专题25 图形面积的计算

合集下载

初中数学培优专题学习专题25 图形面积的计算

初中数学培优专题学习专题25 图形面积的计算

专题25 图形面积的计算阅读与思考计算图形的面积是平面几何中常见的基本问题之一,它包括两种主要类型: 1.常见图形面积的计算由于一些常见图形有计算面积的公式,所以,常见图形面积一般用公式来解. 2.非常规图形面积的计算非常规图形面积的计算通常转化为常见图形面积的计算,解题的关键是将非常规图形面积用常规图形面积的和或差来表示.计算图形的面积还常常用到以下知识:(1)等底等高的两个三角形面积相等.(2)等底的两个三角形面积的比等于对应高的比. (3)等高的两个三角形面积的比等于对应底的比. (4)等腰三角形底边上的高平分这个三角形的面积. (5)三角形一边上的中线平分这个三角形的面积. (6)平行四边形的对角线平分它的面积. 熟悉如下基本图形:S 3S 4S 3S 4S 1S 2S 1S 2S 1S 2S 1S 2S 1S 2S 2S 1l 2l 1例题与求解【例1】 如图,在直角△ABC 的两直角边AC ,BC 上分别作正方形ACDE 和CBFG .AF 交BC 于W ,连接GW ,若AC =14,BC =28,则S △AGW =______________.(2013年“希望杯”全国数学邀请赛试题)解题思路:△AGW 的面积可以看做△AGF 和△GWF 的面积之差.WFGEDCBA【例2】 如图,已知△ABC 中的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF .四边形BDCE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .5D .6(2013年全国初中数学竞赛广东试题)解题思路:设△ABC 底边BC 上的高为h .本例关键是通过适当变形找出h 和DE 之间的关系.FC BDEA【例3】 如图,平行四边形ABCD 的面积为30cm 2,E 为AD 边延长线上的一点,EB 与DC 交于F 点,已知三角形FBC 的面积比三角形DEF 的面积大9cm 2,AD =5cm ,求DE 长.(北京市“迎春杯”竞赛试题)解题思路:由面积求相关线段,是一个逆向思维的过程,解题的关键是把条件中图形面积用DE 及其它线段表示.BACFDE【例4】 如图,四边形ABCD 被AC 与DB 分成甲、乙、丙、丁4个三角形,已知BE =80 cm ,CE =60 cm ,DE =40 cm ,AE =30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?(“华罗庚杯”竞赛决赛试题)解题思路:甲、乙、丙、丁四个三角形面积可通过线段的比而建立联系,找出这种联系是解本例的突破口.丁乙丙甲E BCDA【例5】 如图,△ABC 的面积为1,D ,E 为BC 的三等分点,F ,G 为CA 的三等分点,求四边形PECF 的面积.解题思路:连CP ,设S △PFC =x ,S △PEC =y ,建立x ,y 的二元一次方程组.QP F GEDCBA【例6】如图,E ,F 分别是四边形ABCD 的边AB ,BC 的中点, DE 与AF 交于点P ,点Q 在线段DE 上,且AQ ∥PC .求梯形APCQ 的面积与平行四边形ABCD 的面积的比值.(2013年”希望杯“数学邀请赛试题)解题思路:连接EF ,DF ,AC ,PB ,设S □ABCD =a ,求得△APQ 和△CPQ 的面积.FEPQDCBA能力训练A 级1.如图,边长为1的正方形ABCD 的对角线相交于点O .过点O 的直线分别交AD ,BC 于E ,F ,则阴影部分面积是______.FOEDCB A(海南省竞赛试题)2.如图,在长方形ABCD 中,E 是AD 的中点,F 是CE 的中点,若△BDF 的面积为6平方厘米,则长方形ABCD 的面积是_____________平方厘米.EFDCBA(“希望杯”邀请赛试题)3.如图,ABCD 是边长为a 的正方形,以AB ,BC ,CD ,DA 分别为直径画半圆,则这四个半圆弧所围成的阴影部分的面积是____________.DCBA(安徽省中考试题)4.如图,已知AB ,CD 分别为梯形ABCD 的上底、下底,阴影部分总面积为5平方厘米,△AOB 的面积是0.625平方厘米,则梯形ABCD 的面积是_________平方厘米.DOCBA(“祖冲之杯”邀请赛试题)5.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF =BC 31,则长方形ABCD的面积是阴影部分面积的( )倍.A .2B . 3C . 4D .5DF CBEA6.如图,是一个长为a ,宽为b 的长方形,两个阴影图形都是一对长为c 的底边在长方形对边上的平行四边形,则长方形中未涂阴影部分的面积为( ).A .c b a ab )(+-B . c b a ab )(--C .))((c b c a --D .))((c b c a +-cccc7.如图,线段AB =CD =10cm ,BC 和DA 是弧长与半径都相等的圆弧,曲边三角形BCD 的面积是以D 为圆心、DC 为半径的圆面积的41,则阴影部分的面积是( ). A .25π B . 100 C .50π D .200CBD A(“五羊杯”竞赛试题)8.如图,一个大长方形被两条线段AB 、CD 中分成四个小长方形,如果其中图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为( ). A .29 B .27 C .310 D .815 ⅢⅡⅠCBDA9.如图,长方形ABCD 中,E ,F 分别为AD ,BC 边上的任一点,△ABG ,△DCH 的面积分别为15和20,求阴影部分的面积.HGEDCF B A(五城市联赛试题)10.如图,正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,已知正方形BEFG 的边长为4,求△DEK 的面积.RKP GF EC B AD(广西壮族自治区省南宁市中考试题)B 级1.如果图中4个圆的半径都为a ,那么阴影部分的面积为_____________.(江苏省竞赛试题)2.如图,在长方形ABCD 中,E 是BC 上的一点,F 是CD 上的一点,若三角形ABE 的面积是长方形ABCD 面积的31,三角形ADF 的面积是长方形ABCD 面积的52,三角形CEF 的面积为4cm 2,那么长方形ABCD 的面积是_________cm 2.DCFE BA(北京市“迎春杯”邀请赛试题)3.如图,边长为3厘米与5厘米的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积为___________________.(“希望杯”邀请赛试题)4.如图,若正方形APHM ,BNHP ,CQHN 的面积分别为7,4,6,则阴影部分的面积是_____.CMNDQPB A(“五羊杯”竞赛试题)5.如图,把等边三角形每边三等分,使其向外长出一个边长为原来的31的小等边三角形,称为一次“生长”,在得到的多边上类似“生长”,一共“生长”三次后,得到的多边形的边数=________,面积是原三角形面积的______倍.第2次生长第1次生长原图(“五羊杯”竞赛试题)6.如图,在长方形ABCD 中,AE =BG =BF =21AD =31AB =2,E ,H ,G 在同一条直线上,则阴影部分的面积等于( ).A .8B .12C .16D .20F BGCHDE A7.如图,边长分别为8cm 和6cm 的两个正方形,ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( ).A .48cm 2B .49cm 2C .50cm 2D .51cm 2KGFEC B A D(2013年“希望杯”邀请赛试题)8.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆经过的所有小方格的圆内部分的面积之和记为S 1,把圆周经过的所有小方格的圆外部分的面积之和记为S 2,则21S S 的整数部分是( ).A .0B .1C .2D .3(全国初中数学联赛试题)9.如图,△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( ).A .25B .30C .35D .40GFE CBDA10.已知O (0,0),A (2,2),B (1,a ),求a 为何值时,S △ABO =5?11.如图,已知正方形ABCD 的面积为1,M 为AB 的中点,求图中阴影部分的面积.GCBMAD(湖北省武汉市竞赛试题)12.如图,△ABC 中,21===FA FB EC EA DB DC .求的面积△的面积△ABC GHI 的值. G IHEDCBFA(“华罗庚金杯”邀请赛试题)。

五年级奥数专题-不规则图形面积计算含解析

五年级奥数专题-不规则图形面积计算含解析

不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算般我们称这样的图形为不规则图形那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米.求阴影部分的面积。

思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白三角形(△ ABG、△ BDE、△ EFG)的面积之和。

例2 如右图,正方形ABCD的边长为6 厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ ABE、△ ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ ABE、△ ADF的面积都等于正方形1 ABCD的1。

3在△ ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=,2∴△ ECF的面积为2×2÷ 2=2。

所以S△AEF=S四边形AECF-S△ ECF=12-2=1(0 平方厘米)。

例3两块等腰直角三角形的三角板,直角边分别是10 厘米和6 厘米。

如右图那样重合.求重合部分(阴影部分)的面积思路导航:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=,4∴阴影部分面积=S△ ABG-S△BEF=25-8=1(7 平方厘米)例4 如右图,A 为△ CDE的DE边上中点,BC=CD,若△ ABC阴影部分)面积为5平方厘米.求△ ABD及△ ACE的面积.思路导航:取BD 中点F,连结AF.因为△ ADF、△ ABF和△ ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ ACD的面积等于15 平方厘米,△ ABD的面积等于10平方厘米。

七年级数学培优专题 专题25 图形面积的计算_答案

七年级数学培优专题 专题25 图形面积的计算_答案

专题25 图形面积的计算例1 196 提示:S △SSS =S △SSS −S △SSS =12×28×(28+14)-12×28×28=12×28×14=28×7=196.例 2 D 提示:设△ABC 底边上的高为h ,则12×BC ×h =24 故h=48SS =484SS =12SS =12SS. 设△ABC 底边DE 上的高为S 1,△BDE 底边DE上的高为S 2,则h =S 1+S 2.∴S △SSS +S △SSS =12∙SS ∙S 1+12∙SS ∙S 2=12∙SS ∙(S 1+S 2)=12∙SS ∙S=12∙SS ∙12SS=6.例3 2cm .提示:设△ABE 的AE 边上的高为hcm ,DE 长为xcm ,则{5S −12S (5+S )=95S =30,解得DE =2.例454提示:2S CES EA==丙甲,2S BE S ED ==丙乙, 12S DE S BE ==丁甲,12S AE S EC ==丁乙. 例51133AEC ABC S S ==V V,1133BGF ABC S S ==V V .设=x PEC S V ,=y PFC S V 则=3x PBC S V ,=3y PCA S V于是133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①+②,得243x y +=(),∴16x y +=,即6=1PECF S .例6 设=a ABCD S Y ,因为E,F 分别是AB,BC 的中点,所以a 4ADE ABF S S ==V V .∴APD BEPF S S =V 四边形.如图,连接EF,DF ,则a a ==82AEF ADF S S V V ,.所以a18=a 42EP PD =. 设xAEP S =V ,则=4xADP S V .由APD BEPFS S =V 四边形得ax=4x 4-. ∴a x=20. ∴a a 4=205APD S =⨯V . 连接AC ,又∵AQ ∥PC ,APQ ACQS S =V V , ∴a 5ACQ ADQ S S +=V V . ∴a a 3=a 2510CDQ S =-V .连接PB ,则a =20EBP AEP S S=V V . 由1=a 2ABP CDP S S +V V , 得a a a 3a a 22101010CPQ ABP CDQ S S S =--=--=V V V .∴aPQ 110=3a 310CPQCDQS DQ S ==V V ,从而PQ 1=4PD ,1a=420APQ APD S S =V V .于是a a 3a==201020APQ CPQ APCQ S S S +=+V V 梯形. ∴3=20APCQ ABCDS S Y 梯形.A 级 1.14提示:POC AOE S S =V V ,14ABCD S S =阴影正方形.2. 48.3. ()22a 2π-4. 15.625. 5. B.6. C.7. B.8. C.9. 35 提示:连接EF ,EGFABG S S =V V ,EFH DHC S S =V V .10. 解法一:将△DEK 的面积转化为规则图形的面积之和或差.如图,延长AE 交PK 的延长线于点H.设正方形ABCD ,正方形PKPF 的边长分别a , b.则DEK ADE CDG PKG FHK ABCD BEFG EHPF S S S S S S S S =++----V V V V V 正方形正方形矩形=()()()()221111a 44b a a 4a a-4b b 4b 4-b 2222++-+--+-=222221111a 164b a 2a a 2a b 2b 2b+b 2222++---+---=16.解法二:运用等积变形转化问题,连接DB,GE,FK.则∠DBA=∠GEB=45°, ∴DB ∥GE,得GED GEB S S =V V ,同理GE ∥FK ,得GEK GEF S S =V V .∴16DEKGED GEK GEB GEF BEFG S S S S S S =+=+==V V V V V 正方形.B 级 1.2212a 3a π-(或22.58a ).2. 120 提示:设AB=a ,AD=b ,CE=c ,CF=d.则BE=b -c -,DF=a -d ,c=12b ,d= 15a ,cd=8.3. 18.75(π≈3).4. 8.5 提示:连HD.5. 4812481提示:“生长”n 次后得到n 34⨯边形,面积为原面积的n 114293+-倍.6. B.7. B 提示:过点K 作KH ⊥AB. ∵AB=8,BE=6,∴AE=8+6=14.又∵∠KAE=∠KEA=45°,∴KH=12AE=7.111474922AKE S AE KH =••=⨯⨯=V .8. B 提示:根据正方形的对称性,只需考虑它的14部分即可.9. B.10. ⑴当a >1时,即B 在OA 上方时,如图. AOB CBO AOD BCDA S S S S =+-V V V 梯形,∴()()11151a a 22122222=⨯⨯++⨯--⨯⨯,解得a=6.⑵当0≦a <1时,即B 在OA 于x 轴之间时,依题意,有()111221a-a 21=5222⨯⨯-⨯⨯⨯+⨯,解得a=-4(不合题意,舍去).⑶当a <0时,即B 在x 轴下方时,有()()()111122a 221a =5222+⨯-⨯-⨯⨯-⨯⨯-,解得a=-4.综上所述,当a=-4或a=6时,5ABO S =V . 11.14AMD AMC S S ==V V . ∵AMG S V 为公共部分, ∴AGD CMG S S =V V .又因为△AMG与△AMD 的高的高相等(以A 为顶点作高),△MCG 与△MCD 的高相等(以C 为顶点作高),∴AMGOMG AMDMCD S S MGS S MD==V V V V ,即141142CMGCMGS S -=V V ,解得:1=6CMG S V .∴11=2=63S ⨯阴影.连BG ,设ABC S S =V ,x DOG S =V ,y BGF S =V .则1332233,,x y S x y S ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得12421x S y S ⎧=⎪⎪⎨⎪=⎪⎩同理可得:121.EAH FBI S S S ==V V 又13ADC BEA S S ==V V S ,得12532121=-=OCEH HAFI S S S S ⎛⎫= ⎪⎝⎭四形四形 .∴21011321217=--GHI S S S ⎛⎫= ⎪⎝⎭V 故17GHI ABC S S =V V .。

周长和面积专题训练(巧算面积)

周长和面积专题训练(巧算面积)

周长和面积专题训练(巧算面积)一、知识梳理要想快速准确地将复杂的图形面积计算出来,首先要熟练的掌握最基础的图形面积计算公式。

任何一个复杂图形求面积,都要用到基础的公式逐步求解。

常用面积计算公式:长方形面积=长×宽,s=ab;正方形面积=边长×边长,s=a2;平行四边形面积=底×高,s=ah;三角形面积=底×高÷2,s=ah÷2;梯形面积=(上底+下底)×高÷2,s=(a+b)h÷2圆形面积=圆周率×半径的平方,s=∏r2;我们在计算复杂的图形面积时,经常会用到一些巧妙的方法,例如拆分组合图形、割补组合图形……。

本次专题还将带领同学接触一些更巧妙的算法。

二、例题精讲【例1】一个边长为40厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积(图(a)).分析:第一个正方形的面积不难求出,第二个正方形的面积是多少呢?如图(b)所示,把大正方形平均分成8份,小正方形有4份,所以第二个正方形的面积是第一个正方形面积的一半.解:第二个正方形的面积为第一个正方形面积的一半.依此类推,第五个正方形的面积为:40×40÷2÷2÷2÷2=100(平方厘米)答:第五个正方形的面积为100平方厘米.【例2】如下图(a),大正方形比小正方形的面积大40平方厘米.求这两个正方形的面积.分析:将小正方形补成与大正方形一样(如图(a)),然后将所补的部分分成三块(如图(b)),并利用图(c)求得大、小、正方形的边长之差.解:如上图(b),大正方形比小正方形的面积多2块A和1块B.再将B下方的A旋转到如图(c).由A、B、A拼成的长方形,面积是40平方厘米,长是20厘米,所以宽是40÷20=2(厘米).即大正方形与小正方形边长的差是2厘米.所以大正方形边长为(20+2)÷2=11(厘米)小正方形边长:20-11=9(厘米)所以,大正方形面积为11×11=121(平方厘米)小正方形面积为9×9=81(平方厘米)答:大正方形面积为121平方厘米,小正方形面积为81平方厘米.【例3】一块长方形,用垂直于长和宽的两条线分成四块,其中三块面积分别为15、18、30平方米.第四块面积是多少平方米(如图(a))?解如图(b),长方形A的面积=a×b,长方形D的面积=c×d,因此长方形A的面积×长方形D的面积=a×b×c×d同样长方形B的面积×长方形C的面积=b×c×a×d所以长方形A的面积×长方形D的面积=长方形B的面积×长方形D的面积.在图(a)中,所求面积为15×30÷18=25(平方米)答:第四块面积是25平方米.发现:当一个长方形被分成四个小长方形时,对角的两个长方形面积的乘积一定相等.三、专题特训1.求图中的阴影部分的面积(单位:厘米).2.一个边长为80厘米的大正方形,称为第一个正方形.依次连接四边的中点,得到第二个正方形.这样继续下去,得到第三个,第四个,第五个,第六个,第七个,第八个正方形.求这八个正方形的面积的和.3.四个一样的长方形和一个小的正方形(如图所示)拼成一个面积为49平方米的大正方形.小正方形的面积是4平方米.长方形的短边是几米?4.一块长方形地被两条直线截成四块(如下图).其中三块长方形的面积是24、30、20平方米,第四块面积是多少平方米?5.如图所示,已知长方形ABCD,AD=8厘米,AB=5厘米,E、F分别为AB及BC边的中点.求阴影图形的面积.6.如图所示,已知正方形的边长为8厘米.求阴影部分的面积.7.如图所示,一块长方形草地,长100米,宽80米,中间有一条宽4米的道路.求草地(阴影部分)的面积.8.如图所示,一个长方形被两条直线分成三个长方形和一个正方形。

人教版七年级数学下册专题训练25-图形面积的计算试题(含答案)

人教版七年级数学下册专题训练25-图形面积的计算试题(含答案)

25 图形面积的计算阅读与思考计算图形的面积是平面几何中常见的基本问题之一,它包括两种主要类型: 1.常见图形面积的计算由于一些常见图形有计算面积的公式,所以,常见图形面积一般用公式来解. 2.非常规图形面积的计算非常规图形面积的计算通常转化为常见图形面积的计算,解题的关键是将非常规图形面积用常规图形面积的和或差来表示.计算图形的面积还常常用到以下知识:(1)等底等高的两个三角形面积相等.(2)等底的两个三角形面积的比等于对应高的比. (3)等高的两个三角形面积的比等于对应底的比. (4)等腰三角形底边上的高平分这个三角形的面积. (5)三角形一边上的中线平分这个三角形的面积. (6)平行四边形的对角线平分它的面积. 熟悉如下基本图形:S 3S 4S 3S 4S 1S 2S 1S 2S 1S 2S 1S 2S 1S 2S 2S 1l 2l 1例题与求解【例1】 如图,在直角△ABC 的两直角边AC ,BC 上分别作正方形ACDE 和CBFG .AF 交BC 于W ,连接GW ,若AC =14,BC =28,则S △AGW =______________.(2013年“希望杯”全国数学邀请赛试题)解题思路:△AGW 的面积可以看做△AGF 和△GWF 的面积之差.WFGEDCBA【例2】 如图,已知△ABC 中的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF .四边形BDCE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .5D .6(2013年全国初中数学竞赛广东试题)解题思路:设△ABC 底边BC 上的高为h .本例关键是通过适当变形找出h 和DE 之间的关系.FC BDEA【例3】 如图,平行四边形ABCD 的面积为30cm 2,E 为AD 边延长线上的一点,EB 与DC 交于F 点,已知三角形FBC 的面积比三角形DEF 的面积大9cm 2,AD =5cm ,求DE 长.(北京市“迎春杯”竞赛试题)解题思路:由面积求相关线段,是一个逆向思维的过程,解题的关键是把条件中图形面积用DE 及其它线段表示.BACFDE【例4】 如图,四边形ABCD 被AC 与DB 分成甲、乙、丙、丁4个三角形,已知BE =80 cm ,CE =60cm ,DE =40 cm ,AE =30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?(“华罗庚杯”竞赛决赛试题)解题思路:甲、乙、丙、丁四个三角形面积可通过线段的比而建立联系,找出这种联系是解本例的突破口.丁乙丙甲E BCD A【例5】 如图,△ABC 的面积为1,D ,E 为BC 的三等分点,F ,G 为CA 的三等分点,求四边形PECF 的面积.解题思路:连CP ,设S △PFC =x ,S △PEC =y ,建立x ,y 的二元一次方程组.QP F GEDCBA【例6】如图,E ,F 分别是四边形ABCD 的边AB ,BC 的中点, DE 与AF 交于点P ,点Q 在线段DE 上,且AQ ∥PC .求梯形APCQ 的面积与平行四边形ABCD 的面积的比值.(2013年”希望杯“数学邀请赛试题)解题思路:连接EF ,DF ,AC ,PB ,设S □ABCD =a ,求得△APQ 和△CPQ 的面积.F DB能力训练A 级1.如图,边长为1的正方形ABCD的对角线相交于点O.过点O的直线分别交AD,BC于E,F,则阴影部分面积是______.F CB(海南省竞赛试题)2.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_____________平方厘米.EFDCBA(“希望杯”邀请赛试题)3.如图,ABCD是边长为a的正方形,以AB,BC,CD,DA分别为直径画半圆,则这四个半圆弧所围成的阴影部分的面积是____________.DCB A(安徽省中考试题)4.如图,已知AB ,CD 分别为梯形ABCD 的上底、下底,阴影部分总面积为5平方厘米,△AOB 的面积是0.625平方厘米,则梯形ABCD 的面积是_________平方厘米.DOCBA(“祖冲之杯”邀请赛试题)5.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF =BC ⋅31,则长方形ABCD 的面积是阴影部分面积的( )倍.A.2B. 3C. 4D.5DF CBEA6.如图,是一个长为a ,宽为b 的长方形,两个阴影图形都是一对长为c 的底边在长方形对边上的平行四边形,则长方形中未涂阴影部分的面积为( ).A.c b a ab )(+-B. c b a ab )(--C.))((c b c a --D.))((c b c a +-cccc7.如图,线段AB =CD =10cm ,BC 和DA 是弧长与半径都相等的圆弧,曲边三角形BCD 的面积是以D 为圆心、DC 为半径的圆面积的41,则阴影部分的面积是( ). A .25π B. 100 C.50π D. 200CBD A(“五羊杯”竞赛试题)8.如图,一个大长方形被两条线段AB 、CD 中分成四个小长方形,如果其中图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为( ). A.29 B.27 C.310D .815 ⅢⅡⅠCBDA9.如图,长方形ABCD 中,E ,F 分别为AD ,BC 边上的任一点,△ABG ,△DCH 的面积分别为15和20,求阴影部分的面积.HGEDCF B A(五城市联赛试题)10.如图,正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,已知正方形BEFG 的边长为4,求△DEK 的面积.RKP GF EC B A D(广西壮族自治区省南宁市中考试题)B 级1.如果图中4个圆的半径都为a ,那么阴影部分的面积为_____________.(江苏省竞赛试题)2.如图,在长方形ABCD 中,E 是BC 上的一点,F 是CD 上的一点,若三角形ABE 的面积是长方形ABCD 面积的31,三角形ADF 的面积是长方形ABCD 面积的52,三角形CEF 的面积为4cm 2,那么长方形ABCD 的面积是_________cm 2.DCFE BA(北京市“迎春杯”邀请赛试题)3.如图,边长为3厘米与5厘米的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积为___________________.(“希望杯”邀请赛试题)4.如图,若正方形APHM ,BNHP ,CQHN 的面积分别为7,4,6,则阴影部分的面积是_____.CMNDQPB A(“五羊杯”竞赛试题)5.如图,把等边三角形每边三等分,使其向外长出一个边长为原来的31的小等边三角形,称为一次“生长”,在得到的多边上类似“生长”,一共“生长”三次后,得到的多边形的边数=________,面积是原三角形面积的______倍.第2次生长第1次生长原图(“五羊杯”竞赛试题)6.如图,在长方形ABCD 中,AE =BG =BF =21AD =31AB =2,E ,H ,G 在同一条直线上,则阴影部分的面积等于( ).A.8B.12C.16 D .20F BGCHDE A7.如图,边长分别为8cm 和6cm 的两个正方形,ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( ).A.48cm 2B.49cm 2C.50cm 2D .51cm 2KGFEC B A D(2013年“希望杯”邀请赛试题)8.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆经过的所有小方格的圆内部分的面积之和记为S 1,把圆周经过的所有小方格的圆外部分的面积之和记为S 2,则21S S 的整数部分是( ). A.0 B.1 C.2 D .3(全国初中数学联赛试题)9.如图,△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( ).A.25B.30C.35 D .40GFE CBDA10.已知O (0,0),A (2,2),B (1,a ),求a 为何值时,S △ABO =5?11.如图,已知正方形ABCD 的面积为1,M 为AB 的中点,求图中阴影部分的面积.GCBMAD(湖北省武汉市竞赛试题)12.如图,△A BC 中,21===FA FB EC EA DB DC .求的面积△的面积△ABC GHI 的值. G IHEDCBFA(“华罗庚金杯”邀请赛试题)专题25 图形面积的计算例1 196 提示:×28×(28+14)-×28×28=×28×14=28×7=196.例2 D 提示:设△ABC 底边上的高为h ,则×BC ×h =24 故h=错误!未找到引用源。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

专题25 菱形篇(解析版)

专题25 菱形篇(解析版)

专题25 菱形考点一:菱形的性质1. 菱形的定义:有一组邻边相等的四边形是菱形。

2. 菱形的性质:①具有平行四边形的一切性质。

②菱形的四条边都相等。

③菱形的对角线相互垂直且平分每一组对角。

④菱形既是一个中心对称图形,也是一个轴对称图形。

对称中心为对角线交点,对称轴为对角线所在直线。

⑤面积计算:除了用计算平行四边形的面积计算方法面积,还可以用对角线乘积的一半来计算面积。

1.(2022•广东)菱形的边长为5,则它的周长是 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.2.(2022•通辽)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:53.(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为 .【分析】菱形的四条边相等,要求周长,只需求出边长即可,菱形的对角线互相垂直且平分,根据勾股定理求边长即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,在Rt△AOB中,AB===13,∴菱形的周长=13×4=52.故答案为:52.4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=25cm,AC=4cm,则BD 的长为 cm.【分析】由菱形的性质可得AC⊥BD,BO=DO,由勾股定理可求BO,即可求解.【解答】解:∵四边形ABCD是菱形,AC=4cm,∴AC⊥BD,BO=DO,AO=CO=2cm,∵AB=2cm,∵BO==4cm,∴DO=BO=4cm,∴BD=8cm,故答案为:8.5.(2022•乐山)已知菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm.则菱形的面积为 cm2.【分析】根据菱形的面积=对角线乘积的一半,可以计算出该菱形的面积.【解答】解:∵菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm,∴菱形的面积是=24(cm2),故答案为:24.6.(2022•河池)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC【分析】根据菱形的性质即可一一判断.【解答】解:∵四边形ABCD是菱形,∴∠BAC=∠DAC,AB=AD,AC⊥BD,故A、B、D正确,无法得出BD,故选:C.7.(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是( )A.40°B.60°C.80°D.100°【分析】根据菱形的对边平行,以及两直线平行,内错角相等即可求解.【解答】解:∵菱形的对边平行,∴由两直线平行,内错角相等可得∠1=80°.故选:C.8.(2022•德州)如图,线段AB,CD端点的坐标分别为A(﹣1,2),B(3,﹣1),C(3,2),D(﹣1,5),且AB∥CD,将CD平移至第一象限内,得到C′D′(C′,D′均在格点上).若四边形ABC′D′是菱形,则所有满足条件的点D′的坐标为 .【分析】利用勾股定理可得AB=CD=5,根据菱形性质可得AD′=AB=5,再由平移规律即可得出答案.【解答】解:如图,∵A(﹣1,2),B(3,﹣1),C(3,2),D(﹣1,5),∴AB∥CD,AB=CD=5,∵四边形ABC′D′是菱形,∴AD′=AB=5,当点D向右平移4个单位,即D′(3,5)时,AD′=5,当点D向右平移3个单位,向上平移1个单位,即D′(2,6)时,AD′=5,故答案为:(3,5)或(2,6).9.(2022•绵阳)如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为(23,3),则图象最低点E的坐标为( )A.(332,2)B.(332,3)C.(334,3)D.(3,2)【分析】由函数图象可得点F表示图1中点N与点B重合时,即可求BD,BM的长,由锐角三角函数可求解.【解答】解:如图,连接AC,NC,∵四边形ABCD是菱形,∠BCD=120°,∴AB=BC,AC垂直平分BD,∠ABC=60°,∠ABD=∠DBC=30°,∴AN=CN,△ABC是等边三角形,∴AN+MN=CN+MN,∴当点N在线段CM上时,AN+MN有最小值为CM的长,∵点F的坐标为(2,3),∴DB=2,AB+BM=3,∵点M是AB的中点,∴AM=BM,CM⊥AB,∴2BM+BM=3,∴BM=1,∵tan∠ABC=tan60°==,∴CM=,∵cos∠ABD=cos30°==,∴BN'=,∴DN'=,∴点E的坐标为:(,),故选:C.10.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为323,则CD的长为( )A.4B.43C.8D.83【分析】在Rt△BDH中先求得的长,根据菱形面积公式求得AC长,再根据勾股定理求得CD长.【解答】解:∵DH⊥AB,∴∠BHD=90°,∵四边形ABCD是菱形,∴OB=OD,OC=OA=,AC⊥BD,∴OH=OB=OD=(直角三角形斜边上中线等于斜边的一半),∴OD=4,BD=8,由得,=32,∴AC=8,∴OC==4,∴CD==8,故选C.11.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为( )A.16B.67C.127D.30【分析】连接AC交BD于O,如图,根据菱形的性质得到AD∥BC,CB=CD=AD=4,AC⊥BD,BO=OD,OC=AO,再利用∠DEF=∠DFE得到DF=DE=2,证明∠BCF=∠BFC得到BF=BC=4,则BD=6,所以OB=OD=3,接着利用勾股定理计算出OC,从而得到AC=2,然后根据菱形的面积公式计算它的面积.【解答】解:连接AC交BD于O,如图,∵四边形ABCD为菱形,∴AD∥BC,CB=CD=AD=4,AC⊥BD,BO=OD,OC=AO,∵E为AD边的中点,∴DE=2,∵∠DEF=∠DFE,∴DF=DE=2,∵DE∥BC,∴∠DEF=∠BCF,∵∠DFE=∠BFC,∴∠BCF=∠BFC,∴BF=BC=4,∴BD=BF+DF=4+2=6,∴OB=OD=3,在Rt△BOC中,OC==,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×6=6.故选:B.12.(2022•兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC=60°,BD=43,则OE=( )A.4B.23C.2D.3【分析】根据菱形的性质可得,∠ABO=30°,AC⊥BD,则BO=2,再利用含30°角的直角三角形的性质可得答案.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴BO=DO,∠ABO=30°,AC⊥BD,AB=AD,∴BO=2,∴AO==2,∴AB=2AO=4,∵E为AD的中点,∠AOD=90°,∴OE=AD=2,故选:C.13.(2022•呼和浩特)如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是( )A.3B.5+1C.22+1D.2+3【分析】连接DB,交AC于点O,连接OE,根据菱形的性质可得∠DAC=∠DAB=30°,AC⊥BD,OD=BD,AC=2AO,AB=AD,从而可得△ABD是等边三角形,进而可得DB=AD,再根据直角三角形斜边上的中线可得OE=AE=DE=AD,然后设OE=AE=DE=a,则AD=BD=2a,在Rt△AOD中,利用勾股定理求出AO的长,从而求出AC的长,最后利用等腰三角形的性质,以及三角形的外角求出∠OEF=∠EFO=15°,从而可得OE=OF=a,即可求出AF,CF的长,进行计算即可解答.【解答】解:连接DB,交AC于点O,连接OE,∵四边形ABCD是菱形,∴∠DAC=∠DAB=30°,AC⊥BD,OD=BD,AC=2AO,AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴DB=AD,∵∠AOD=90°,点E是DA中点,∴OE=AE=DE=AD,∴设OE=AE=DE=a,∴AD=BD=2a,∴OD=BD=a,在Rt△AOD中,AO===a,∴AC=2AO=2a,∵EA=EO,∴∠EAO=∠EOA=30°,∴∠DEO =∠EAO +∠EOA =60°,∵∠DEF =45°,∴∠OEF =∠DEO ﹣∠DEF =15°,∴∠EFO =∠EOA ﹣∠OEF =15°,∴∠OEF =∠EFO =15°,∴OE =OF =a ,∴AF =AO +OF =a +a ,∴CF =AC ﹣AF =a ﹣a ,∴===2+,故选:D .14.(2022•湖北)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .31B .21C .33D .23【分析】连接CD ,然后证B 、C 、D 三点共线,根据菱形的性质可得:△OBD 是等边三角形,根据等边三角形的性质可得BA ⊥OD ,∠ADB =60°,进而可得∠ABC =30°,进而可得tan ∠ABC 的值.【解答】解:如图,连接CD ,∵网格是由4个形状相同,大小相等的菱形组成,∴∠3=∠4,OD ∥CE ,∴∠2=∠5,∵∠1+∠4+∠5=180°,∴∠1+∠3+∠2=180°,∴B、C、D三点共线,又∵网格是由4个形状相同,大小相等的菱形组成,∴OD=OB,OA=AD,∵∠O=60°,∴△OBD是等边三角形,∴BA⊥OD,∠ADB=60°,∴∠ABC=180°﹣90°﹣60°=30°,∴tan∠ABC=tan30°=,故选:C.15.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为( )A.6B.12C.24D.48【分析】由菱形的性质可得出⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.=4CD=4×6=24.∴C菱形ABCD故选:C.16.(2022•株洲)如图所示,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE∥BD交AB 的延长线于点E,下列结论不一定正确的是( )A .OB =21CE B .△ACE 是直角三角形C .BC =21AE D .BE =CE 【分析】由菱形的性质可得AO =CO =,AC ⊥BD ,通过证明△AOB ∽△ACE ,可得∠AOB =∠ACE =90°,OB =CE ,AB =AE ,由直角三角形的性质可得BC =AE ,即可求解.【解答】解:∵四边形ABCD 是菱形,∴AO =CO =,AC ⊥BD ,∵CE ∥BD ,∴△AOB ∽△ACE ,∴∠AOB =∠ACE =90°,=,∴△ACE 是直角三角形,OB =CE ,AB =AE ,∴BC =AE ,故选:D .17.(2022•甘肃)如图1,在菱形ABCD 中,∠A =60°,动点P 从点A 出发,沿折线AD →DC →CB 方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,△APB 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A .3B .23C .33D .43【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为3解答即可.【解答】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为3,∴△ABD 的面积=a 2=3,解得:a 1=2,a 2=﹣2(舍去),故选:B .18.(2022•丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分∠EAD 交CD 于点F ,FG ∥AD 交AE 于点G .若cos B =41,则FG 的长是( )A .3B .38C .3152D .25【分析】方法一:过点A 作AH ⊥BE 于点H ,过点F 作FQ ⊥AD 于点Q ,根据cos B ==,可得BH =1,所以AH =,然后证明AH 是BE 的垂直平分线,可得AE =AB =4,设GA =GF =x ,根据S 梯形CEAD =S 梯形CEGF +S 梯形GFDA ,进而可以解决问题.方法二:作AH 垂直BC 于H ,延长AE 和DC 交于点M 由已知可得BH =EH =1,所以=AB =EM =CM =4设GF =x ,则AG =x ,GE =4﹣x ,由三角形MGF 相似于三角形MEC 即可得结论.【解答】解:方法一,如图,过点A 作AH ⊥BE 于点H ,过点F 作FQ ⊥AD 于点Q ,∵菱形ABCD 的边长为4,∴AB =AD =BC =4,∵cos B ==,∴BH =1,∴AH ===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,∵S梯形CEAD =S梯形CEGF+S梯形GFDA,∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.19.(2022•自贡)如图,菱形ABCD对角线交点与坐标原点O重合,点A(﹣2,5),则点C的坐标是( )A.(5,﹣2)B.(2,﹣5)C.(2,5)D.(﹣2,﹣5)【分析】菱形的对角线相互平分可知点A与C关于原点对称,从而得结论.【解答】解:∵四边形ABCD是菱形,∴OA=OC,即点A与点C关于原点对称,∵点A(﹣2,5),∴点C的坐标是(2,﹣5).故选:B.20.(2022•鞍山)如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB中点,F为AD中点,连接EF EF的长为 .【分析】由菱形的性质可得AB=AD=2,∠ABD=30°,AC⊥BD,BO=DO,由三角形中位线定理得FH=AO=,FH∥AO,由勾股定理可求解.【解答】解:如图,取OD的中点H,连接FH,∵四边形ABCD是菱形,∠ABC=60°,∴AB=AD=2,∠ABD=30°,AC⊥BD,BO=DO,∴AO=AB=1,BO=AO==DO,∵点H是OD的中点,点F是AD的中点,∴FH=AO=,FH∥AO,∴FH⊥BD,∵点E是BO的中点,点H是OD的中点,∴OE=,OH=,∴EH=,∴EF===,故答案为:.21.(2022•青岛)图①他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是 °.【分析】先确定∠BAD的度数,再利用菱形的对边平行,利用平行线的性质即可求出∠ABC的度数.【解答】解:如图,∵∠BAD=∠BAE=∠DAE,∠BAD+∠BAE+∠DAE=360°,∴∠BAD=∠BAE=∠DAE=120°,∵BC∥AD,∴∠ABC=180°﹣120°=60°,故答案为:60.22.(2022•铜仁市)如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF=6,则BD的长为 (结果保留根号).【分析】连接AC,交BD于H,证明△DCH≌△DCF,得出DH的长度,再根据菱形的性质得出BD的长度.【解答】解:如图,连接AC,交BD于点H,由菱形的性质得∠ADC=∠ABC=80°,∠DCE=80°,∠DHC=90°,又∵∠ECM=30°,∴∠DCF=50°,∵DF⊥CM,∴∠CFD=90°,∴∠CDF=40°,又∵四边形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=40°,在△CDH和△CDF中,,∴△CDH≌△CDF(AAS),∴DH=DF=,∴DB=2DH=.故答案为:.23.(2022•哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为 .【分析】由菱形的性质可得AC BD,AO=CO=4,BO=DO,由勾股定理可求AE的长,BC的长,由三角形中位线定理可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE===5,∴BE=AE=5,∴BO=8,∴BC===4,∵点F为CD的中点,BO=DO,∴OF=BC=2,故答案为:2.24.(2022•黑龙江)如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是 .【分析】连接OE,过点O作OF⊥AB,垂足为F,并延长到点O′,使O′F=OF,连接O′E交直线AB于点P,连接OP,从而可得OP=O′P,此时OP+PE的值最小,先利用菱形的性质可得AD=AB=3,∠BAC=∠BAD,OA=OC=AC,OD=OB=BD,∠AOD=90°,从而可得△ADB是等边三角形,进而求出AD=3,然后在Rt△ADO中,利用勾股定理求出AO的长,从而求出AC的长,进而利用直角三角形斜边上的中线可得OE=OA=AC=,再利用角平分线和等腰三角形的性质可得OE ∥AB,从而求出∠EOF=90°,进而在Rt△AOF中,利用锐角三角函数的定义求出OF的长,即可求出OO′的长,最后在Rt△EOO′中,利用勾股定理进行计算即可解答.【解答】解:连接OE,过点O作OF⊥AB,垂足为F,并延长到点O′,使O′F=OF,连接O′E交直线AB于点P,连接OP,∴AP是OO′的垂直平分线,∴OP=O′P,∴OP+PE=O′P+PE=O′E,此时,OP+PE的值最小,∵四边形ABCD是菱形,∴AD=AB=3,∠BAC=∠BAD,OA=OC=AC,OD=OB=BD,∠AOD=90°,∵∠BAD=60°,∴△ADB是等边三角形,∴BD=AD=3,∴OD=BD=,∴AO===,∴AC=2OA=3,∵CE⊥AH,∴∠AEC=90°,∴OE=OA=AC=,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠OAE=∠EAB,∴∠OEA=∠EAB,∴OE∥AB,∴∠EOF=∠AFO=90°,在Rt△AOF中,∠OAB=∠DAB=30°,∴OF=OA=,∴OO′=2OF=,在Rt△EOO′中,O′E===,∴OP+PE=,∴OP+PE的最小值为,故答案为:.25.(2022•天津)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于 .【分析】如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,先证明FH是△CDE的中位线,得FH=1,再证明△AEG≌△FHG(AAS),得AG=FG,在Rt△CBM 中计算BM和CM的长,再证明BF是中位线,可得BF的长,由勾股定理可得AF的长,从而得结论.【解答】解:如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,∵四边形ABCD是菱形,∴AB=CD=BC=2,AB∥CD,∴FH∥AB,∴∠FHG=∠AEG,∵F是CE的中点,FH∥CD,∴H是DE的中点,∴FH是△CDE的中位线,∴FH=CD=1,∵E是AB的中点,∴AE=BE=1,∴AE=FH,∵∠AGE=∠FGH,∴△AEG≌△FHG(AAS),∴AG=FG,∵AD∥BC,∴∠CBM=∠DAB=60°,Rt△CBM中,∠BCM=30°,∴BM=BC=1,CM==,∴BE=BM,∵F是CE的中点,∴FB是△CEM的中位线,∴BF=CM=,FB∥CM,∴∠EBF=∠M=90°,Rt△AFB中,由勾股定理得:AF===,∴GF =AF =.故答案为:.考点二:菱形的判定1. 直接判定:四条边都相等的四边形是菱形。

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。

专题25 轨迹、路径类综合练习(基础)-冲刺2021年中考几何专项复习(原卷版)

专题25 轨迹、路径类综合练习(基础)-冲刺2021年中考几何专项复习(原卷版)

轨迹、路径类综合练习(基础)一.选择题1.如图是一个三级台阶,它的每一级的长,宽,高分别为100cm,15cm和10cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为()A.115cm B.125cm C.135cm D.145cm2.如图,一个底面圆周长为24m,高为5m的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12m B.15m C.13m D.9.13m3.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()A.13B.17C.5D.2+54.底面周长为12,高为8的圆柱体上有一只小蚂蚁要从A点爬到B点,则蚂蚁爬行的最短距离是()A.10B.8C.5D.45.如图,BC是⊙O的直径,BC=42,M、N是半圆上不与B、C重合的两点,且∠MON=120°,△ABC上从点M运动到点N时,点E运动的路径长是()的内心为E点,当点A在MA.23B.43C.83D.1636.如图,在矩形ABCD中,AB=3,BC=1,把矩形ABCD绕点A顺时针旋转30°得到矩形AB′C′D′, ,则图中阴影部分的面积为()其中点C的运动路径为B'A.3−33B.3−32C.23−32D.23−337.如图,AB是⊙O的直径,C是弧AB上的三等分点,E、F是弧AB上的动点,∠EOF=60°,线段AE、BF相交于点D,M是线段BD的中点.当点E从点B运动到点C时,则M、E两点的运动路径长的比是()A.32B.28C.33D.588.如图,矩形ABCD中,AB=3,AD=4,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为()A.3B.4C.92D.5二.填空题9.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.10.如图,一个圆柱形水杯深20cm,杯口周长为36cm,在杯子外侧底面A点有一只蚂蚁,它想吃到杯子相对的内壁上点B处的蜂蜜,已知点B距离杯子口4cm,不考虑杯子的厚度,蚂蚁爬行的最短距离为.11.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.12.如图,在菱形ABCD中,∠A=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为.13.在平面直角坐标系中,A(﹣2,0)、B(4,0),如图C在x轴上,BC=2,Q从O向C运动,以AQ、BQ为边作等边△AEQ、等边△FBQ.连接EF,点P为EF中点,则P点运动的路径长为.14.如图,△ABC是边长为4的等边三角形△ABC,将绕边AB的中点O逆时针旋转60°,点C的运动路 ,则图中阴影部分的面积为.径为B'15.如图,有一条长度为1的线段EF,其端点E、F分别在边长为3的正方形ABCD的四边上滑动.当EF 绕着正方形的四边滑动一周时,EF的中点M形成的路径所围成的图形面积是.16.如图,在Rt△ABC中,AC=4,BC=2,点M为AC的中点.将△ABC绕点M逆时针旋转90°得到△DEF,其中点B的运动路径为B ,则图中阴影部分的面积为.三.解答题17.如图,把Rt△ABC的斜边AB放在直线l上,按顺时针方向在1上转动两次,使它转到△A″B″C″的位置,若BC=1,AC=3,则当点A转动到点A″的位置时,求点A两次转动所经过的路程.18.一块等边三角形木块,边长为1,如图所示,现将三角形木块沿水平线翻滚五次,那么点B从开始至结束所走过的路径长是多少?19.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?20.如图所示,有一个圆柱,底面圆的直径AB=16,高BC=12cm,在BC的中点P处有一块蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.21.问题探究:(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE=14BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.问题解决:(3)为了迎接新年的到来,西安城墙举办了迎新年大型灯光秀表演.其中一个镭射灯距城墙30米,镭射灯发出的两根彩色光线夹角为60°,如图③,若将两根光线(AB,AC)和光线与城墙的两交点的连接的线段(BC)看作一个三角形,记为△ABC,那么该三角形周长有没有最小值?若有,求出最小值,若没有,说明理由.22.如图,在平面直角坐标系中,点A、B、C的坐标分别是(0,3)、(3+1,1)、(1,0),将△ABC 绕点A顺时针旋转一定角度,点C恰好落在x轴的负半轴上,得到△AB′C′;(1)直接写出点B′的坐标,C′的坐标,点B到点B经过的路径长;(2)求△ABC扫过的面积.23.如图,点P、Q分别是等边△ABC边AB、BC延长线上的动点且BP=CQ,连接AQ、CP,线段PC的延长线交AQ于点M.(1)求证:△ABQ≌△CAP;(2)在点P、Q运动过程中,∠QMC大小是否变化?若变化,请说明理由;若不变,求出它的度数.24.如图,抛物线y=x2−12x−32与直线y=x﹣2交于A、B两点(点A在点B的左侧),一个动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E,点F的坐标,并求出这个最短总路径的长.。

(完整版)小学求阴影部分面积专题—含答案

(完整版)小学求阴影部分面积专题—含答案

in gs in t h ei r be i n g a r e g o o df o r s o .【史上最全小学求阴影部分面积专题—含答案】小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。

并加深对面积和周长概念的理解和区分。

面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

例1.求阴影部分的面积。

(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)例3.求图中阴影部分的面积。

(单位:厘米)例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?t h i n g s in th e i r be i n g a r e g o o df o r s o .例7.求阴影部分的面积。

(单位:厘米)例8.求阴影部分的面积。

(单位:厘米)例9.求阴影部分的面积。

(单位:厘米)例10.求阴影部分的面积。

(单位:厘米)例11.求阴影部分的面积。

(单位:厘米)例12.求阴影部分的面积。

(单位:厘米)例13.求阴影部分的面积。

(单位:厘米)例14.求阴影部分的面积。

(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面例16.求阴影部分的面积。

(单位:厘米)i n g s i n t h ei r be i n g a r e g o o df o r s o .例17.图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

例19.正方形边长为2厘米,求阴影部分的面积。

【精品】精选常考应用题(基础版)专题25《重叠问题》2020年小升初数学金牌提分闯关练(解析版)

【精品】精选常考应用题(基础版)专题25《重叠问题》2020年小升初数学金牌提分闯关练(解析版)

2020年小升初数学精选常考题金牌提分闯关练(基础版)专题25《重叠问题》1.(2013秋•西安期中)下面图形的面积是(2)cmA.12B.11C.10【解答】解:223112⨯⨯-⨯⨯122=-10=(平方厘米)答:图形的面积是10平方厘米.故选:C.2.爸爸把两根绳子接在一起,用来捆扎报纸,第一根绳子长1.9米,第二根绳子长1.1米,接头处共用0.3米,接好后的绳子长()米.A.3B.2.7C.3.3【解答】解:1.9 1.10.3+-30.3=-2.7=(米)答:接好后的绳子长2.7米.故选:B.3.如图,A、B两圆的重叠部分占圆A的25,占圆B的14,那么圆B面积与圆A面积之比为()A.5:8B.8:5C.2:1D.4:5【解答】解:设重叠部分的面积是1,那么:A圆的面积:25 152÷=B圆的面积:1144÷=B圆的面积:A圆的面积54:8:52==答:B圆的面积与A圆的面积之比是8:5.故选:B.4.如图,两张长度相等的长方形重叠在一起,阴影部分的面积是()A.ab B.bc C.ac D.2c【解答】解:中间阴影部分平行四边形的面积是a c ac⨯=.故选:C.5.(2019春•庆云县期末)两根分别长1.4米的木条粘接成一根板条,重叠部分长0.05米.粘成的木条长 2.75米.【解答】解:1.4 1.40.05+-2.80.05=-2.75=(米)答:粘成的木条长2.75米.故答案为:2.75.6.(2014秋•新泰市期末)下图中两个圆重叠部分的面积,相当于大圆面积的19,相当于小圆面积的13,小圆和大圆的面积比是1:3.【解答】解:设重叠部分的面积是1;大圆的面积是:1199÷=;小圆的面积是:1133÷=;小圆面积:大圆面积3:91:3==;答:小圆和大圆面积比是1:3.故答案为:1:3.7.(2012春•吴中区校级期末)某班有48人,会打篮球的有25人,会打排球的有18人,都不会的有12人.既会打篮球又会打排球的有7人.【解答】解:481236-=(人),251843+=(人),43367-=(人),答:既会打篮球又会打排球的有7人,故答案为:7.8.(2011•长春模拟)一根绳长比10米短,从一头量到5米处作一个记号A,再从另一头量到5米处作一个记号B,这是量得AB间的距离是绳全长的19,AB间的距离是1米?【解答】解:11 (55)(1)99+÷+⨯,1011099=÷⨯, 9110109=⨯⨯,1=(米);答:AB 间的距离是1米.故答案为:1.9.如图,长方形ABCD ,BC CD ⊥,BC // AD ;与三角形交叉叠一起后,如果170∠=度,那么2∠= 度,3∠= 度.【解答】解:因为四边形ABCD 是长方形,两组对边平行且相等的四边形是长方形,所以//BC AD ; 因为//DC FG ,所以2170∠=∠=︒;因为BC CD ⊥,所以2490∠+∠=︒,所以4902907020∠=︒-∠=︒-=;又三角形的一个外角的度数等于不相邻的两个内角度数的和,所以34B ∠=∠+∠,所以39020110∠=︒+︒=︒.故答案为://,70,110.10.一根竹竿长10米,分别把两头垂直插人同一水池中,并依次在竹竿上水面的位置上做上记号,若这两个记号之间相距2米,则水深可能是 4米或6米 .【解答】解:第一种情况:(102)2-÷82=÷4=(米)第二种情况:(102)2+÷122=÷6=(米)答:水深是4米或6米.故答案为:4米或6米.11.(2012•长沙)如图,有两个边长均为2厘米的正方形,其中以一个正方形的某一个顶点绕另一个正方形的中心旋转.某一时刻这两个正方形不重合部分的面积是 6平方厘米 .【解答】解:过O 点做AB 的垂线OD ,那么1OD =厘米;2121AOB S ∆=⨯÷=(平方厘米);AOB ∆的面积就是两个正方形重合部分四边形AEOC 的面积,所以不重合部分的面积是:22212⨯⨯-⨯82=-6=(平方厘米)答:两个正方形不重合的部分面积的和是6平方厘米.故答案为:6平方厘米.12.(2012•中山校级模拟)如图的图形是由六个相等的圆连环组成,每相邻两个圆重叠部分的面积是526平方厘米,占每个圆面积的16,这个图形的总面积是 5876平方厘米.【解答】解:5152625666÷⨯-⨯17856666=⨯⨯-851026=- 5876=(平方厘米), 故答案为:5876.13.(2012•广汉市校级模拟)如图中,长方形和圆有一部分重叠,重叠部分面积是长方形的17,是圆的110,那么长方形面积是圆面积的 710.【解答】解:由题意可知:长方形的面积17⨯=圆的面积110⨯,则长方形的面积:圆的面积117:10710==, 所以长方形面积是圆面积的710, 故答案为:710.14.请你算一算4个铁环套在一起的长度是多少?【解答】解:604(42)3⨯-÷⨯60423=⨯-⨯2406=-234()mm =答:4个铁环套在一起的长度是234mm .15.甲乙两人共有30本文艺书,乙丙两人共有50本文艺书,甲、丙两人共有40本文艺书,甲乙丙三人各有文艺书多少本?++÷【解答】解:(305040)2=÷1202=(本)60-=(本)丙的本数:603030-=(本)甲的本数:605010-=(本)乙的本数:604020答:甲有文艺书10本,乙有文艺书20本,丙有文艺书30本.16.某学校四年级有甲、乙、丙3个班,甲班和乙班共有100人,乙班和丙班共有101人,甲班和丙班共有97人.甲、乙、丙3个班各有多少人?+-÷【解答】解:乙班:(10010197)2=÷1042=(人)52-=(人)甲班:1005248-=(人)丙班:974849答:甲班有48人,乙班有52人,丙班有49人.17.3个大小相同的铁环连在一起,拉紧后如图所示,铁环的总长度是多少毫米?=毫米【解答】解:2厘米20⨯-⨯20324=-60852=(毫米)答:铁环的总长底是52毫米.18.甲、乙、丙三个数,甲、乙两个数的和是10,乙、丙两个数的和是8.4,甲、丙两个数的和是7.6.求甲、乙、丙三个数各是多少?++÷【解答】解:(108.47.6)2=÷262=13-=甲数:138.4 4.6-=乙数:137.6 5.4-=丙数:13103答:甲数是4.6,乙数是5.4,丙数是3.19.如图中,长方形的长为9厘米,宽为7厘米,正方形的边长为4厘米,它们重叠部分的面积为8平方厘米.问阴影部分面积是多少?⨯+⨯-⨯【解答】解:974482=+-631616=(平方厘米)63答:阴影部分的面积是63平方厘米.20.如图,大正方形的一个顶点A落在小正方形的中心,已知大、小正方形的边长分别是19厘米和10厘米,求重叠部分的面积.【解答】答案为:25平方厘米21.两块一样长的木板重叠在一起,成了一块木板,总长200厘米,重叠部分是20厘米,原来每块木板长多少厘米?【解答】解:(20020)2+÷2202=÷110=(厘米)答:原来每块木板长110厘米.22.小明把一根竹竿插入水中,入水部分是30厘米,然后他把竹竿倒过来,再插入水中,这时没沾水的部分是40厘米这根竹竿长多少分米?【解答】解:303040++6040=+100=(厘米),100厘米10=分米,答:这根竹竿长10分米.23.图中阴影部分占大长方形的16,占小正方形的14,小正方形的面积是大长方形面积的()().【解答】解:11(1)(1)46÷÷÷ 46=÷23=;答:小正方形的面积是大长方形面积的23.故答案为:23.24.在如图中,点C 是AB 的中点,点E 是BD 的中点,阴影部分面积占整个图形面积的几分之几?【解答】解:由题意和图可知:把整个图形平均分成7份,阴影部分占了1份,所以占17. 25.如图中阴影部分的面积是小圆面积的512,是大圆面积的115,小圆面积与大圆面积的比是多少?【解答】解:因为大圆面积115⨯=小圆面积512⨯,所以小圆面积:大圆面积15:4:251512== 答:小圆面积与大圆面积的比是4:25.26.如图,图形是由两个有部分重叠的圆组成的,重叠部分的面积是212cm ,占大圆面积的112,占小圆面积的38,这个图形的面积是多少?【解答】解:11214412÷=(平方厘米)312328÷=(平方厘米) 1443212164+-=(平方厘米)答:这个图形的面积是164平方厘米.27.把3个大小相同的铁环连在一起(如图),拉紧后的长是多少分米?⨯-⨯【解答】解:36324=-1088=(毫米)100=分米100毫米1答:拉紧后的长是1分米.28.如图,两个长为30厘米的长方形,放在桌面上,求盖住桌面的面积.⨯+⨯-⨯【解答】解:30123081012=+-360240120=(平方厘米);480答:盖住桌面的面积是480平方厘米.29.如图是两个重叠的正方形,中间重叠部分恰好是1平方分米.这个图形的面积是多少平方分米?【解答】解:177⨯=(平方分米)答:这个图形的面积是7平方分米.30.将图A和图B重叠后得到的新图形是哪一个?【解答】解:根据题干综合分析,图A和图B重叠后的新图形是③.31.如图,涂色部分是三角形ABC面积的14,是梯形EFGD面积的15,三角形ABC的面积是梯形EFGD面积的() ().【解答】解:设涂色部分的面积是1,三角形ABC面积是:1144÷=梯形EFGD面积是:1155÷=4455÷=答:三角形ABC的面积是梯形EFGD面积的4 5.故答案为:4 5.。

2021年中考数学总复习:专题25 正方形(解析版)

2021年中考数学总复习:专题25  正方形(解析版)

2021年中考数学总复习:专题25 正方形问题1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:一是先证它是矩形,再证有一组邻边相等。

即有一组邻边相等的矩形是正方形。

二是先证它是菱形,再证有一个角是直角。

即有一个角是直角的菱形是正方形。

4.正方形的面积:设正方形边长为a ,对角线长为b ,S=222b a 【例题1】(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为 .(用含a ,b 的代数式表示)【答案】a+b.a即可解决问题.【解析】如图,连接DK,DN,证明S四边形DMNT=S△DKN=14如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,a,∴S四边形DMNT=S△DKN=14a+b=a+b.∴正方形ABCD的面积=4×14【对点练习】(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.【答案】6﹣2.【解析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE==2,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵AB•GF=FN•AG,∴GF==2,∴CF=CG﹣GF=4+2﹣2=6﹣2.故答案为6﹣2.【例题2】(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 .【答案】4√55. 【解析】根据正方形的性质得到AO =DO ,∠ADC =90°,求得∠ADE =90°,根据直角三角形的性质得到DF =AF =EF =12AE ,根据三角形中位线定理得到FG =12DE =1,求得AD =CD =4,过A 作AH ⊥DF 于H ,根据相似三角形的性质和勾股定理即可得到结论.∵在正方形ABCD 中,对角线AC 与BD 交于点O ,∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG ,∴FG =12DE =1,∵OF =2,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∵AF =DF ,∴∠ADF =∠DAE ,∴△ADH ∽△AED ,∴AHDE =ADAE,∴AE=√AD2+DE2=√42+22=2√5,∴AH2=2√5,∴AH=4√55,即点A到DF的距离为4√55【对点练习】(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1 D.【答案】C【解析】∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,。

专题25 圆的问题(解析版)

专题25  圆的问题(解析版)

专题25 圆的问题一、与圆有关的概念与规律1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

4.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

6.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

7.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

8.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10. 点和圆的位置关系:① 点在圆内点到圆心的距离小于半径② 点在圆上点到圆心的距离等于半径③ 点在圆外点到圆心的距离大于半径11. 过三点的圆:不在同一直线上的三个点确定一个圆。

12. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

13.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

⇔⇔⇔ 专题知识回顾14.圆内接四边形的特征:①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

15.直线与圆有3种位置关系:如果⊙O 的半径为r ,圆心O 到直线的距离为d ,那么① 直线和⊙O 相交;② 直线和⊙O 相切;③ 直线和⊙O 相离。

2023中考复习专题突破5圆的有关计算(讲练)-2023年中考一轮复习讲练测(浙江专用)(原卷版)

2023中考复习专题突破5圆的有关计算(讲练)-2023年中考一轮复习讲练测(浙江专用)(原卷版)

2023年中考数学总复习一轮讲练测(浙江专用)专题25圆的有关计算(讲练)1.理解弧长计算公式的推导过程,掌握弧长公式并能熟练应用于计算;2.理解扇形面积公式的推导过程,掌握扇形面积计算公式并能熟练应用于计算;3.了解正多边形的概念及正多边形与圆的关系;4.能运用图形割补、等积变形等方法将不规则图形转化为规则图形求面积.一.选择题(共7小题)1.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2B.(840+9π)m2C.840m2D.876m22.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m3.(2022•宁波)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.36πcm2B.24πcm2C.16πcm2D.12πcm24.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π5.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是()A.πB.π+C.D.2π6.(2021•绍兴)如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为()A.30°B.45°C.60°D.90°7.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°二.填空题(共2小题)8.(2022•温州)若扇形的圆心角为120°,半径为,则它的弧长为.9.(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.三.解答题(共3小题)10.(2022•衢州)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.11.(2020•浙江)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.12.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连结这些分点,得到正n 边形,求n 的值.1.圆的周长公式:C = (半径为R ).圆的面积公式:S = (半径为R ).2.在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为:l = .在半径为R 的圆中,n °的圆心角所对的扇形(弧长为l )面积的计算公式为:S 扇形= =12lR . 3.圆柱的侧面展开图是 ,这个 的长和宽分别是底面圆的 和圆柱的 .圆柱侧面积公式:S圆柱侧= ;圆柱全面积公式:S 圆柱全= (其中圆柱的底面半径为r ,高为h ).4.圆锥的侧面积和全面积:圆锥的侧面展开图是一个扇形,若圆锥的母线长为l ,底面半径为r ,则这个扇形的半径为l ,扇形的弧长为2πr .(1)圆锥的侧面积公式:S 圆锥侧= .(2)圆锥的全面积公式:S 圆锥全= .(3)圆锥侧面展开图扇形的圆心角度数的计算公式:θ= .5.正多边形的中心:正多边形的外接圆的圆心.外接圆的半径叫做正多边形的 ,正多边形每一边所对的 叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.作相等的 就可以等分圆周,从而得到相应正多边形.6.不规则图形面积的计算求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则的图形的面积转化为规则图形的面积.常用的方法有:(1)直接用公式求解.(2)将所求面积分割后,利用规则图形的面积求解.(3)将阴影中某些图形等积变形后移位,重组成规则图形求解.(4)将所求面积分割后,利用旋转,将部分阴影图形移位后,组成规则图形求解.考点一、正多边形与圆例1(2022•大名县校级四模)如图1所示的正六边形(记为“图形P1”)边长为6,将每条边三等分,沿每个顶点相邻的两个等分点连线剪下6个小三角形(如图1中6个阴影部分的三角形),把剪下的这6个小三角形拼接成图2外轮廓所示的正六边形(记为“图形P2”),作出图形P2的内切圆⊙O,如图3,得到如下结论:①图1中剩余的多边形(即空白部分)为正十二边形;②把图2中空白部分记作“图形P3”,则图形P1,P2,P3的周长之比为3:2:;③图3中正六边形的边上任意一点到⊙O上任意一点的最大距离为4+.以上结论正确的是()A.②③B.①③C.②D.①【变式训练】1.(2022•顺平县校级模拟)已知,如图,⊙O的半径为6,正六边形ABCDEF与⊙O相切于点C、F,则的长度是()A.2πB.3πC.4πD.5π2.(2022•亭湖区校级三模)已知正六边形的边长为4,则这个正六边形的半径为()A.4B.2C.2D.43.(2022•丛台区校级模拟)如图,点P是正六边形ABCDEF内部一个动点,AB=3cm,则点P到这个正六边形六条边的距离之和为()cm.A.18B.C.9D.4.(2022•峄城区校级模拟)如图⊙O是正方形ABCD的内切圆,四边形DEFG是矩形,点F在⊙O上,ED =8cm,EF=4cm,则⊙O的半径为()A.4B.4或20C.20D.5或165.(2022•凤泉区校级一模)如图,在平面直角坐标系中,正六边形ABCDEF的边AB在x轴正半轴上,顶点F在y轴正半轴上,AB=2.将正六边形ABCDEF绕原点O顺时针旋转,每次旋转90°,经过第2022次旋转后,顶点D的坐标为()A.(﹣3,﹣2)B.(﹣2.﹣2)C.(﹣3,﹣3)D.(﹣2,﹣3)考点二、弧长的计算例2(2022•丹东模拟)在平行四边形ABCD中,∠B=70°,BC=4,以AD为直径的⊙O交CD于点E,则的长是()A.B.C.D.【变式训练】1.(2022•峄城区校级模拟)若扇形的圆心角为75°,半径为12,则该扇形的弧长为()A.2πB.4πC.5πD.6π2.(2022•新平县校级模拟)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.πB.2πC.πD.π3.(2023•汉阳区校级一模)如图,AB是⊙O的直径,C是⊙O上一点,AC=8,BC=6,CD平分∠ACB交⊙O于点D,则劣弧AD的长为()A.πB.πC.2πD.π4.(2022•兴平市模拟)如图,△ABC内接于⨀O,CD⊥AB于点D,若CD=BD,⨀O的半径为4,则劣弧的长为()A.5πB.4πC.3πD.2π5.(2022•潍坊三模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,D为BC的中点,连接AD,以点D为圆心,DA长为半径作弧MN,若DM⊥AB于点E,DN⊥AC于点F.则图中阴影部分的周长为()A.B.C.D.考点三、扇形面积的计算例3(2022•金凤区校级二模)如图,⊙O内有一个正方形,且正方形的各顶点在圆上,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.8π﹣8B.8π﹣4C.4π﹣8D.4π﹣4【变式训练】1.(2023•黔江区一模)如图,一块四边形绿化园地,四角都做有半径为2的圆形喷水池,则这四个喷水池占去的绿化园地的面积为()A.2πB.4πC.6πD.8π2.(2022•昭阳区校级模拟)如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转,在旋转过程中,点B落在扇形BAC的弧AC的点B′处,点C的对应点为点C′,则阴影部分的面积为()A.π+2B.π+4C.+πD.π﹣3.(2022•台山市校级一模)如图,正方形的边长为2,则图中阴影部分的面积为()A.2﹣B.1﹣C.2﹣D.﹣14.(2022•金凤区校级二模)如图,在矩形ABCD中,,BC=1,以点B为圆心,BC为半径画弧交矩形的边AB于点E,交对角线AC于点F,则图中阴影部分的面积为()A.B.C.D.5.(2022•香洲区校级三模)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO =90°,将△BOC绕圆心O逆时针旋转至△B'OC',点C'在OA上,则边BC扫过区域(图中阴影部分)的面积为()A.B.C.D.考点四、圆锥的计算例4(2022•十堰模拟)如图,将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱,当圆柱的侧面面积最大时,圆柱的底面半径是()A.B.C.1cm D.2【变式训练】1.(2022•义乌市模拟)已知一个底面半径为3cm的圆锥,它的母线长是5cm,则这个圆锥的侧面积是()cm2.A.15πB.45πC.30πD.20π2.(2022•五华区校级模拟)如图,在正方形ABCD中,以点A为圆心,AD为半径,画圆弧DB得到扇形DAB(阴影部分),且扇形DAB的面积为4π.若扇形DAB正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径为()A.1B.2C.3D.43.(2022•瑶海区三模)已知直角三角形ABC的一条直角边AB=12cm、斜边AC=13cm,则以AB为轴旋转一周,所得到的圆锥的底面积是()A.90πcm2B.209πcm2C.155πcm2D.25πcm24.(2022•南丹县二模)如图,圆锥体的高,底面圆半径r=1cm,则该圆锥体的侧面展开图的圆心角的度数是()A.60°B.90°C.120°D.150°5.(2022•高新区二模)斐波那契螺旋线也称“黄金黑旋线”,是根据斐波那契数1,1,2,3,5,……画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5为边长的正方形中画一个圆心角为90°的扇形,将共圆弧连接起来得到的.若用图中接下来的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为()A.B.2C.D.411/ 1212/ 12。

初中数学竞赛奥数培优资料第三辑专题25 平面几何的最值问题

初中数学竞赛奥数培优资料第三辑专题25 平面几何的最值问题

专题25平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值.求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt△ABC中,CB=3,CA=4,M为斜边AB上一动点.过点M作MD⊥AC于点D,过M 作ME⊥CB于点E,则线段DE的最小值为.(四川省竞赛试题)解题思路:四边形CDME为矩形,连结CM,则DE=CM,将问题转化为求CM的最小值.【例2】如图,在矩形ABCD中,AB=20cm,BC=10cm.若在AC,AB上各取一点M,N,使BM+MN 的值最小,求这个最小值.(北京市竞赛试题)解题思路:作点B关于AC的对称点B′,连结B′M,B′A,则BM=B′M,从而BM+MN=B′M+MN.要使BM+MN的值最小,只需使B′M十MN的值最小,当B′,M,N三点共线且B′N⊥AB时,B′M+MN的值最小.a ),P为AB边上的一动点,直线DP交CB的延【例3】如图,已知□ABCD,AB=a,BC=b(b长线于Q.求AP+BQ的最小值.(永州市竞赛试题)解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值.【例4】阅读下列材料:问题如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线.小明设计了两条路线:路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12=AC 2=AB 2+BC 2=25+(5π)2=25+25π2.路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22=(BC +AB )2=(5+10)2=225.∵l 12–l 22=25+25π2-225=25π2-200=25(π2-8),∴l 12>l 22,∴l 1>l 2.所以,应选择路线2.线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.(衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率.(中学生数学智能通讯赛试题)解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求 S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值.(中学生数学智能通讯赛试题)解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △PAB ,得到PCP A CD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是.(烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB =cm .(广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是.(“希望杯”邀请赛试题)第1题图第3题图第4题图第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是()(兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA=6,底面圆的半径为2.一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A,则小虫所走的最短距离为()(河北省竞赛试题)A.12B.4πC.62D.636.如图,已知∠MON=40°,P是∠MON内的一定点,点A,B分别在射线OM,ON上移动,当△PAB周长最小时,∠APB的值为()(武汉市竞赛试题)A.80°B.100°C.120°D.140°7.如图,⌒AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为AD上任意一点.若AC=5,则四边形ACBP周长的最大值是()(福州市中考试题)A.15B.20C.15+52D.15+55第6题图第7题图第8题图8.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合),BE的垂直平分线交AB于M,交DC与N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式.(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?(山东省中考试题)9.如图,六边形ABCDEF内接于半径为r的⊙O,其中AD为直径,且AB=CD=DE=FA.(1)当∠BAD=75°时,求⌒BC的长;(2)求证:BC∥AD∥FE;(3)设AB=x,求六边形ABCDEF的周长l关于x的函数关系式,并指出x为何值时,l取得最大值.10.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D).Q是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1)求证:△APE∽△ADQ;(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)B级1.已知凸四边形ABCD中,AB+AC+CD=16,且S四边彤ABCD=32,那么当AC=,BD=时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)第2题图第3题图第4题图第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为.(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是.(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为()(鄂州市中考试题)A .17172B .17174C .17178D .3第6题图第7题图第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm .(1)求点P 在BC 上运动的过程中y 的最大值;(2)当y =41cm 时,求x 的值.(河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标.(河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求:(1)∠MAN 的大小;(2)△MAN 的面积的最小值.(“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)第6题图第7题图第8题图第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1)求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2)若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt△ABC中,∠C=90°,BC=2,AC=x,点F在边AB上,点G,H在边BC上,四边形EFGH是一个边长为y的正方形,且AE=AC.(1)求y关于x的函数解析式;(2)当x为何值时,y取得最大值?求出y的最大值.(上海市竞赛试题)专题25平面几何的最值问题例1125提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅=例2如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =45AB BC AC⋅=cm ,BB ′=85,AE ()222220455AB BE -=-.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm .例3由△APD ∽△BPQ ,得AP AD BP BQ=,即BQ =()b a x AD BP AP x -⋅=,∴AP +BQ =x +ab b x -.∵x +ab x ≥22ab x ab x ⋅=x =ab x即x ab 时,上式等号成立.故当AP ab AP +BQ 最小,其最小值为ab b .例4⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短.⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244h π-时,2212l l <.例5设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%.例6设PD =x (x >1),则PC 21x -,由R t △PCD ∽△PAB ,得AB =21CD PA PC x ⋅=-,令y =AB •S △PAB ,则y =12AB ×PA ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =21212242121x x x x --++=+--1221x x -=-x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥-322=4,∴当12x -=21x -,即当x =3时,y 有最小值4.③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4.A 级1.17提示:当两张纸条的对角重合时,菱形周长最大.2.83.4.D5.D6.B7.C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8.(1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x.∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF +×2=AM +AM +MF =2AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2x +1)+52=-12(x -1)2+52.故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52.9.(1) BC 长为23r π.(2)提示:连结BD .(3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC =AD -2AM =2r -2AM .由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r -2x r .同理,EF =2r -2x r .l =4x +2(2r -2x r )=-x r(x -r )2+6r(0<x <r )..当x =r 时,l 取得最大值6r .10.(1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ .(2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34.故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11.(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上.(2)由已知得△ABC 底边上的高h==4.①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O.由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2.当=3时,y 的值最大,最大值是3.②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D .由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC .,∴PEF ABC S S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (.∵S △ABC =12,∴S △PEF =43(x -3)2.∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4.故当x =4时,y 的最大值为4.综上,当x =4时,y 的值最大,最大值为4.B 级1.832提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值.2.0<r ≤1提示:设BC =a ,CA =b ,AB =c ,b +c =r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc·2=12[+2(r +1)]r ,.bc =4r (r +2).b ,c 为方程x 2-(r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22.因r >0,r +1>0,故r +1≤2,即0<r ≤1.3.249π提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小.4.13提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADG ABC S S ∆∆=x 2,BDE ABCS S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG =1―x 2―2(1-x )2=-3(x -23)2+13.5.12a 提示:当OA =OB 时,OC 的长最大. 6.C 7.(1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x-,y =-14(x -2)2+1(0<x <4).当x =2时,y 最大值=1cm.(2)由14=-14(x -2)2+1,得x =(2)cm 或(2)cm.8.当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求.作O′D ⊥A B 于D .,O′D 2=O′B 2-B D 2=2()2a b +-2()2a b -=ab ,O′DC0).9.(1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°.∴△AMN ≌△AML ,故∠MAN =∠MAL =902=45°.(2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2.整理得2y 2+(2z -4)y +(4-4z )=0.∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+)(z +2-)≥0.又∵z >0,故z ≥22-2,当且仅当x =y =2-2时等号成立.由于S △AMN =S △AML =12·ML ·AB =12MN ×1=2z ,因此,△AMN 2-1.10.(1)提示:证明△ADF ∽△BAC .(2)①AB =15,BC =9,∠ACB =90°,∴AC 22AB BC -2215912-=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>.②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +PA ,故只要求PB +PA 最小.显然当P 、A 、B 三点共线时PB +PA 最小,此时DP =DE ,PB +PA =AB .由(1),角∠ADF =∠FAE ,∠DFA =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252.∴当x =252时,△PBC 的周长最小,此时y =1292.11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2).(2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k -==-< ,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小.12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-,22xy y y x y x -+-=,2x -2y -xy=,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去).(2)由(1)2122y x x ==++.当且仅当2x x =,即x =时,上式等号成立.故当x =时,y1-.。

【小升初】小学数学《立体图形的表面积专题课程》含答案

【小升初】小学数学《立体图形的表面积专题课程》含答案

25.立体图形的表面积知识要点梳理一、立体图形的切割1.立体图形每切割一次,增加两个面的面积。

2.立体图形每拼一次,减少两个面的面积。

二、表面积表面积:物体表面面积的总和叫做物体的表面积。

表面积通常用S表示,常用面积单位有平方千米、公顷、平方米、平方分米、平方厘米。

1.长方体、正方体的表面积为6个面的面积和。

2.圆柱的表面积=侧面积+2个底面面积。

3.圆锥的表面积=侧面积+底面积三、立体图形的表面积计算公式名称图形字母意义表面积公式长方体a:长 b:宽h:高 S:表面积S=2)(bhahab++正方体a:棱长S=26a圆柱体r:底面半径 h:高侧S:侧面积底S:底面积C:底面周长rhdhChSππ2===侧S=底侧SS2+圆锥体r;底面半径h:高l:为母线长S=22rrlππ+考点精讲分析典例精讲考点1 长方体与正方体的表面积【例1】一个长40厘米,截面是正方形的长方体,如果长增加5厘米,表面积就增加80平方厘米,原来长方体的表面积是多少?【精析】根据题意可知,一个长方体如果长增加5厘米,增加的80平方厘米是4个同样的长方形的面积和。

【答案】80÷4÷5=4(厘米)0×4×4+4×4×2=672(平方厘米)答:原来长方体的表面积是672平方厘米。

【归纳总结】根据长方体增加的面积,计算出长方体的宽和高,然后根据长方体的表面积计算公式解答即可。

【例2】学校新建一个游泳池,长50米,宽20米,深2米。

这个游泳池占地面积有多大?如果游泳池的四壁和底面都要贴上瓷砖,一共需要贴多少平方米的瓷砖?【精析】此题主要考查长方体底面积及表面积的计算方法在实际生活中的应用。

解答时要清楚长方体游泳池的占地面积是指长方体的底面积。

贴瓷砖的面积,就等于游泳池的表面积减去上面的面积。

【答案】占地面积:50×20=1000(平方米)贴瓷砖的面积:(50×2+20×2)×2+50×20=1280(平方米)答:这个游泳池占地面积有1000平方米,共需要贴1280平方米的瓷砖。

七年级数学专题训练25 图形面积的计算(附答案)

七年级数学专题训练25 图形面积的计算(附答案)

七年级数学专题训练25 图形面积的计算阅读与思考计算图形的面积是平面几何中常见的基本问题之一,它包括两种主要类型: 1.常见图形面积的计算由于一些常见图形有计算面积的公式,所以,常见图形面积一般用公式来解. 2.非常规图形面积的计算非常规图形面积的计算通常转化为常见图形面积的计算,解题的关键是将非常规图形面积用常规图形面积的和或差来表示.计算图形的面积还常常用到以下知识:(1)等底等高的两个三角形面积相等.(2)等底的两个三角形面积的比等于对应高的比. (3)等高的两个三角形面积的比等于对应底的比. (4)等腰三角形底边上的高平分这个三角形的面积. (5)三角形一边上的中线平分这个三角形的面积. (6)平行四边形的对角线平分它的面积. 熟悉如下基本图形:S 3S 4S 3S 4S 1S 2S 1S 2S 1S 2S 1S 2S 1S 2S 2S 1l 2l 1例题与求解【例1】 如图,在直角△ABC 的两直角边AC ,BC 上分别作正方形ACDE 和CBFG .AF 交BC 于W ,连接GW ,若AC =14,BC =28,则S △AGW =______________.(2013年“希望杯”全国数学邀请赛试题)解题思路:△AGW 的面积可以看做△AGF 和△GWF 的面积之差.F【例2】 如图,已知△ABC 中的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF .四边形BDCE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .5D .6(2013年全国初中数学竞赛广东试题)解题思路:设△ABC 底边BC 上的高为h .本例关键是通过适当变形找出h 和DE 之间的关系.FC B【例3】 如图,平行四边形ABCD 的面积为30cm 2,E 为AD 边延长线上的一点,EB 与DC 交于F 点,已知三角形FBC 的面积比三角形DEF 的面积大9cm 2,AD =5cm ,求DE 长.(北京市“迎春杯”竞赛试题)解题思路:由面积求相关线段,是一个逆向思维的过程,解题的关键是把条件中图形面积用DE 及其它线段表示.BACFDE【例4】 如图,四边形ABCD 被AC 与DB 分成甲、乙、丙、丁4个三角形,已知BE =80 cm ,CE =60 cm ,DE =40 cm ,AE =30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?(“华罗庚杯”竞赛决赛试题)解题思路:甲、乙、丙、丁四个三角形面积可通过线段的比而建立联系,找出这种联系是解本例的突破口.丁乙丙甲E BCDA【例5】 如图,△ABC 的面积为1,D ,E 为BC 的三等分点,F ,G 为CA 的三等分点,求四边形PECF 的面积.解题思路:连CP ,设S △PFC =x ,S △PEC =y ,建立x ,y 的二元一次方程组.Q P FG ED CBA【例6】如图,E,F分别是四边形ABCD的边AB,BC的中点,DE与AF交于点P,点Q在线段DE 上,且AQ∥PC.求梯形APCQ的面积与平行四边形ABCD的面积的比值.(2013年”希望杯“数学邀请赛试题)解题思路:连接EF,DF,AC,PB,设S□ABCD=a,求得△APQ和△CPQ的面积.F DB能力训练A 级1.如图,边长为1的正方形ABCD的对角线相交于点O.过点O的直线分别交AD,BC于E,F,则阴影部分面积是______.F CB(海南省竞赛试题)2.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_____________平方厘米.EFDCBA(“希望杯”邀请赛试题)3.如图,ABCD 是边长为a 的正方形,以AB ,BC ,CD ,DA 分别为直径画半圆,则这四个半圆弧所围成的阴影部分的面积是____________.C(安徽省中考试题)4.如图,已知AB ,CD 分别为梯形ABCD 的上底、下底,阴影部分总面积为5平方厘米,△AOB 的面积是0.625平方厘米,则梯形ABCD 的面积是_________平方厘米.C(“祖冲之杯”邀请赛试题)5.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF =BC 31,则长方形ABCD 的面积是阴影部分面积的( )倍.A .2B . 3C . 4D .5F CBE6.如图,是一个长为a ,宽为b 的长方形,两个阴影图形都是一对长为c 的底边在长方形对边上的平行四边形,则长方形中未涂阴影部分的面积为( ).A .c b a ab )(+-B . c b a ab )(--C .))((c b c a --D .))((c b c a +-7.如图,线段AB =CD =10cm ,BC 和DA 是弧长与半径都相等的圆弧,曲边三角形BCD 的面积是以D 为圆心、DC 为半径的圆面积的41,则阴影部分的面积是( ). A .25π B . 100 C .50π D .200CD(“五羊杯”竞赛试题)8.如图,一个大长方形被两条线段AB 、CD 中分成四个小长方形,如果其中图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为( ). A .29 B .27 C .310 D .815BDA9.如图,长方形ABCD 中,E ,F 分别为AD ,BC 边上的任一点,△ABG ,△DCH 的面积分别为15和20,求阴影部分的面积.CF B(五城市联赛试题)10.如图,正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,已知正方形BEFG 的边长为4,求△DEK 的面积.KEB AD(广西壮族自治区省南宁市中考试题)B 级1.如果图中4个圆的半径都为a ,那么阴影部分的面积为_____________.(江苏省竞赛试题)2.如图,在长方形ABCD 中,E 是BC 上的一点,F 是CD 上的一点,若三角形ABE 的面积是长方形ABCD 面积的31,三角形ADF 的面积是长方形ABCD 面积的52,三角形CEF 的面积为4cm 2,那么长方形ABCD 的面积是_________cm 2.DCFE BA(北京市“迎春杯”邀请赛试题)3.如图,边长为3厘米与5厘米的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积为___________________.(“希望杯”邀请赛试题)4.如图,若正方形APHM ,BNHP ,CQHN 的面积分别为7,4,6,则阴影部分的面积是_____.CMNDQB A(“五羊杯”竞赛试题)5.如图,把等边三角形每边三等分,使其向外长出一个边长为原来的31的小等边三角形,称为一次“生长”,在得到的多边上类似“生长”,一共“生长”三次后,得到的多边形的边数=________,面积是原三角形面积的______倍.第2次生长第1次生长原图(“五羊杯”竞赛试题)6.如图,在长方形ABCD 中,AE =BG =BF =21AD =31AB =2,E ,H ,G 在同一条直线上,则阴影部分的面积等于( ).A .8B .12C .16D .20F BGCDA7.如图,边长分别为8cm 和6cm 的两个正方形,ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( ).A .48cm 2B .49cm 2C .50cm 2D .51cm 2FEB A(2013年“希望杯”邀请赛试题)8.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆经过的所有小方格的圆内部分的面积之和记为S 1,把圆周经过的所有小方格的圆外部分的面积之和记为S 2,则21S S 的整数部分是( ).A .0B .1C .2D .3(全国初中数学联赛试题)9.如图,△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( ).A .25B .30C .35D .40GFE CBDA10.已知O (0,0),A (2,2),B (1,a ),求a 为何值时,S △ABO =5?11.如图,已知正方形ABCD 的面积为1,M 为AB 的中点,求图中阴影部分的面积.CAD(湖北省武汉市竞赛试题)12.如图,△ABC中,21===FAFBECEADBDC.求的面积△的面积△ABCGHI的值.GIHEDCBFA(“华罗庚金杯”邀请赛试题)专题25 图形面积的计算例1 196 提示:×28×(28+14)-×28×28=×28×14=28×7=196.例2 D 提示:设△ABC 底边上的高为h ,则×BC ×h =24 故h====. 设△ABC 底边DE 上的高为,△BDE 底边DE 上的高为,则h =.∴=+=+)===6.例3 2cm .提示:设△ABE 的AE 边上的高为hcm ,DE 长为xcm ,则,解得DE =2.例4 54提示:2S CE S EA ==丙甲 , 2S BE S ED ==丙乙, 12S DE S BE ==丁甲,12S AE S EC ==丁乙. 例51133AECABCSS == ,1133BGFABCS S ==.设=x PECS ,=y PFCS则=3x PBCS,=3y PCAS于是133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①+②,得243x y +=(),∴16x y +=,即6=1PECF S .例6 设=a ABCD S,因为E,F 分别是AB,BC 的中点,所以a4ADEABFSS==. ∴APDBEPF SS =四边形.如图,连接EF,DF ,则a a==82AEF ADF S S ,.所以a 18=a 42EP PD =.设x AEP S=,则=4x ADP S.由APDBEPF SS =四边形得a x=4x 4-. ∴ ax=20. ∴a a4=205APDS =⨯. 连接AC ,又∵AQ ∥PC ,APQACQS S =, ∴a5ACQADQS S+=. ∴a a 3=a 2510CDQS =-.连接PB ,则a=20EBP AEP SS=. 由1=a 2ABPCDPS S+, 得a a a 3a a22101010CPQABPCDQS S S=--=--=.∴aPQ 110=3a 310CPQ CDQSDQ S==,从而PQ 1=4PD ,1a=420APQAPD S S =.于是a a 3a==201020APQCPQAPCQ S S S+=+梯形. ∴3=20APCQ ABCDS S梯形.A 级1.14 提示:POCAOES S=,14ABCD S S =阴影正方形.2. 48.3. ()22a 2π-4. 15.625. 5. B.6. C.7. B.8.C.9. 35 提示:连接EF ,EGFABGSS=,EFHDHCSS=.10. 解法一:将△DEK 的面积转化为规则图形的面积之和或差.如图,延长AE 交PK 的延长线于点H.设正方形ABCD ,正方形PKPF 的边长分别a , b.则DEKADECDGPKGFHKABCD BEFG EHPF SS S S SSSS=++----正方形正方形矩形=()()()()221111a 44b a a 4a a-4b b 4b 4-b 2222++-+--+-=222221111a 164b a 2a a 2a b 2b 2b+b 2222++---+---=16.解法二:运用等积变形转化问题,连接DB,GE,FK.则∠DBA=∠GEB=45°, ∴DB ∥GE,得GEDGEBS S=,同理GE ∥FK ,得GEKGEFS S=.∴16DEKGEDGEKGEBGEFBEFG SSSSSS =+=+==正方形.B 级1. 2212a 3a π-(或22.58a ).2. 120 提示:设AB=a ,AD=b ,CE=c ,CF=d.则BE=b-c-,DF=a-d ,c= 12b ,d= 15a ,cd=8. 3. 18.75(π≈3).4. 8.5 提示:连HD.5. 4812481提示:“生长”n 次后得到n 34⨯边形,面积为原面积的n 114293+-倍.6. B.7. B 提示:过点K 作KH ⊥AB. ∵AB=8,BE=6,∴AE=8+6=14.又∵∠KAE=∠KEA=45°, ∴KH=12AE=7. 111474922AKES AE KH =••=⨯⨯=. 8. B 提示:根据正方形的对称性,只需考虑它的14部分即可. 9. B.10. ⑴当a >1时,即B 在OA 上方时,如图. AOBCBOAODBCDA SSS S=+-梯形,∴()()11151a a 22122222=⨯⨯++⨯--⨯⨯,解得a=6.⑵当0≦a <1时,即B 在OA 于x 轴之间时,依题意,有()111221a-a 21=5222⨯⨯-⨯⨯⨯+⨯,解得a=-4(不合题意,舍去).⑶当a <0时,即B 在x 轴下方时,有()()()111122a 221a =5222+⨯-⨯-⨯⨯-⨯⨯-,解得a=-4.综上所述,当a=-4或a=6时,5ABOS =.11. 14AMD AMC SS==. ∵AMGS 为公共部分, ∴AGD CMGSS=.又因为△AMG 与△AMD 的高的高相等(以A 为顶点作高),△MCG 与△MCD 的高相等(以C 为顶点作高),∴AMG OMG AMDMCDSS MGSSMD==,即141142CMGCMG S S -=,解得:1=6CMGS.∴11=2=63S ⨯阴影. 连BG ,设ABCSS =,x DOGS=,y BGFS=.则1332233,,x y S x y S ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得12421x S y S⎧=⎪⎪⎨⎪=⎪⎩ 同理可得:121.EAHFBISSS == 又13ADCBEAS S== S ,得12532121=-=OCEH HAFIS S S S ⎛⎫= ⎪⎝⎭四形四形 .∴21011321217=--GHISS S ⎛⎫= ⎪⎝⎭ 故17GHI ABCS S =.。

专题25 图形面积的计算答案

专题25 图形面积的计算答案

专题25 图形面积的计算例1 196 提示:S △AGW =S △AGF −S △GWF =12×28×(28+14)-12×28×28=12×28×14=28×7=196.例2 D 提示:设△ABC 底边上的高为h ,则12×BC ×h =24 故h=48BC =484CF =12CF =12DE . 设△ABC 底边DE 上的高为ℎ1,△BDE 底边DE 上的高为ℎ2,则h =ℎ1+ℎ2.∴S △ADE +S △BDE =12∙DE ∙ℎ1+12∙DE ∙ℎ2=12∙DE ∙(ℎ1+ℎ2)=12∙DE ∙ℎ=12∙DE ∙12DE =6.例3 2cm .提示:设△ABE 的AE 边上的高为hcm ,DE 长为xcm ,则{5ℎ−12ℎ(5+x )=95ℎ=30,解得DE =2.例454提示:2S CE S EA ==丙甲 , 2S BE S ED ==丙乙 , 12S DE S BE ==丁甲 ,12S AE S EC ==丁乙. 例51133AECABCSS == ,1133BGFABCS S ==.设=x PECS ,=y PFCS则=3x PBCS,=3y PCAS于是133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①+②,得243x y +=(),∴16x y +=,即6=1PECF S .例6 设=a ABCDS,因为E,F 分别是AB,BC 的中点,所以a4ADEABFSS==. ∴APDBEPF SS =四边形.如图,连接EF,DF ,则a a==82AEF ADF S S ,.所以a 18=a 42EP PD =.设x AEPS=,则=4x ADP S.由APDBEPF S S =四边形得a x=4x 4-. ∴ ax=20. ∴a a4=205APDS =⨯. 连接AC ,又∵AQ ∥PC ,APQACQS S =, ∴a5ACQADQS S+=. ∴a a 3=a 2510CDQS =-.连接PB,则a =20EBP AEPSS= .由1=a 2ABPCDPSS+, 得a a a 3a a22101010CPQABPCDQSS S=--=--=.∴aPQ 110=3a 310CPQ CDQS DQ S ==,从而PQ 1=4PD ,1a=420APQAPDSS = .于是a a 3a==201020APQCPQAPCQ S S S+=+梯形 . ∴3=20APCQ ABCD S S 梯形 .A 级1.14提示:POCAOES S=,14ABCD S S =阴影正方形.2. 48.3. ()22a 2π-4. 15.625. 5. B.6. C.7. B.8.C.9. 35 提示:连接EF ,EGFABGSS=,EFHDHCSS=.10. 解法一:将△DEK 的面积转化为规则图形的面积之和或差.如图,延长AE 交PK 的延长线于点H.设正方形ABCD ,正方形PKPF 的边长分别a , b.则DEKADECDGPKGFHKABCD BEFG EHPF SS S S SSSS=++----正方形正方形矩形=()()()()221111a 44b a a 4a a-4b b 4b 4-b 2222++-+--+-=222221111a 164b a 2a a 2a b 2b 2b+b 2222++---+---=16.解法二:运用等积变形转化问题,连接DB,GE,FK.则∠DBA=∠GEB=45°, ∴DB ∥GE,得GEDGEBSS=,同理GE ∥FK ,得GEKGEFSS=.∴16DEKGEDGEKGEBGEFBEFG SSSSSS =+=+==正方形.B 级1. 2212a 3a π-(或22.58a ).2. 120 提示:设AB=a ,AD=b ,CE=c ,CF=d.则BE=b-c-,DF=a-d ,c= 12b ,d= 15a ,cd=8.3. 18.75(π≈3).4. 8.5 提示:连HD.5. 4812481提示:“生长”n 次后得到n 34⨯边形,面积为原面积的n 114293+-倍.6. B.7. B 提示:过点K 作KH ⊥AB. ∵AB=8,BE=6,∴AE=8+6=14.又∵∠KAE=∠KEA=45°, ∴KH=12AE=7. 111474922AKES AE KH =••=⨯⨯=. 8. B 提示:根据正方形的对称性,只需考虑它的14部分即可. 9. B.10. ⑴当a >1时,即B 在OA 上方时,如图. AOBCBOAODBCDA S S S S=+-梯形,∴()()11151a a 22122222=⨯⨯++⨯--⨯⨯,解得a=6.⑵当0≦a <1时,即B 在OA 于x 轴之间时,依题意,有()111221a-a 21=5222⨯⨯-⨯⨯⨯+⨯,解得a=-4(不合题意,舍去).⑶当a <0时,即B 在x 轴下方时,有()()()111122a 221a =5222+⨯-⨯-⨯⨯-⨯⨯-,解得a=-4.综上所述,当a=-4或a=6时,5ABOS =.11. 14AMD AMC SS==. ∵AMGS 为公共部分, ∴AGD CMGSS=.又因为△AMG 与△AMD 的高的高相等(以A 为顶点作高),△MCG 与△MCD 的高相等(以C 为顶点作高),∴AMG OMG AMDMCDS S MG SSMD==,即141142CMGCMG S S -=,解得:1=6CMGS .∴11=2=63S ⨯阴影. 连BG ,设ABCSS =,x DOGS=,y BGFS=.则1332233,,x y S x y S ⎧-=⎪⎪⎨⎪+=⎪⎩解得12421x S y S ⎧=⎪⎪⎨⎪=⎪⎩ 同理可得:121.EAHFBISSS ==又13ADCBEASS==S,得12532121=-=OCEH HAFI S S S S ⎛⎫= ⎪⎝⎭四形四形 .∴21011321217=--GHISS S ⎛⎫= ⎪⎝⎭故17GHI ABCSS=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S2专题25图形面积的计算阅读与思考计算图形的面积是平面几何中常见的基本问题之一,它包括两种主要类型:1.常见图形面积的计算由于一些常见图形有计算面积的公式,所以,常见图形面积一般用公式来解.2.非常规图形面积的计算非常规图形面积的计算通常转化为常见图形面积的计算,解题的关键是将非常规图形面积用常规图形面积的和或差来表示.计算图形的面积还常常用到以下知识:(1)等底等高的两个三角形面积相等.(2)等底的两个三角形面积的比等于对应高的比.(3)等高的两个三角形面积的比等于对应底的比.(4)等腰三角形底边上的高平分这个三角形的面积.(5)三角形一边上的中线平分这个三角形的面积.(6)平行四边形的对角线平分它的面积.熟悉如下基本图形:S1l1l2S1S2S1S2 S1S1S2S4S2S3S1S2S3S4例题与求解【例1】如图,在直角△ABC的两直角边AC,BC上分别作正方形ACDE和CBFG.AF交BC于W,连接GW,若AC=14,BC=28,则△S A GW=______________.(2013年“希望杯”全国数学邀请赛试题)解题思路:△AGW的面积可以看做△AGF和△GWF的面积之差.GD FCE WA B【例2】如图,已知△ABC中的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF.四边形BDCE是平行四边形,则图中阴影部分的面积为()A.3B.4C.5D.6(2013年全国初中数学竞赛广东试题)解题思路:设△ABC 底边 BC 上的高为 h .本例关键是通过适当变形找出 h 和 DE 之间的关系.ADEBC F【例 3】 如图,平行四边形 ABCD 的面积为 30cm 2,E 为 AD 边延长线上的一点,EB 与 DC 交于 F 点,已知三角形 FBC 的面积比三角形 DEF 的面积大 9cm 2,AD =5cm ,求 DE 长.(北京市“迎春杯”竞赛试题) 解题思路:由面积求相关线段,是一个逆向思维的过程,解题的关键是把条件中图形面积用DE 及 其它线段表示.EDFCAB【例 4】 如图,四边形 ABCD 被 AC 与 DB 分成甲、乙、丙、丁 4 个三角形,已知 BE =80 cm ,CE =60 cm ,DE =40 cm ,AE =30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?(“华罗庚杯”竞赛决赛试题)解题思路:甲、乙、丙、丁四个三角形面积可通过线段的比而建立联系,找出这种联系是解本例的 突破口.A D甲丁E丙乙B C【例 5】 如图,△ABC 的面积为 1,D ,E 为 BC 的三等分点,F ,G 为 CA 的三等分点,求四边形 PECF 的面积.解题思路:连 CP ,设 S △PFC = x ,S △PEC = y ,建立 x , y 的二元一次方程组.解题思路:连接EF,DF,AC,PB,设□S ABCD a,求得△APQ和△CPQ的面积.AGQP FB D EC【例6】如图,E,F分别是四边形ABCD的边AB,BC的中点,DE与AF交于点P,点Q在线段DE上,且AQ∥PC.求梯形APCQ的面积与平行四边形ABCD的面积的比值.(2013年”希望杯“数学邀请赛试题)=A DQE PBF C能力训练A级1.如图,边长为1的正方形ABCD的对角线相交于点O.过点O的直线分别交AD,BC于E,F,则阴影部分面积是______.A E DOB F C(海南省竞赛试题)2.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_____________平方厘米.A EDFB C(“希望杯”邀请赛试题)3.如图,ABCD是边长为a的正方形,以AB,BC,CD,DA分别为直径画半圆,则这四个半圆弧所围成的阴影部分的面积是____________.A DB C(安徽省中考试题)4.如图,已知AB,CD分别为梯形ABCD的上底、下底,阴影部分总面积为5平方厘米,△AOB 的面积是0.625平方厘米,则梯形ABCD的面积是_________平方厘米.A BOD C(“祖冲之杯”邀请赛试题)15.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且CF=BC,则长方形ABCD3的面积是阴影部分面积的()倍.A.2B.3C.4D.5A DEB F C6.如图,是一个长为a,宽为b的长方形,两个阴影图形都是一对长为c的底边在长方形对边上的A.9平行四边形,则长方形中未涂阴影部分的面积为().A.ab-(a+b)cB.ab-(a-b)cC.(a-c)(b-c)D.(a-c)(b+c)cc cc7.如图,线段AB=CD=10cm,BC和DA是弧长与半径都相等的圆弧,曲边三角形BCD的面积是以D为圆心、DC为半径的圆面积的14,则阴影部分的面积是().A.25πB.100C.50πD.200A BD C(“五羊杯”竞赛试题)8.如图,一个大长方形被两条线段AB、CD中分成四个小长方形,如果其中图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为().71015B.C.D.2238CⅠⅡA BⅢD9.如图,长方形ABCD中,E,F分别为AD,BC边上的任一点,△ABG,△DCH的面积分别为15和20,求阴影部分的面积.A E DG HB F C(五城市联赛试题)10.如图,正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,已知正方形BEFG的边长为△4,求DEK的面积.D CG F PR KA B E(广西壮族自治区省南宁市中考试题)B级1.如果图中4个圆的半径都为a,那么阴影部分的面积为_____________.(江苏省竞赛试题)2.如图,在长方形ABCD中,E是BC上的一点,F是CD上的一点,若三角形ABE的面积是长方形ABCD面积的12,三角形ADF的面积是长方形ABCD面积的,三角形CEF的面积为4cm2,那么35长方形ABCD的面积是_________cm2.A DFBE C(北京市“迎春杯”邀请赛试题)3.如图,边长为3厘米与5厘米的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积为___________________.6.如图,在长方形ABCD中,AE=BG=BF=1(“希望杯”邀请赛试题)4.如图,若正方形APHM,BNHP,CQHN的面积分别为7,4,6,则阴影部分的面积是_____.A PBM DNQC(“五羊杯”竞赛试题)15.如图,把等边三角形每边三等分,使其向外长出一个边长为原来的的小等边三角形,称为一次3“生长”,在得到的多边上类似“生长”,一共“生长”三次后,得到的多边形的边数=________,面积是原三角形面积的______倍.原图第1次生长第2次生长(“五羊杯”竞赛试题)1AD=AB=2,E,H,G在同一条直线上,则阴影部分23的面积等于().A.8B.12C.16D.20A EDHFB CG7.如图,边长分别为8cm和6cm的两个正方形,ABCD与BEFG并排放在一起,连接EG并延长交AC于K,则△AKE的面积是().E F EA .48cm 2B .49cm 2C .50cm 2D .51cm 2DCKGFAB E(2013 年“希望杯”邀请赛试题)8.在一个由 8×8 个方格组成的边长为 8 的正方形棋盘内放一个半径为 4 的圆,若把圆经过的所有小方格的圆内部分的面积之和记为 S 1,把圆周经过的所有小方格的圆外部分的面积之和记为 S 2,则整数部分是().A .0B .1C .2D .3S1 的 S2(全国初中数学联赛试题)9△.如图, ABC 中,点 D , , 分别在三边上, 是 AC 的中点,AD ,BE ,CF 交于一点 G ,BD =2DC , S △GEC =3,△S GDC △=4,则 ABC 的面积是().A .25B .30C .35D .40AFEGB10.已知 O (0,0),A (2,2),B (1,a ),求 a 为何值时,△S ABO =5?DC11.如图,已知正方形 ABCD 的面积为 1,M 为 AB 的中点,求图中阴影部分的面积.D CAGM B (湖北省武汉市竞赛试题)12△.如图,ABC中,DC EA FB1===.求DB EC FA2△GHI的面积△ABC的面积的值.AEHFI GBDC(“华罗庚金杯”邀请赛试题)。

相关文档
最新文档