《导数及其应用》单元测试题详细答案

合集下载

高中数学选修第三章《导数及其应用》知识点归纳及单元测试

高中数学选修第三章《导数及其应用》知识点归纳及单元测试
2、当 由单调性知: ,化简得: ,解得
不合要求;综上, 为所求。
20.<1)解法1:∵ ,其定义域为 ,
∴ .
∵ 是函数 的极值点,∴ ,即 .
∵ ,∴ .
经检验当 时, 是函数 的极值点,
∴ .
解法2:∵ ,其定义域为 ,
∴ .
令 ,即 ,整理,得 .
∵ ,
∴ 的两个实根 <舍去), ,
当 变化时, , 的变化情况如下表:
<A) <B) <C) <D)
5.若曲线 的一条切线 与直线 垂直,则 的方程为< )
A. B. C. D.
6.曲线 在点 处的切线与坐标轴所围三角形的面积为< )
A. B. C. D.
7.设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是< )
8.已知二次函数 的导数为 , ,对于任意实数 都有 ,则 的最小值为< )A. B. C. D. b5E2RGbCAP
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于 Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1>
三、解答题
15. 解:设长方体的宽为x<m),则长为2x(m>,高为
.
故长方体的体积为
从而
令V′<x)=0,解得x=0<舍去)或x=1,因此x=1.
当0<x<1时,V′<x)>0;当1<x< 时,V′<x)<0,
17.设函数 分别在 处取得极小值、极大值. 平面上点 的坐标分别为 、 ,该平面上动点 满足 ,点 是点 关于直线 的对称点,.求(Ⅰ>求点 的坐标; (Ⅱ>求动点 的轨迹方程. RTCrpUDGiT

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

第三章《导数及其应用》检测题一、选择题(每小题只有一个正确答案)1.已知曲线y = |x2-2上一点P(屈一$,则过点P切线的倾斜角为()乙乙A.30°B. 45°C. 60°D. 120°2.设P为曲线C: y = F+2x + 3上的点,且曲线c在点P处切线倾斜角的取值范围7T 7T为则点P横坐标的取值范围为()4 2( JiA. —co,—B. [—1,0]1D. , + 823.定义在(0, +8)上的函数f(x)的导函数为广(无),且对VxG (0,+oo)都有c. [0,1]/z(x)lnx<^/'(x),则(A. 4/(e) > e3/(e4) > 2e/(e2) C. e3/(e4) > 4/(e) > 2e/(e2) )(其中e«2. 7)B.e3/(e4) > 2e/(e2) > 4/(e) D. 4/(e) > 2e/(e2) > e3/(e4)4.曲线/(x) = (x + l)e x在点(0, f(0))处的切线方程为()A. y = % 4- 1B. y = 2x 4- 1C. y = + 1D.y 弓x+15.对于函数/(x)=—,下列说法正确的有()①f(兀)在x = €处取得极大值》②f(x)有两个不同的零点;③门4) < f (兀)< /(3); @7T4 < 4兀.A.4个B.3个C.2个D. 1个6.定义在R上的奇函数f (x)满足f (・1)=0,且当x>0时,f (x) >xf (x),则下列关系式中成立的是()A. 4f (i) >f (2)B. 4f (2) <f (2)C. f (i) >4f (2)D. f (i) f (2) > 2 2 2 27.定义在[0, +oo)的函数fO)的导函数为f(x),对于任意的%>0,恒有/Xx) </(%),m = n = 则m, zi的大小关系是()・e e zA. m > nB. m < nC. m = nD.无法确定&函数/(x) = e x + x3 - 2在区间(0,1)内的零点个数是().A. 0B. 1C. 2D. 39 .在平面直角坐标系xOy中,已知好一In%! - = 0 , x2 - y2 ~ 2 = 0 ,则(%i -x2)2 +(7i -y2)2的最小值为()A. 1B. 2C. 3D. 410.已知直线2是曲线y = e x与曲线y = e2x-2的一条公切线,2与曲线y =/x 一2切于点(a,b),且a是函数£仗)的零点,贝”仗)的解析式可能为()A. /(%) = e2x(2x + 21n2 -1)-1B. f(x) = e2x(2x + 21n2 -1)-2C.f(x) = e2x(2x一21n2 -1)-1D. /(x) = e2x(2x一21n2 -1)-2二、填空题设函数fd)的导数为f f (x),且f(x)=f‘(^sinx + cosx,则f' (? = _____________________ 12.如图,函数y = f(x)的图象在点P处的切线方程是y = -兀+ 5,则/'⑶+厂⑶=_. Array13._____ 函数y=f (x)的导函数y = f(jc)的图象如图所示,则函数y=f (x)的图象可能是_________ (填序号).(D ②③④14.已知函数/(x)=xlnx + i%2, %是函数f(x)的极值点,给出以下几个命题:乙@0 < %0 < -;②尢o>2;+ X o < 0;④fOo) + Xo>0;e e其中正确的命题是______________ •(填出所有正确命题的序号)、215 .已知函数/(X)= X3 +OT2 +/?JC+C在X =——与兀=1时都取得极值,若对xe[-l,2],不等式f(x)<c2恒成立,则c的取值范围为___________________________ o三、解答题16.求下列函数的导函数®y = X4—3x2—5x + 6 ③y = x2cos x ②y二x+古@y = tan x17.已知函数/'(兀)=|%2一(a + l)x + a\nx.(1)当a VI时,讨论函数f(x)的单调性;(2)若不等式f(X) + (a + l)x n牛+対+ 1 一对于任意x G [e~1,e]成立,求正实数a 的取值范围.18.已知函数f (尤)=^x3— ax1 2 + l(a 6 /?).(1)若曲线y = /(%)在(l,f(l))处的切线与直线x-y + l = 0垂直,求a的值.(2)若a>0,函数y = /(%)在区间(a,a2 - 3)±存在极值,求a的取值范圉.(3)若a >2,求证:函数y = f(x)在(0,2)上恰有一个零点.19.已知函数f^x) = a x^-x2-x\na (a>0,且aHl).(I )求函数/(兀)的单调区间;(II)求函数/(兀)在[-2,2]上的最大值.20.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P~A\B\G从, 下部的形状是正四棱柱ABCD-A限Cd (如图所示),并要求正四棱柱的高"0是正以棱锥的高%的4倍.1 若AB=6 m, n =2 m,则仓库的容积是多少?2 若正四棱锥的侧棱长为6 m,则当〃为多少时,仓库的容积最大?参考答案I.C2. D3. D4・ B5. C6. A7. B8. B9. B10・ BII.- A/212. 113.④14.①③15.(-00,-1) U(2,4-oo)16.解析:(l)y z = 4x3— 6x — 5(2)y‘ = % 4- x~2(3)y‘ = (x2ycosx + x2(cosx)f = 2xcosx-x2sinx, sinx , (sinx),cosx — sinx(cosx)' cos2% + sin2% 1(4)-------------- y =( ----------------- )= ----- = = :—cos2%cosx cos2%cos2% cos2%17.(1)当a<0时,函数门切在(1,+8)上单调递增,在(0,1)上单调递减;当ova VI时, 函数f(x)在@,1)上单调递减,在(0卫)和(1,+8)上单调递增.(2) (0,1]解析:(1)函数/'仗)的定义域为(0,+s),广(%)=兀 _ @ + 1)+ 兰=*一@+1央+。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

12.已知函数f{x)=x3+ax2+bx+a2在ul处有极值为10,则犬2)等于.JT13.函数y=尤+2cosx在区间[0,—]±的最大值是14.已知函数fM=x3+ax在R上有两个极值点,则实数。

的取值范围是15.已知函数八尤)是定义在R上的奇函数,/(1)=0,二⑴;'3)>0危>0),则不等式%x2f(x)>0的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16.设函数/(x)=2x3+3破2+3笊+8c在x=1刚好工=2取得极值.(1)求。

、b的值;(2)若对于随意的xg[0,3],都有/(x)<c2成立,求c的取值范围.17.已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点工=2处的切线方程;(2)若关于工的方程/(x)+m=0有三个不同的实根,求实数m的取值范围.18.设函S/W=x3-6x+5,x e R.(1)求f(x)的单调区间和极值;《导数及其应用》一、选择题1.r(x0)=o是函数y(尤)在点气处取极值的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、设曲线y=x2+l在点(x,/(x))处的切线的斜率为g(x),WI函数>=g(x)cosx的部分图象可以4.若曲线y=x2+ax+b在点(0,方)处的切线方程是x-j+l=0,贝!|()A.q=L b=lB.a=—1,b=lC.g=L b=—1D.a=—1,b=—15.函数/(x)=x3+ttx2+3x—9,已知处)在x=—3时取得极值,则0等于()A.2B.3C.4D.56.设函数f⑴的导函数为扩(x),且/(x)=x2+2x-r(l),则广(0)等于()A、0B>-4C、-2D、27.直线y=x是曲线y=a+lnx的一条切线,则实数。

的值为()A.-1B.eC.In2D.18.若函数f(x)=x3-12x^区间以-盘+1)上不是单调函数,则实数k的取值范围()A.kJ—3^4—1■ k<23B.—3<上<—l^(il<k<3C.-2<k<2D.不存在这样的实数k9.函数f(x)的定义域为(m),导函数/(%)在(。

选修1-1《第三章导数及其应用》单元质量评估试卷含答案

选修1-1《第三章导数及其应用》单元质量评估试卷含答案

单元质量评估(三)第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·台州高二检测)函数y=lgx的导数为( )A. B.ln10C. D.【解析】选C.因为(log a x)′=,所以(lgx)′=.2.(2019·泉州高二检测)已知f(x)=sinx+lnx,则f′(1)的值为( )A.1-cos1B.1+cos1C.-1+cos1D.-1-cos1【解析】选B.f′(x)=cosx+,f′(1)=cos1+1.3.设f(x)=x2(2-x),则f(x)的单调递增区间是( )A. B.C.(-∞,0)D.(-∞,0)∪【解析】选A.f(x)=2x2-x3,f′(x)=4x-3x2,由f′(x)>0得0<x<.4.已知物体的运动方程是s=t3-4t2+12t(t表示时间,s表示位移),则瞬时速度为0的时刻是( )A.0秒、2秒或6秒B.2秒或16秒C.2秒、8秒或16秒D.2秒或6秒【解析】选D.s′=t2-8t+12=0,解得t=2或t=6.5.函数y=2x3-2x2在[-1,2]上的最大值为( )A.-5B.0C.-1D.8【解析】选D.y′=6x2-4x=2x(3x-2),列表:-所以y max=8.6.(2019·临沂高二检测)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是( )A.(0,1)B.(1,-1)C.(1,3)D.(1,0)【解析】选C.f′(x)=+1.设P0(x0,y0),则+1=4,解得x0=1.因为(x0,y0)在直线4x-y-1=0上,所以y0=3.所以点P0的坐标为(1,3).7.若x=1是函数f(x)=(ax-2)·e x的一个极值点,则a的值为( )A.1B.2C.eD.5【解析】选A.因为f′(x)=ae x+(ax-2)e x,所以f′(1)=ae+(a-2)e=0,解得:a=1,把a=1代入函数得:f(x)=(x-2)·e x,所以f′(x)=e x+(x-2)e x=e x(x-1),所以f′(1)=0,且x<1时,f′(x)<0,x>1时,f′(x)>0.故a=1符合题意.8.做一个无盖的圆柱形水桶,若要使其体积是27π且用料最省,则圆柱的底面半径为( )A.5B.6C.3D.2【解析】选C.设圆柱的底面半径为R,母线长为l,则V=πR2l=27π,所以l=.要使用料最省,只需使水桶的表面积最小,而S表=πR2+2πR l=πR2+,令S表′=2πR-=0,解得R=3,即当R=3时,S表最小.9.(2019·菏泽高二检测)函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是( )A.(0,1)B.(-∞,1)C.(0,+∞)D.【解析】选D.f′(x)=3x2-6b,因为f(x)在(0,1)内有极小值,所以f′(x)=0在x∈(0,1)有解.所以所以0<b<.10.(2019·合肥高二检测)设a<b,函数y=(x-a)2(x-b)的图象可能是( )【解析】选C.y′=2(x-a)(x-b)+(x-a)2=(x-a)·(3x-a-2b),由y′=0得x=a或x=.因为a<b,所以a<,所以当x=a时,y取极大值0;当x=时,y取极小值且极小值为负.11.(2019·烟台高二检测)已知a<0,函数f(x)=ax3+lnx,且f′(1)的最小值是-12,则实数a的值为( )A.2B.-2C.4D.-4【解析】选B.f′(x)=3ax2+,所以f′(1)=3a+≥-12,即a+≥-4,又a<0,有a+≤-4.故a+=-4,此时a=-2.12.(2019·全国卷Ⅰ)若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是( )A.[-1,1]B.C. D.【解析】选C.方法一:用特殊值法:取a=-1,f(x)=x-sin2x-sinx,f′(x)=1-cos2x-cosx,但f′(0)=1--1=-<0,不具备在(-∞,+∞)上单调递增,排除A,B,D.方法二:f′(x)=1-cos2x+acosx≥0对x∈R恒成立,故1-(2cos2x-1)+acosx≥0,即acosx-cos2x+≥0恒成立,令t=cosx,所以-t2+at+≥0对t∈[-1,1]恒成立,构造函数f(t)=-t2+at+, 开口向下的二次函数f(t)的最小值的可能值为端点值,故只需解得-≤a≤.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2019·中山高二检测)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.【解析】y′=3lnx+1+x·=3lnx+4,所以y′|x=1=3ln1+4=4.又f(1)=1×(3ln1+1)=1,所以所求的切线方程为y-1=4(x-1),即4x-y-3=0.答案:4x-y-3=014.(2019·郑州高二检测)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0,则a= ,b= .【解析】f′(x)=-.由于直线x+2y-3=0的斜率为-,且过点(1,1).故即解得a=1,b=1.答案:1 115.函数y=x+2cosx-在区间上的最大值是.【解析】y′=1-2sinx=0,在区间上解得x=,故y=x+2cosx-在区间上是增函数,在区间上是减函数,所以x=时,y=,而x=0时,y=2-,x=时y=-,且>2->-,故函数y=x+2cosx-在区间上的最大值是.答案:【补偿训练】曲线y=x3-2以点为切点的切线的倾斜角为. 【解析】y′=x2,当x=1时,y′=1,从而切线的倾斜角为45°.答案:45°16.设f(x)=x3-x2-2x+5,当x∈[-1,2]时,f(x)<m恒成立,则实数m的取值范围是.【解析】f′(x)=3x2-x-2=(x-1)(3x+2),令f′(x)=0,得x=1或x=-.f(x)极小值=f(1)=1--2+5=,f(x)极大值=f=--++5=5.又f(-1)=-1-+2+5=,f(2)=8-2-4+5=7,比较可得f(x)max=f(2)=7.因为f(x)<m对x∈[-1,2]恒成立.所以m>7.答案:(7,+∞)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2019·南昌高二检测)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值.(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.【解析】f′(x)=18x2+6(a+2)x+2a.(1)由已知有f′(x1)=f′(x2)=0,从而x1x2==1,所以a=9.(2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)>0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.【补偿训练】已知函数f(x)=ax2+2x-lnx.(1)当a=0时,求f(x)的极值.(2)若f(x)在区间上是增函数,求实数a的取值范围.【解析】(1)函数的定义域为(0,+∞).因为f(x)=ax2+2x-lnx,当a=0时,f(x)=2x-lnx,则f′(x)=2-,令f′(x)=0得x=,所以当x变化时,f′(x),f(x)的变化情况如表所以当x=时,f(x)的极小值为1+ln2,无极大值.(2)由已知,得f(x)=ax2+2x-lnx,且x>0,则f′(x)=ax+2-=.若a=0,由f′(x)>0得x>,显然不合题意;若a≠0,因为函数f(x)在区间上是增函数,所以f′(x)≥0对x∈恒成立,即不等式ax2+2x-1≥0对x∈恒成立,即a≥=-=-1恒成立,故a≥.而当x=时,函数-1的最大值为3,所以实数a的取值范围为a≥3. 18.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程.(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程. 【解析】(1)因为f′(x)=(x3+x-16)′=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.所以切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)因为切线与直线y=-+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3+1=4,所以x0=±1,所以或即切点坐标为(1,-14)或(-1,-18).切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.19.(12分)(2019·临沂高二检测)已知函数f(x)=lnx-ax2-2x.(1)若函数f(x)在x=2处取得极值,求实数a的值.(2)若函数f(x)在定义域内单调递增,求a的取值范围.【解析】(1)f′(x)=-(x>0),因为x=2时,f(x)取得极值,所以f′(2)=0,解之得a=-,经检验符合题意.(2)由题意知f′(x)≥0在x>0时恒成立,即ax2+2x-1≤0在x>0时恒成立,则a≤=-1在x>0时恒成立,即a≤(x>0),当x=1时,-1取得最小值-1.所以a的取值范围是(-∞,-1].20.(12分)某5A级景区为提高经济效益,现对某景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+x-bln,a,b为常数,当x=10万元时,y=19.2万元;当x=50万元时,y=74.4万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)(1)求f(x)的解析式.(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入) 【解析】(1)由条件可得解得a=-,b=1.则f(x)=-+x-ln(x≥10).(2)由T(x)=f(x)-x=-+x-ln(x≥10),则T′(x)=-+-=-,令T′(x)=0,则x=1(舍)或x=50,当x∈(10,50)时,T′(x)>0,因此T(x)在(10,50)上是增函数;当x>50时,T′(x)<0,因此T(x)在(50,+∞)上是减函数,故x=50为T(x)的极大值点,也是最大值点,且最大值为24.4万元.即该景点改造升级后旅游利润T(x)的最大值为24.4万元.21.(12分)(2019·绍兴高二检测)已知函数f(x)=x3-3ax2-9a2x+a3.(1)设a=1,求函数f(x)的极值.(2)若a>,且当x∈[1,4a]时,f(x)≥a3-12a恒成立,试确定a的取值范围. 【解析】(1)当a=1时,f(x)=x3-3x2-9x+1且f′(x)=3x2-6x-9,由f′(x)=0得x=-1或x=3.当x<-1时,f′(x)>0,当-1<x<3时,f′(x)<0,因此x=-1是函数f(x)的极大值点,极大值为f(-1)=6;当-1<x<3时f′(x)<0,当x>3时f′(x)>0,因此x=3是函数的极小值点,极小值为f(3)=-26.(2)因为f′(x)=3x2-6ax-9a2=3(x+a)(x-3a),a>,所以当1≤x<3a时,f′(x)<0;当3a<x≤4a时,f′(x)>0.所以x∈[1,4a]时,f(x)的最小值为f(3a)=-26a3.由f(x)≥a3-12a在[1,4a]上恒成立得-26a3≥a3-12a.解得a≤-或0≤a≤.又a>,所以<a≤.即a的取值范围为.22.(12分)奇函数f(x)=ax3+bx2+cx的图象过点A(-,),B(2,10).(1)求f(x)的表达式.(2)求f(x)的单调区间.(3)若方程f(x)+m=0有三个不同的实数根,求m的取值范围.【解析】(1)因为f(x)=ax3+bx2+cx为奇函数,所以f(-x)=-f(x)(x∈R).所以b=0.所以f(x)=ax3+cx.因为图象过点A(-,),B(2,10),所以即所以所以f(x)=x3-3x.(2)因为f(x)=x3-3x,所以f′(x)=3x2-3=3(x-1)(x+1),所以当-1<x<1时,f′(x)<0;当x<-1或x>1时,f′(x)>0,所以f(x)的递增区间是(-∞,-1)和(1,+∞),递减区间是(-1,1).(3)因为f(-1)=2,f(1)=-2,为使方程f(x)+m=0,即f(x)=-m有三个不等实数根,则-2<-m<2,即-2<m<2,所以m的取值范围是(-2,2).。

高中数学选修2-2第一章《导数及其应用》单元测试(一)

高中数学选修2-2第一章《导数及其应用》单元测试(一)

A. y 2x 1
B. y 3x 2
C. y 2x 3
D. y x 2
7.函数 f (x) e ln x x 在 (0, 2e] 上的最大值为
A.1 e C. e
B. 1 D. 0
8.若函数 f (x) x(x c) 2 在 x 2 处取得极大值,则常数 c
A. 2 C. 2 或 6
数学选修 2-2 第一章《导数及其应用》单元测试
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.定积分 2 (ex 2x)dx 的值为 0
A.1
B. e2
C. e2 3
D. e2 4
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为
A. 2 米/秒 C. 5 米/秒
B. 3 米/秒 D. 6 米/秒
3.已知曲线 y x2 上一点 P 处的切线与直线 2x y 1 0 平行,则点 P 的坐标为
A. (1,1)
B. (1,1)
C. (2, 4)
D. (3, 9)
4.已知 f (x) x2 2x f (1) ,则 f (3)
11.若函数 f (x) lnx ax 1 在[1, ) 上是单调函数,则实数 a 的取值范围为 x
A. (, 0] [1 , ) 4
B. (, 1 ] [0, ) 4
C.[ 1 , 0] 4
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
即 2x y 1 0 .(6 分)

新课标人教A版选修1-1《导数及其应用》单元测试(含答案)

新课标人教A版选修1-1《导数及其应用》单元测试(含答案)

《导数及其应用》单元检测题(文科)一、选择题(本题共12题,每题4分,共48分)1. 一个物体的运动方程为S=1+t+t 2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( A )A 7米/秒B 6米/秒C 5米/秒D 8米/秒 2 若()sin cos f x x α=-,则'()f α等于( A ) A sin α B cos α C sin cos αα+D 2sin α3.曲线3()2f x x x在0p 处的切线平行于直线41y x ,则0p 点的坐标为( C )A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)-- 4。

函数2()2ln f x x x =-的递增区间是( C )A.1(0,)2 B 。

11(,0)(,)22-+∞及 C 。

1(,)2+∞ D 。

11(,)(0,)22-∞-及5。

'()0((,))f x x a b ≥∈是可导函数y =f(x )在区间(,)a b 内单调递增的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 6. 函数323922yxxx x 有( C )A 极大值5,极小值27-B 极大值5,极小值11-C 极大值5,无极小值D 极小值27-,无极大值 7。

函数y=2x 3—3x 2-12x+5在区间[0,3]上最大值与最小值分别是(a )A 。

5,-15B . 5,—4C . —4,-15D . 5,-168。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( B )A 、0B 、4-C 、2-D 、29. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数的取值范围是( B )A ),3[]3,(+∞--∞B ]3,3[-C ),3()3,(+∞--∞D )3,3(-10.已知函数)(x f y =的导函数)(x f y '=的图像如下,则 ( A )A .函数)(x f 有1个极大值点,1个极小值点B .函数)(x f 有2个极大值点,2个极小值点C .函数)(x f 有3个极大值点,1个极小值点D .函数)(x f 有1个极大值点,3个极小值点11.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点为 ( B )A .)3,3(-B .)11,4(-C .)3,3(-或)11,4(-D .不存在12.以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是 (C )A .①、②B .①、③C .③、④D .①、④二、填空题(本题共4个题,每题4分,共16分) 13。

高二下数学第一章导数及其应用单元检测(含答案)

高二下数学第一章导数及其应用单元检测(含答案)

阶段质量检测:导数及其应用(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 2.函数f (x )=x +2cos x 在⎣⎡⎦⎤0, π2上的极大值点为( ) A .0 B.π6 C.π3 D.π23.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个 4.若函数()ln f x x a x=+不是单调函数,则实数a 的取值范围是( ).A .[)0,+∞B .(],0-∞C .(),0-∞D .()0,+∞5.若e x ≥k +x 在R 上恒成立,则实数k 的取值范围为( ) A .(-∞,1] B .[1,+∞) C .(-∞,-1] D .[-1,+∞)6.若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫13,4上有极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫2,103 B.⎣⎡⎭⎫2,103 C.⎝⎛⎭⎫103,174 D.⎝⎛⎭⎫2,174 7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝⎛⎭⎫-310,67B.⎝⎛⎭⎫-85,-316C.⎝⎛⎭⎫-83,-116D.⎝⎛⎭⎫-∞,-310∪⎝⎛⎭⎫67,+∞ 8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )9.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( ) A .6千台 B .7千台 C .8千台D .9千台10..已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A.4f (1)<f (2)B.4f (1)>f (2)C.f (1)<4f (2)D.f (1)>4f ′(2)11.已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3 ·f (30.3),b =log π3·f (log π3),c =log 319·f ⎝ ⎛⎭⎪⎫log 319,则a ,b ,c 的大小关系是( )A.a >b >cB.c >b >aC.a >c >bD.c >a >b12.若函数f (x )=sin xx ,且0<x 1<x 2<1,设a =21sin x x ,12sin b x x =,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.14.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.16.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点. (1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点.18. (2021·百师联盟考试)设函数f (x )=ln x +ax(a 为常数).(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围.19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.20.(本小题满分12分) (2020·全国Ⅰ卷)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.21.(本小题满分12分)已知函数f(x)=ln x+ax+1(a∈R).(2)若函数f (x )的图象与x 轴相切,求证:对于任意互不相等的正实数x 1,x 2,都有f (x 2)-f (x 1)x 2-x 1<1x 1+1x 2.22. (本小题满分12分) 已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.参考答案1.【解析】选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 2.答案:B3.【解析】选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.【答案】C【解析】由题意知0x >,()1af x x'=+,要使函数()ln f x x a x =+不是单调函数,则需方程10ax+=在0x >上有解,即x a =-,所以0a <,故选C . 5.解析:选A 由e x ≥k +x ,得k ≤e x -x . 令f (x )=e x -x ,∴f ′(x )=e x -1. 当f ′(x )<0时,解得x <0,当f ′(x )>0时,解得x >0.∴f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数.∴f (x )min =f (0)=1. ∴实数k 的取值范围为(-∞,1].故选A.6.解析:选D 因为f (x )=x 33-a 2x 2+x +1,所以f ′(x )=x 2-ax +1.函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫13,4上有极值点可化为f ′(x )=x 2-ax +1=0在区间⎝⎛⎭⎫13,4上有解, 即a =x +1x 在区间⎝⎛⎭⎫13,4上有解,设t (x )=x +1x ,则t ′(x )=1-1x 2, 令t ′(x )>0,得1<x <4,令t ′(x )<0,得13<x <1.所以t (x )在(1,4)上单调递增,在⎝⎛⎭⎫13,1上单调递减.所以t (x )min =t (1)=2,又t ⎝⎛⎭⎫13=103,t (4)=174,所以a ∈⎝⎛⎭⎫2,174. 7.【解析】选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝⎛⎭⎫103a +1⎝⎛⎭⎫-76a +1<0,解得a <-310或a >67. 故选D. 8.【解析】选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.【解析】选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.10.答案 B【解析】设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)上为减函数,因此g (1)>g (2), 即f (1)12>f (2)22,所以4f (1)>f (2). 11.答案 D【解析】 设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数, 知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数, ∴c =g ⎝ ⎛⎭⎪⎫log 319=g (-2)=g (2),又0<log π3<1<30.3<3<2, ∴g (log π3)<g (30.3)<g (2),即b <a <c .12.【解析】选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x-cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,由0<x 1<x 2<1得12211212sin sin ,sin sin x x x x x x x x >∴>,a >b ,故选A. 13.【解析】f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23. 答案:2314.【解析】 对函数求导得f ′(x )=x -1+a ⎝⎛⎭⎫1-1x =(x +a )(x -1)x ,x >0,因为函数存在唯一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0,且f (1)=-12+a ≥1,所以a ≥32.答案 ⎣⎡⎭⎫32,+∞ 15.【解析】f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1).又f (x )在(m,2m +1)上单调递增,所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]16.【解析】f (2)=f (π-2),f (3)=f (π-3),因为f ′(x )=1+cos x≥0,故f (x )在⎝⎛⎭⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f (π-2)>f (1)>f (π-3),即c <a <b .答案:c <a <b17.【解析】(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0,解得a =0,b =-3.(2)由(1)知f (x )=x 3-3x .因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2,于是函数g (x )的极值点只可能是1或-2.当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点.当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点.所以g (x )的极值点为-2. 18.【解析】 (1)函数f (x )的定义域为(0,+∞),f ′(x )=-a x 2+1x =x -ax 2,当a ≤0时,又x >0,∴x -a >0,∴f ′(x )>0, ∴f (x )在定义域(0,+∞)上单调递增;当a >0时,若x >a ,则f ′(x )>0,∴f (x )单调递增; 若0<x <a ,则f ′(x )<0,∴f (x )单调递减.综上可知:当a ≤0时,f (x )在(0,+∞)上是增函数;当a >0时,f (x )在区间(0,a )上是减函数,在区间(a ,+∞)上是增函数. (2)f (x )≥1⇔a x +ln x ≥1⇔ax ≥-ln x +1⇔a ≥ -x ln x +x 对任意x ∈(0,1]恒成立. 令g (x )=-x ln x +x ,x ∈(0,1].则g ′(x )=-ln x -x ·1x +1=-ln x ≥0,x ∈(0,1], ∴g (x )在(0,1]上单调递增,∴g (x )max =g (1)=1, ∴a ≥1,故a 的取值范围为[1,+∞).19.【解析】(1)由投资额为零时收益为零,可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.(2)由(1)可得f (x )=2x ,g (x )=6ln(x +1).设投入经销B 商品的资金为x 万元(0<x ≤5), 则投入经销A 商品的资金为(5-x )万元,设所获得的收益为S (x )万元, 则S (x )=2(5-x )+6ln(x +1)=6ln(x +1)-2x +10(0<x ≤5).S ′(x )=6x +1-2,令S ′(x )=0,得x =2.当0<x <2时,S ′(x )>0,函数S (x )单调递增;当2<x ≤5时,S ′(x )<0,函数S (x )单调递减.所以当x =2时,函数S (x )取得最大值, S (x )max =S (2)=6ln 3+6≈12.6万元.所以,当投入经销A 商品3万元,B 商品2万元时, 他可获得最大收益,收益的最大值约为12.6万元.20.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R ,f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0, ①当x =0时,不等式为1≥1,显然成立,此时a ∈R .②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝ ⎛⎭⎪⎫e x -12x 2-x -1x 3.令h (x )=e x-12x 2-x -1(x >0), 则h ′(x )=e x -x -1,令H (x )=e x -x -1,H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增,∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增;当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减.因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞. 21.【解析】(1) 函数f (x )的定义域为(0,+∞),f ′(x )=1x +a =ax +1x .当a ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增; 当a <0时,由f ′(x )=0,得x =-1a .若x ∈⎝ ⎛⎭⎪⎫0,-1a ,f ′(x )>0,f (x )单调递增;若x ∈⎝ ⎛⎭⎪⎫-1a ,+∞,f ′(x )<0,f (x )单调递减.综上所述:当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减.(2)证明 由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,不满足条件. 所以a <0,此时f (x )的极大值为f ⎝ ⎛⎭⎪⎫-1a =-ln(-a ),由已知得-ln(-a )=0,故a =-1,此时f (x )=ln x -x +1.不妨设0<x 1<x 2,则f (x 2)-f (x 1)x 2-x 1<1x 1+1x 2等价于ln x 2x 1<x 2x 1-x 1x 2+x 2-x 1,即证:ln x 2x 1-x 2x 1+x 1x 2<x 2-x 1.令g (x )=ln x -x +1x (x >1),则g ′(x )=1x -1-1x 2=-⎝ ⎛⎭⎪⎫x -122+34x 2<0,故g (x )在(1,+∞)单调递减,所以g (x )<g (1)=0<x 2-x 1.所以对于任意互不相等的正实数x 1,x 2, 都有f (x 2)-f (x 1)x 2-x 1<1x 1+1x 2成立.22.【解析】(1)由f (x )≥h (x ),得m ≤xln x 在(1,+∞)上恒成立.令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2,当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e.所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a .函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点.φ′(x )=1-2x =x -2x ,当x ∈(1,2)时,φ′(x )<0,φ(x )递减,当x ∈(2,3)时,φ′(x )>0,φ(x )递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,要使直线y =a 与函数φ(x )=x -2ln x 有两个交点,则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数与其应用》一、选择题 1.0()0f x '=是函数()f x 在点0x 处取极值的: A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为 A. C.D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2++b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-15.函数f (x )=x 3+2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56. 设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于( )A 、0B 、4-C 、2-D 、2 7. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .1 8. 若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k 9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )A .3B .52C .2D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11.函数sin xy x=的导数为 12、已知函数223)(a bx ax x x f +++=在1处有极值为10,则f (2)等于. 13.函数2cos y x x =+在区间[0,]2π上的最大值是14.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是15. 已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)Ox xx xy y y yOO O16. 设函数32()2338f x x ax bx c=+++在1x=与2x=时取得极值.(1)求a、b的值;(2)若对于任意的[03]x∈,,都有2()f x c<成立,求c的取值范围.17. 已知函数32()23 3.f x x x=-+(1)求曲线()y f x=在点2x=处的切线方程;(2)若关于x的方程()0f x m+=有三个不同的实根,求实数m的取值范围.18. 设函数Rxxxxf∈+-=,56)(3.(1)求)(x f的单调区间和极值;(2)若关于x的方程axf=)(有3个不同实根,求实数a的取值范围.(3)已知当)1()(,),1(-≥+∞∈xkxfx时恒成立,求实数k的取值范围.19. (本题满分12分)已知函数()ln f x x x =. (Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 20. 已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。

第一章导数及其应用单元测试_A———高中数学选修2-2

第一章导数及其应用单元测试_A———高中数学选修2-2
(2)若对任意的 x1 , x2 Î [1,e ] ( e 为自然对数的底数)都有 f ( x1 ) ≥ g ( x2 ) 成立,求实数 a 的取值 范围.
第一章导数及其应用单元测试(A)参考答案
第 4 页 共 8 页
一、选择题(共 12 小题,每小题 5 分,共 60 分) 题号 1 2 3 4 5 6 答案 C A D A C B
第 3 页 共 8 页
21. (本小题满分 12 分)已知函数 f ( x) = x - 3 x.
3
(1)求曲线 y = f ( x ) 在点 x = 2 处的切线方程; (2)若过点 A(1, m) ( m ¹ -2) 可作曲线 y = f ( x ) 的三条切线,求实数 m 的取值范围.
a2 , g ( x ) = x + ln x ,其中 a > 0 . 22. (本小题满分14分)已知函数 f ( x ) = x + x (1)若 x = 1 是函数 h ( x ) = f ( x ) + g ( x ) 的极值点,求实数 a 的值;
第一章导数及其应用单元测试(A)
一、选择题(共 12 小题,每小题 5 分,共 60 分) 1. f ( x) = x , f '( x0 ) = 6 ,则 x0 = (
3
) D. ±1
b
A. 2 2.设连续函数
B. - 2
C. ± 2
f ( x) > 0 ,则当 a < b 时,定积分 òa f ( x )dx 的符号
2 3 21.解(1) f ¢( x ) = 3 x - 3, f ¢(2) = 9, f (2) = 2 - 3 ´ 2 = 2
………………………2 分

2020届人教A版_导数及其应用_单元测试(2)

2020届人教A版_导数及其应用_单元测试(2)

导数及其应用学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数的单调递增区间是( )A .B .C .D .【答案】C【解析】本题考查导数的运算和导数的应用:利用导数求单调区间.不等式的解法. 函数()3ln f x x x =+的定义域为(0,);+∞()ln 1f x x '=+,由不等式()ln 10f x x '=+> 解得1;x e >则函数()3ln f x x x =+的单调递增区间是1(,).e+∞故选C2.已知函数()3232f x x x mx m =-+--,若存在唯一的正整数0x ,使得()00f x >,则m 的取值范围为( )A .()0,1B .1,13⎡⎫⎪⎢⎣⎭ C .2,13⎡⎫⎪⎢⎣⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由题意设()()()323,2g x x x h x m x -+=+,则()()2'3632g x x x x x =-+=--,()g x ∴在()(),0,2,-∞+∞递减,在()0,2上递增,且()()()32030,22324g g g ===-+⋅=,在一个坐标系中画出两个函数图象如图:存在唯一的正整数0x ,使得()00f x >,即()()00g x h x >∴由图得02x =,则()()()(){22 11m g h g h >>≤,即0{44 133m mm>>-+≤,解得21,3m m ≤<∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选C.【方法点睛】本题主要考查函数的图象与性质、导数的应用及不等式的整数解、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出函数图象以及熟练掌握函数图象的几种变换,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.3.已知函数()f x 在R 上满足f(x)=2f(4-x)-2x 2+5x ,则曲线()y f x =在点(2,f(2) ) 处的切线方程是( )A .y=-xB .y x =C .y=-x +4D .y=-2x+2 【答案】A【解析】因为解:∵f(x )=2f (4-x )-2x 2+5x , ∴f(4-x )=2f (x )-(4-x )2+5(4-x ) ∴f(2-x )=2f (x )-x 2+8x+4-5x将f (4-x )代入f (x )=2f (4-x )-2x 2+5x得f (x ),y=f (x )在(2,f (2))处的切线斜率为y′=-1. ∴函数y=f (x )在(2,f (2))处的切线方程为.y=-x 答案A4.已知函数f (x )=x 33+12ax 2+2bx +c 的两个极值分别为f (x 1), f (x 2),若x 1, x 2分别在区间(0,1)与(1,2)内,则b −2a 的取值范围是( )A .(2,7)B .(−4,−2)C .(−5,−2)D .(−∞,2)∪(7,+∞) 【答案】A 【解析】 【分析】先根据导函数的两个根的分布建立a 、b 的约束条件,然后利用线性规划的方法求出目标函数的取值范围即可. 【详解】 ∵函数f (x )=x 33+12ax 2+2bx +c∴f′(x)=x2+ax+2b=0的两个根为x1,x2,∵x1,x2分别在区间(0,1)与(1,2)内∴{f′(0)>0f′(2)>0 f′(1)<0⇒{b>0a+b+2>0 a+2b+1<0做出可行域如图所示,令z=b−2a,平移直线b=2a+z.经过点A(-1,0)时,z最小为:2;经过点B(-3,1)时,z最大为:7∴b−2a∈(2,7),故选:A.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=−13x3+81x−286,则该生产厂家获取的最大年利润为()A.300万元B.252万元C.200万元D.128万元【答案】C【解析】【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案.【详解】由题意,函数y=−13x3+81x−286,所以y′=−x2+81,当0<x<9时,y′>0,函数f(x)为单调递增函数;当x>9时,y′<0,函数f(x)为单调递减函数,所以当x=9时,y有最大值,此时最大值为200万元,故选C.本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.6.函数f (x )=(x +1)(x 2-x +1)的导数是 ( ) A .x 2-x +1B .(x +1)(2x -1)C .3x 2D .3x 2+1【答案】C 【解析】7.定义在[a,3]上的函数f(x)=e x −1e x−2x (a >0)满足,f(a +1)⩽f (2a 2),则实数a 的取值集合是( ) A .(0,√62] B .(1,√62) C .[2√33,√62] D .[1,√62] 【答案】D 【解析】 【分析】对函数求导得到函数的单调性,将不等式转化为a +1≤2a 2≤3结合a >0,解得a 的范围. 【详解】函数f(x)=e x −1e x −2x (a >0),对函数求导得到f ′(x )=e x +e −x −2≥2√e x ⋅e −x −2=0故函数在所给区间上是单调递增的,f(a +1)⩽f (2a 2)等价于a +1≤2a 2≤3 结合a >0,解得1≤a ≤√62故答案为:D. 【点睛】这个题目考查了导数在研究函数单调性中的应用,通过研究函数单调性将函数值的大小转化为自变量的大小关系,进而得到结果.8.已知f ′(x )是函数f (x )的导函数,且对任意的实数x 都有f ′(x )=e x (2x −2)+f (x )(e 是自然对数的底数),f (0)=1,若方程f (x )=k 有三个不同的实数根,则实数k 的取值范围是( )A .(−∞,0]B .(0,4e ) C .(4e ,+∞) D .[e,+∞)【解析】分析:因为f′(x )=e x (2x −2)+f (x ),所以f′(x )e x −(e x )′f (x )e 2x=2x −2,从而有[f (x )e x]′=2x −2,也就是f (x )=e x (x 2−2x +c ),结合f (0)=1得到c =1,从而利用导数研究y =f (x )的图像后利用直线y =k 与其有两个不同的交点即可得到k 的取值范围. 详解:因为f′(x )=e x (2x −2)+f (x ),所以f′(x )e x −(e x )′f (x )e 2x=2x −2,也就是[f (x )e x]′=2x −2,从而f (x )=e x (x 2−2x +c ),又f (0)=1,故c =1.f′(x )=e x (x 2−1), 当x ∈(−∞,−1)时,f′(x )>0,f (x )为增函数; 当x ∈(−1,1)时,f′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f′(x )>0,f (x )为增函数,所以当f (1)<k <f (−1)即0<k <4e 时,直线y =k 与y =f (x )的图像有三个不同的交点,即方程f (x )=k 有三个不同的解.故选B .点睛:当函数及其导数满足等式关系时,我们需要根据关系式的形式构建新函数,使得它的导数就是前述的关系式.另外,方程的零点的个数的讨论可以转化为定函数的图像与水平动直线的位置关系讨论.9.已知曲线f(x)=lnx+x 2a 在点(1,f (1))处的切线的倾斜角为3π4,则a 的值为( ) A .1 B .﹣4 C .﹣12 D .﹣1【答案】D 【解析】分析:求导f′(x)=1x +2x a,利用函数f (x )在x=1处的倾斜角为3π4得f′(1)=﹣1,由此可求a 的值. 详解: 函数f(x)=lnx +x 2a(x >0)的导数f′(x)=1x +2x a,∵函数f (x )在x=1处的倾斜角为3π4∴f′(1)=﹣1, ∴1+2a =﹣1,∴a=﹣1. 故选:D .点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x 0,y 0)及斜率,其求法为:设P(x 0,y 0)是曲线y =f(x)上的一点,则以P 的切点的切线方程为:y −y 0=f′(x 0)(x −x 0).若曲线y =f(x)在点P(x 0,f(x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x =x 0.10.已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时, ()()ln 2x f x x=,关于x 的不等式()()20fx af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎛⎫-- ⎪⎝⎭ C .1ln2,ln63⎛⎤-- ⎥⎝⎦ D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为偶函数()f x 满足()()44f x f x +=-,所以()()()888f x f x f x T =-=-⇒= ,因为关于x 的不等式()()20fx af x +>在[]200,200-上有且只有200个整数解,所以关于x 的不等式()()20fx af x +>在0,4()上有且只有2个整数解,因为()21ln2e 02x f x x x -==⇒=' ,所以()f x 在e 0,2⎛⎫⎪⎝⎭上单调递增,且()2,e f x ⎛⎫∈-∞ ⎪⎝⎭,在e ,42⎛⎫ ⎪⎝⎭ 上单调递减,且()3ln22,4e f x ⎛⎫∈ ⎪⎝⎭,因此()0f x >,只需()f x a >-在0,4()上有且只有2个整数解,因为()()ln61ln233f f =>= ,所以ln3ln3ln2ln266a a >-≥⇒-<≤-,选C. 点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 11.函数()y f x =的导函数()y f x ='的大致图象如下图所示,则函数()y f x =的图象可能是( )A.B.C.D.【答案】B【解析】由题意函数y=f(x)的导函数的大致图象如图所示可得,导函数的符号为负,正,负,正;对应函数的单调性为:减函数,增函数,减函数,增函数。

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

高二数学选修1-1《导数及其应用》单元测试卷班级: 姓名: 座号: 成绩:一、选择题(共7个小题,每小题6分)1、一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( )A .5米/秒B .6米/秒C .7米/秒D .8米/秒2、函数()3f x x x =+的单调递增区间是 ( )A .()0,+∞B .(),1-∞C .(),-∞+∞D .()1,+∞3、已知()3232f x ax x =++且()14f '-=,则实数a 的值等于 ( )A .193B .163C .133D .1034、函数()()22f x x π=的导数是 ( )A .()4f x x π'=B .()24f x x π'=C .()28f x x π'=D .()16f x x π'=5、“函数()00f x '=”是“可导函数()f x 在点0x x =处取到极值”的 条件。

( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要6、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .47、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,,()()1n n f x f x +'=,n ∈N ,则()2005f x = ( )A .sin xB .sin x -C .cos xD .cos x -二、填空题(共3个小题,每小题6分)8、曲线31y x x =++在点()1,3处的切线方程是 .9、已知直线10x y --=与抛物线2y ax =相切,则a = .10、三次函数()3f x ax x =+在(),-∞+∞内是增函数,则a 的取值范围是 .三、解答题(共2个小题,每题20分)11、已知函数()32f x x ax bx c =+++,当1x =-时,取得极大值7;当3x =时,取得极小值.试求a 、b 、c 的值及这个极小值.12、设函数3()3(0)f x x ax b a =-+>.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.高二数学选修1-1《导数及其应用》单元测试卷参考答案1-5 ACDCB 6-7 AC 8. 410x y --= 9. 1410. 0a > 11、解:()32f x x ax bx c =+++,∴()232f x x ax b '=++由题意知,1-和3是方程2320x ax b ++=的两个实数根 ∴2133133a b ⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得:39a b =-⎧⎨=-⎩()17f -=∴()()()()3211319157f c c -=--⨯--⨯-+=+=∴2c =∴极小值()32333393225f =-⨯-⨯+=-12、(Ⅰ)()'233f x x a =-,∵曲线()y f x =在点(2,())f x 处与直线8y =相切,∴()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩(Ⅱ)∵3()3(0)f x x ax b a =-+>,由()'0f x x =⇒=当(,x ∈-∞时,()'0f x >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.知识改变命运。

《导数及其应用》章节测试题及答案

《导数及其应用》章节测试题及答案

一、选择题1.函数y =x 2co sx 的导数为【 】A . y ′=2x co sx -x 2s i nx B . y ′=2x co sx +x 2s i nx C. y ′=x 2co sx -2xs i nx D. y ′=x co sx -x 2s i nx2.下列结论中正确的是【 】A. 导数为零的点一定是极值点B. 如果在0x 附近的左侧0)('>x f 右侧0)('<x f 那么)(0x f 是极大值C.如果在0x 附近的左侧0)('>x f 右侧0)('<x f 那么)(0x f 是极小值 D. 如果在0x 附近的左侧0)('<x f 右侧0)('>x f 那么)(0x f 是极大值3. 曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是【 】A.4 B. 52C.3D.2 4.函数3()34f x x x =-,[0,1]x ∈的最大值是【 】 A.1 B. 12C.0D.-15. 如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm 处,则克服弹力所做的功为【 】A . 0.28J B. 0.12J C. 0.26J D. 0.18J 6. 给出以下命题:⑴若()0b af x dx >⎰,则f (x )>0; ⑵20sin 4xdx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为【 】A. 1B. 2C. 3D. 07. 若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是【 】 A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D. 1(,]3-∞8.设0<a <b ,且f (x )=xx++11,则下列大小关系式成立的是【 】. A.f (a )< f (2b a +)<f (ab ) B . f (2ba +)<f (b )< f (ab ) C . f (ab )< f (2b a +)<f (a ) D . f (b )< f (2ba +)<f (ab )9. 函数2()f x ax b =-在区间(,0)-∞内是减函数则,a b 应满足【 】A.0a <且0b = B.0a >且b R ∈ C.0a <且0b ≠ D.0a <且b R ∈10. ()f x 与()g x 是R 定义在上的两个可导函数,若()f x 与()g x 满足()()f x g x ''=,则()f x 与()g x 满足……【 】A.()()f x g x = B.()()f x g x - 为常数函数C.()()0f x g x == D.()()f x g x +为常数函数11.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为…【 】 A.3 B.52C.2 D.3212.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( )A.15-B.0C.15D.5二、填空题 13.10.曲线y =2x 3-3x 2共有____个极值. 14.已知)(x f 为一次函数,且10()2()f x x f t dt =+⎰,则)(x f =_______.15. 若xe xf 1)(-=,则0(12)(1)limt f t f t→--= ___________.16. 已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为 __ __m 2.三、解答题17.一物体沿直线以速度()23v t t =-(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?18.已知曲线 y = x 3 + x -2 在点 P 0 处的切线 1l 平行直线4x -y -1=0,且点 P 0 在第三象限, ⑴求P 0的坐标; ⑵若直线 1l l ⊥ , 且 l 也过切点P 0 ,求直线l 的方程.19.已知函数32()(1)48(2)f x ax a x a x b =+-+-+的图象关于原点成中心对称, 试判断()f x 在区间[]4,4-上的单调性,并证明你的结论.20.已知函数()ln f x x =(0)x ≠,函数 1()()(0)()g x af x x f x '=+≠' ⑴当0x ≠时,求函数()y g x =的表达式; ⑵若0a >,函数()y g x =在(0,)+∞上的最小值是 2 ,求a 的值; ⑶在⑵的条件下,求直线2736y x =+与函数()y g x =的图象所围成图形的面积. 21.设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+. 22.已知函数()e xf x kx x =-∈R ,(Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e2)()nn F F F n n +*>+∈N .答案 1-5:ABCAD 6-10:BCD B B 11—12:C B 13. 2 14.()1f x x =-15. e2-(或12--e ) 16、68)(23+-+=x x x x f答案1-5:ABCAD 6-10:BCD B B 11—12:C B 13. 214.()1f x x =- 15. e2-(或12--e ) 16、68)(23+-+=x x x x f 17.解:∵当302≤≤t 时,()230≤v t t =-; 当352≤≤t 时,()230≥v t t =-.∴物体从时刻t=0秒至时刻 t=5秒间运动的路程352302(32)(23)S t dx t dx =-+-⎰⎰=9929(10)442++=(米) 18.解:⑴由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又∵点P 0在第三象限, ∴切点P 0的坐标为 (-1,-4). ⑵∵直线1l l ⊥,1l 的斜率为4,∴直线l 的斜率为14-, ∵l 过切点P 0,点P 0的坐标为 (-1,-4) ∴直线l 的方程为14(1)4y x +=-+即4170x y ++=. 19. 解: 答f (x )在[-4,4]上是单调递减函数. 证明:∵函数f (x )的图象关于原点成中心对称,则f (x )是奇函数,所以a =1,b =0,于是f (x )=348.x x -2()348,f x x '∴=-∴当(4,4)()0x f x '∈-∴<又∵函数()f x 在[]4,4-上连续 所以f (x )在[-4,4]上是单调递减函数. 20.解:⑴∵()ln f x x =,∴当0x >时,()ln f x x =; 当0x <时,()ln()f x x =-∴当0x >时,1()f x x '=; 当0x <时,11()(1)f x x x'=⋅-=-. ∴当0x ≠时,函数()ay g x x x ==+.⑵∵由⑴知当0x >时,()ag x x x=+,∴当0,0a x >>时, ()≥g x x =.∴函数()y g x =在(0,)+∞上的最小值是∴依题意得2=∴1a =.⑶由27361y x y x x ⎧=+⎪⎪⎨⎪=+⎪⎩解得2121322,51326x x y y ⎧==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩ ∴直线2736y x =+与函数()y g x =的图象所围成图形的面积 232271()()36S x x dx x ⎡⎤=+-+⎢⎥⎣⎦⎰=7ln 324-21. 本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>. 故当1x >时,恒有2ln 2ln 1x x a x >-+.22.本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.满分14分.解:(Ⅰ)由e k =得()e e x f x x =-,所以()e e xf x '=-.由()0f x '>得1x >,故()f x 的单调递增区间是(1)+∞,, 由()0f x '<得1x <,故()f x 的单调递减区间是(1)-∞,.(Ⅱ)由()()f x f x -=可知()f x 是偶函数.于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立.由()e 0x f x k '=-=得ln x k =. ①当(01]k ∈,时,()e 10(0)x f x k k x '=->->≥. 此时()f x 在[0)+∞,上单调递增. 故()(0)10f x f =>≥,符合题意.②当(1)k ∈+∞,时,ln 0k >.当x 变化时()()f x f x ',的变化情况如下表:由此可得,在[0)+∞,上,()(ln )ln f x f k k k k =-≥.依题意,ln 0k k k ->,又11e k k >∴<<,. 综合①,②得,实数k 的取值范围是0e k <<.(Ⅲ)()()()e e x x F x f x f x -=+-=+,12()()F x F x ∴=12121212121212()()e e e e e e 2e 2x x x x x x x x x x x x x x +-+--++-+++++>++>+, 1(1)()e 2n F F n +∴>+,11(2)(1)e 2()(1)e 2.n n F F n F n F ++->+>+由此得,21[(1)(2)()][(1)()][(2)(1)][()(1)](e 2)n n F F F n F F n F F n F n F +=->+故12(1)(2)()(e2)n n F F F n n +*>+∈N ,.。

高中数学选修2第五章 一元函数的导数及其应用 单元测试(含解析)

高中数学选修2第五章 一元函数的导数及其应用 单元测试(含解析)

高中数学选修2第五章一、单选题1.现有一球形气球,在吹气球时,气球的体积V (单位:L )与直径d (单位:dm )的关系式为V =πd 36,当d =2dm 时,气球体积的瞬时变化率为( )A .2πB .πC .π2D .π42.若点P 是曲线y =lnx ―x 2上任意一点,则点P 到直线l :x +y ―6=0的距离的最小值为( )A .22B .32C .522D .9223.函数f (x )=13a x 3+12a x 2―2ax +2a +1的图象经过四个象限的一个充分必要条件是( )A .―43<a <―13B .―1<a <―12C .―2<a <0D .―65<a <―3164.根据公式sin3α=3sin α―4sin 3α,sin10°的值所在的区间是( )A .(17,16)B .(16,15)C .(15,14)D .(14,13)5.已知函数f (x )=ax +ln a ,g (x )=x +e x ―ln x ,若关于x 的不等式f (x )>g (x )在区间(0,+∞)内有且只有两个整数解,则实数a 的取值范围为( )A .(e ,e 2]B .(e ,e 22]C .(e 2,e 3]D .(e 22,e 33]6.设函数 f (x )=e xx―t (ln x +x +2x ) 恰有两个极值点,则实数 t 的取值范围是( )A .(―∞,12]B .(12,+∞)C .(12,e 3)∪(e3,+∞)D .(―∞,12]∪(e3,+∞)7.已知 f (x ) 是定义在 R 上的奇函数, f (―1)=0 ,当 x <0 时, x f ′(x )+f (x )<0 ,则使得 f (x)>0 成立的 x 的取值范围是( ) A .(―∞,―1)∪(0,1)B .(―1,0)∪(1,+∞)C .(―∞,―1)∪(―1,0)D .(0,1)∪(1,+∞)8.函数 f (x )=|x |ex ,方程 [f (x )]2―(m +1)f (x )+1―m =0 有4个不相等实根,则 m 的取值范围是( )A .(e 2―e e 2+e,1)B .(e 2―e +1e 2+e ,+∞)C .(e 2―e +1e 2+e ,1)D .(e 2―e e 2+e,+∞)二、多选题9.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充分不必要条件是( )A.0≤a≤21B.1≤a≤20C.a<0D.a=21 10.已知函数f(x)=e xx2―x+1,则下列结论正确的是( )A.函数f(x)存在极大值和极小值B.函数f(x)不存在最小值与最大值C.当x∈[0,3]时,函数f(x)最大值为eD.当x∈[12,e]时,函数f(x)最小值为e2311.已知函数f(x)=14x 4+12a x2+ax,则下面说法正确的是( )A.存在实数a,使f(x)有最小值且最小值小于0B.对任意实数a,f(x)有最小值且最小值不小于0C.存在正实数a和实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增D.对任意负实数a,存在实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增12.若f(x)图象上存在两点A,B关于原点对称,则点对[A,B]称为函数f(x)的“友情点对”(点对[A,B]与[B,A]视为同一个“友情点对”)若f(x)={x3e x,x≥0ax2,x<0恰有两个“友情点对”,则实数a的值可以是( )A.0B.―12018C.―1eD.―12021三、填空题13.函数f(x)=12x―x3在区间[―3,3]的最小值是 .14.设曲线y=e ax+sine在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .15.关于x的方程kx―lnxx =2在区间[1e,e]上有两个实根,则实数k的最小值是 .16.已知函数f(x)=x3―a e x,若函数f(x)有三个极值点x1,x2,x3(x1<x2<x3),若x3≥3x2,则实数a的取值范围是 .四、解答题17.求下列函数的导数:(1)f(x)=(1+sin x)(1―4x);(2)f(x)=xx+1―2x.18.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.19.已知函数f (x )=x 3+a x 2+x (a ∈R )(1)若函数f (x )存在两个极值点,求a 的取值范围;(2)若f (x )≥xlnx +x 在(0,+∞)恒成立,求a 的最小值.20.设f n (x )=x+x 2+…+x n ﹣1,x≥0,n ∈N ,n≥2.(Ⅰ)求f n ′(2);(Ⅱ)证明:f n (x )在(0,23)内有且仅有一个零点(记为a n ),且0<a n ﹣12<13(23)n .21.已知函数f (x )=lnx+a (x 2﹣3x+2),其中a 为参数.(1)当a=0时,求函数f (x )在x=1处的切线方程; (2)讨论函数f (x )极值点的个数,并说明理由;(3)若对任意x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.22.设函数 f (x )=1x ―eex ,g (x )=a (x 2―1)―lnx ( a ∈R , e 为自然对数的底数).(1)证明:当 x >1 时, f (x )>0 ; (2)讨论 g (x ) 的单调性;(3)若不等式 f (x )<g (x ) 对 x ∈(1,+∞) 恒成立,求实数 a 的取值范围.参考答案1.A2.B解:已知函数y=lnx―x2,可得y′=1x―2x,(x>0),直线l:x+y―6=0的斜率为-1,令y′=―1,即1x―2x=―1,可得(x―1)(2x+1)=0,因为x>0,可得x=1,则y=―1,即平行于直线l:x+y―6=0且与曲线y=lnx―x2相切的切点坐标为P(1,―1),由点到直线的距离公式,可得点P到直线l的距离为d=|1―1―6|2=32.3.D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数单元测试题 11.29
一、填空题
1.函数()2
2)(x x f π=的导数是_______
2.函数x
e
x x f -⋅=)(的一个单调递增区间是________
3.若函数b bx x x f 33)(3
+-=在()1,0内有极小值,则实数b 的范围是_______
4.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为______ 5.曲线x
y e =在点2
(2)e ,处的切线与坐标轴所围三角形的面积为_________
6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是_______
7.已知二次函数2
()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有
()0f x ≥,则
(1)
'(0)
f f 的最小值为________ 8.设2
:()e ln 21x
p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的______________条件
9. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/
/
f f f f -<<< y (B ) )2()2()3()3(0/
/
f f f f <-<< (C ))2()3()2()3(0/
/
f f f f -<<<
(D ))3()2()2()3(0/
/
f f f f <<-< O 1 2 3 4 x 10.函数()ln f x x x =的单调递增区间是____.
11.已知函数3
()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则
M m -=__.
12.点P 在曲线3
2
3
+
-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是
13.设函数()f x 的导函数为()f x ',且()()2
21f x x x f '=+⋅,则()0f '=_____
14.已知32
()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为_______
二.解答题
15.已知()132
3
+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

16.设函数3
2
()2338f x x ax bx c =+++在1x =及2x =时取得极值.
(1)求a 、b 的值;
(2)若对于任意的[03]x ∈,,都有2
()f x c <成立,求c 的取值范围.
17. 已知函数32
()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;
(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.
18.已知()R a x x a ax x f ∈+++-=14)1(3
)(23
(1)当1-=a 时,求函数的单调区间。

(2)当R a ∈时,讨论函数的单调增区间。

(3)是否存在负实数a ,使[]0,1-∈x ,函数有最小值-3?
一、选择题
1.()∴==,42)(222
x x x f ππ=⋅='x x f 242)(πx x f 28)(π=';
2.∴=⋅=-.)(x x
e x e
x x f []
=⋅-⋅='21)(x x x e e x e x f , ()[]
1,012<∴>⋅-x e e x x x
选(A) 3.()
b x b x x f -=-='2
2333)(,依题意,首先要求b>0, 所以()()
b x b x x f -+='3)(
由单调性分析,b x =
有极小值,由()1,0∈=b x 得.
4.解:与直线480x y +-=垂直的直线l 为40x y m -+=,即4
y x =在某一点的导数为4,而3
4y x '=,所以4
y x =在(1,1)处导数为4,此点的切线为430x y --=,
5.2
2
e 6.(D ) 7.2 8.必要不充分条件
9.B 设x=2,x=3时曲线上的点为AB,点A 处的切线为AT 点B 处的切线为BQ ,
T
=
-)2()3(f f AB k f f =--2
3)
2()3( ,)3(BQ k f =' ,)2(AT k f =' 如图所示,切线BQ 的倾斜角小于
直线AB 的倾斜角小于 切线AT 的倾斜角 <∴BQ k <AB k AT k
10.1,e ⎡⎫+∞⎪⎢⎣⎭ 11.32 12.⎪⎭
⎫⎢⎣⎡⋃⎪⎭⎫⎢⎣⎡πππ,432,0 13,4- 14,a<-3或a>6
三、解答题
(1) 当3-=a 时,()983131333
23+⎪⎭⎫ ⎝

--=+-+-=x x x x x f 。

由函数3
x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。

所以,当3->a 时,函数()x f 在
R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

16.解:(1)2
()663f x x ax b '=++,
因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.
即6630241230a b a b ++=⎧⎨
++=⎩


解得3a =-,4b =.
(2)由(Ⅰ)可知,3
2
()29128f x x x x c =-++,
2()618126(1)(2)f x x x x x '=-+=--.
当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.
所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2
()f x c <恒成立,
所以 2
98c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)
(9)-∞-+∞,,.
17.解(1)2
()66,(2)12,(2)7,f x x x f f ''=-== ………………………2分
∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;……4分 (2)记3
2
2
()233,()666(1)g x x x m g x x x x x '=-++=-=-
令()0,0g x x '==或1. …………………………………………………………6分 则,(),()x g x g x '的变化情况如下表
………………………10分 由()g x 的简图知,当且仅当(0)0
,(1)0
g g >⎧⎨
<⎩
即30
,3220
m m m +>⎧-<<-⎨+<⎩时,
函数()g x 有三个不同零点,过点A 可作三条不同切线.
所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.…………14分
18.(1)(),2,-∞-∈x 或(),,2+∞∈x )(x f 递减; (),2,2-∈x )(x f 递增; (2)1、当,0=a
(),
2,-∞-∈x )(x f 递增;2、当,0<a ,2,2⎪⎭
⎫ ⎝⎛∈a
x )(x f 递增;3、当,10<<a (),2,∞-∈x 或
,,2⎪⎭

⎝⎛+∞∈a x )(x f 递增; 当,1=a (),,+∞∞-∈x )(x f 递增;当,1>a ,2,⎪⎭
⎫ ⎝
⎛∞-∈a x 或(),,2+∞∈x )
(x f 递增;(3)因,0<a 由②分两类(依据:单调性,极小值点是否在区间[-1,0]上是分类“契机”:
1、当,2,12-≥⇔-≤a a [],2,20,1⎪⎭⎫ ⎝⎛⊆-∈a x )(x f 递增,3)1()(min -=-=f x f ,解得,243->-=a
2、当,2,12-≤⇔->a a
由单调性知:3)2
()(min -==a f x f ,化简得:01332=-+a a ,解得
,2621
3->±-=
a 不合要求;综上,4
3-=a 为所求。

相关文档
最新文档