020/10/31
循环群与置换群
• 循环群是互换群。 • 若( G,◦)为循环群, g为G旳生成元,则G旳构造
在同构旳意义下完全由 g旳阶所拟定:
(1)若 g旳阶= n,则 ( G,◦) ≅ (Zn, +n); (2)若 g旳阶=∞,则 ( G,◦) ≅ (Z , + )。
例7.3.7 在 S3中,我们有
1 1
2 2
3 3
4 4
5 5
(1)
(2)
(3)
(4)
(5)
1 2
2 3
3 1
4 4
55
(123)
(231)
(312)
1 4
2 2
3 5
4 3
15
(1435)
(4351)
(3514)
(5143)
1 2
2 3
3 4
4 5
15
(12345)
(23451)
(34512)
都能够看作n个元素旳循环置换。所以,τ 就分解成若干个
不含公共元素旳循环置换旳乘积。
注意,不含公共元素旳循环置换旳乘法是可互换旳。
例如,
1 3
2 6
3 4
4 1
5 8
6 2
7 5
8 7
(587)(26)(134)
(134)(26)(587)
例 利用循环置换旳措施,我们有 3次对称群 S3旳元素能够表达为: (1), (12), (13), (23), (123), (132)。 4次对称群 S4旳元素能够表达为: (1); (12), (13), (14), (23), (23), (34);
置换群——精选推荐
11.7 循环群与置换群一、循环群1. 循环群的定义定义11.14 设G 是群,若a G ∃∈使得{|}k G a k Z =∈, 则称G 是循环群,记作G a =<>,称a 为G 的生成元。
注意:(1) 对于任何群G ,由G 中元素a 生成的子群是循环群。
(2) 任何素数阶的群都是循环群。
设G 是循环群,若a 是n 阶元,则0121{,,,,}n G a e a a a -== , 那么|G|=n ,称G 为n 阶循环群。
若a 是无限阶元,则012{,,,}G a e a a ±±== , 这时称G 为无限阶循环群。
例如 (1)G=<Z,+>是无限阶循环群。
(2)G=<Z 6,⊕>是6阶循环群。
2.循环群的性质定理 11.20 设G a =<>是循环群.(1)若G 是无限循环群,则G 只有两个生成元,即a 和a -1.(2)若G 是n 阶循环群,则G 含有()n ϕ个生成元,对于任何小于等于n 且与n 互质的正整数r ,a r 是G 的生成元。
证 (1)显然1a G -<>⊆,为了证明1G a -⊆<>,只须证明对任何k a G ∈,a k 都可以表达成a -1的幂。
由定理11.1有11()k a a --=,从而得到1G a -=<>,1a -是G 的生成元。
再证明G 中只有a 和a -1这两个生成元,假设b 也是G 的生成元,则G b =<>。
由a G ∈可知存在整数t 使得ta b =,又由b G a ∈=<>可知存在整数m 使得m b a =。
从而得到()t m t mt a b a a === 则由消去律得1mt a e -=。
因为G 是无限群,必有mt-1=0。
从而证明了m=t=1或m=t=-1,即b=a 或b=a -1。
(2) 只须证明:()r Z r n ∀∈≤,a r 是G 的生成元当且仅当n 与r 互质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 循环群是交换群。 • 若( G,◦)为循环群, g为G的生成元,则G的结构
在同构的意义下完全由 g的阶所确定:
(1)若 g的阶= n,则 ( G,◦) ≅ (Zn, +n); (2)若 g的阶=∞,则 ( G,◦) ≅ (Z , + )。
例. (GF ,∘) 和 (AF ,∘)都是平面上的变换群。
例7.3.4 在已建立平面直角坐标系的平面上,
用σp表示平移:σp (Q)= Q +P;
用τθ表示绕坐标原点的旋转。 一般地, σp∘τθ ≠τθ∘σp 。
比如取P =(0,1),θ =½π ,则有:
( 0 , 1 ) ( 0 , 0 ) ( 0 , 1 ) 而 ( 0 , 1 ) ( 0 , 0 ) ( 1 , 0 )
证. 设群 G的阶=m, G的生成元 g的阶=n。分二种情形: ① n<∞,在G ={ gk | k ∈ Z }中, gs = gt ⇔ s≡t (mod n) . ∵ 若 gs= gt,即 gs-t=e,则s-t=nq。 反之,若s-t=nq,则 gs= gnq+t = gt。 因此 G ={ g0, g, g2,···, gn-1},故m=n;
e 112233,1 122331,2 132123, 3 113223,4 122133,5 132231。
7.3 循环群与置换群
一、循环群
定义7.3.1 设(G ,◦)是一个群,H ⊆G, 若G的元素均 可由H中的若干元素经过有限次的二元运算◦而得 到,则称子集 H生成群(G,◦),并将生成群的子集 中最小的称为群(G,◦)的生成元集。
注意:生成元集不一定唯一!其最小性是相对于集 合的基数而言。
定理7.3.1 循环群( G,◦)的阶= G的生成元 g的阶。
定理7.3.2 设T(S)为集合 S上所有的双射变换,则 (T(S),◦)是一个群。
• 设 S上的若干个双射变换组成的集合G关于◦ 构成 一个群,则称 G为 S上的一个变换群。
• 集合 S上双射变换的集合G关于◦ 构成一个群的充 要条件是下面二个条件成立:
(1)G关于运算◦是封闭的, (2)对∀g ∈ G,必有 g-1 ∈ G。
)
i2
(i2 )
in (in
)
通常用第一种方式表示置换,等价于将置换看作:
σ : i →j , ( i =1, 2, ⋅⋅⋅ )
例7.3.5 设有限集合S = {a1, a2, a3},则 S上的每一 个置换可以用六种不同的方式来表示。比如,
τ : a1 → a2 , a2 → a3, a3 → a1 ,
综合上述结论可知:( T(G ),◦) 是一个变换群。
再证明 ( G, ∗) ≅ ( T(G ),◦)
作映射 f : G →T(G), g →Tg 显然 f 是一个满射, 若Tg = Th,则 Tg( a) = Th ( a),即 g∗a = h∗a , 由消去律得 g = h,故 f 是单射。
而Tg ∗ h ( a) = (g∗h)∗a = Tg◦Th( a) , 故 f ( g ∗ h) = Tg ∗ h = Tg◦Th ,即 f 保持运算。
综上所述知:( G, ∗) ≅ ( T(G ),◦)
定义7.3.4 设 S为含n个元素的有限集合,σ是 S上 的一个双射,则称 σ是 S上的一个 n元置换。 S上的若干个置换关于运算◦构成的群,称为 n元 置换群;S 上的全体置换构成的群,称为 n次对称 群,记为Sn
• n次对称群的阶是 n! 。
例如: (AF ,∘) ≅ (Z3, +3)
证. (1)注意到,在G ={ gk | k ∈ Z }中,
gs= gt ⇔ s≡t (mod n)。
作映射 f : G → Zn , f ( gk )=[k]n , 则 f 是双射。 又 f (gs◦gt )= f (gs+t )=[s + t ]n =[s]n +n [t]n
• 设有限集合S = {a1, a2,⋅⋅⋅,an}上一个置换,
σ : S →S , ai → aj ( i =1, 2, ⋅⋅⋅ ) 则置换τ 完全由有序整数对 (1, j1), (2, j2), ,⋅⋅⋅, (n, jn) 所决定,于是可以将置换表示为:
1(1)
2
(2)
(nn)
或
i1 (i1
2
2
故平面上全体一一变换构成的变换群不是交换群。
Байду номын сангаас
定理7.3.3 任意一个群都同构于一个变换群。
证. 设( G, ∗)是群,g ∈ G。
定义变换 Tg: G →G, a→ g∗a 。 [压缩或平移变换]
下面证明 ( T(G ),◦) 是群,其中 T(G ) ={ Tg| g ∈ G }:
若Tg( a) = Tg( b), 则 g∗a = g∗b, 由消去律得 a = b, Tg是单射;
即 f 是同构,故( G,◦) ≅ (Zn, +n) 。
(2)作映射 f : G → Z , f ( gk )=k ,
则 f 是同构,故 ( G,◦) ≅ (Z , + )。
二、置换群
定义7.3.3 设 S为集合,称映射τ : S →S 为 S上的
一个变换。变换即为集合S到S自身的一个映射。
定理7.3.2 设 G为集合 S上全体变换的集合,则 (G ,∘)是一个含幺元 e的半群,其中运算 ∘ 是复合 运算,e 为S上的恒等变换。
可以表示为:
1 2 3 2 1 3 1 2 1 3 3 2 3 2 1 2 1 3 3 2 1 3 1 2 1 3 1 2 3 2 1 3 3 2 1 2
通常还是用
1 2
2 3
3 1
来表示。
例. 3次对称群S3 中有6个元素,分别是
对∀c ∈ G, 有d= g-1∗c ∈ G,满足 Tg(d ) = c ,Tg 是满射。 又Tg◦Th(a) = Tg(Th(a)) = Tg(h∗a)= g∗h∗a = Tg∗h(a)∈ T(G ) , 而Tg◦Tg-1(a) = g∗g-1∗a = a = g-1∗g∗a = Tg-1◦Tg(a), 即Tg-1=Tg-1 .