立体几何中的向量方法(一)——证明平行与垂直

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的向量方法(一)——证明平行与垂直

考点剖析:

1.理解直线的方向向量及平面的法向量.

2.能用向量语言表述线线、线面、面面的平行和垂直关系.

3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.

命题方向:1)向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.

2)用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键

规律总结:

1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.

2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.

3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.

知 识 梳 理

1.直线的方向向量与平面的法向量的确定

(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →

为直

线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.

(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平

面α的法向量,则求法向量的方程组为⎩⎨⎧ n·a =0,n·b =0.

相关文档
最新文档