米钢箱梁计算书

合集下载

MIDAS钢箱梁计算书

MIDAS钢箱梁计算书
1.1B07~F03 D07~H03 50.5+65+50.5m(桥宽 10m)钢箱梁
1.1.1计算参数及参考规范
(1)标准 设计荷载:城-A 级; 桥梁安全等级为一级,结构重要性系数 1.1;
(2)主要材料 钢箱梁采用 Q345D 钢材, 桥面板采用 C40 混凝土。
(3)参考规范 《公路钢结构桥梁设计规范》报批稿, 《公路钢筋混凝土及预应力混凝土桥涵设计规范》。
安全系数为 3.18,满足要求。
Ω m2 58.7 374.5
pk
e
kn
m
360
1.778
360
4.878
超载系数
3 3
倾覆力矩 kn*m
5277.0 23891.0 29168.0
16
横隔板和纵腹板的位置进行竖向约束。使用 MIDAS 建立板梁模型如下图:
桥面板有限元模型
1.1.6.1.2加载方式 考虑荷载为自重,二期和车轮压力,其中车轮压力采用《公路桥涵设计通
用规范》车辆荷载加载,为了得到最大的拉、压应力考虑了最不利的车轮作用 位置工况。车辆荷载采用城-A 级车辆荷载标准值,取最大的中间轴重力标准值 2x140kN,并考虑冲击系数 0.4,同时考虑自重、栏杆及铺装荷载作用。车轮的 着地宽度及长度为 0.6x0.2m,轮距 1.8m,两轴间距 1.2m。按照《公路桥涵设 计通用规范》布置横向车辆荷载。 1.1.6.1.3计算结果
稳定力矩如下:
倾覆力矩如下:
支座位置
0内 0外 1内 1外 2内 2外 3内 3外 合计
反力 kn 582.4 1215.6 2804.2 3109.7 2863.8 3070.9 544.6 1245
力臂 m

m钢箱梁计算书

m钢箱梁计算书

42m钢箱梁计算书(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--ES匝道钢箱梁上部结构计算书目录一、概述.................................................................. 错误!未定义书签。

桥梁简介............................................................. 错误!未定义书签。

模型概况............................................................ 错误!未定义书签。

1 设计规范...................................................... 错误!未定义书签。

2 参考规范...................................................... 错误!未定义书签。

3 主要材料及性能指标............................................ 错误!未定义书签。

4 荷载.......................................................... 错误!未定义书签。

二、模型概述.............................................................. 错误!未定义书签。

第一体系建模........................................................ 错误!未定义书签。

第二体系建模........................................................ 错误!未定义书签。

三、结果验算.............................................................. 错误!未定义书签。

钢箱梁吊装简易计算书

钢箱梁吊装简易计算书

钢箱梁吊装简易计算书(标准节段钢箱梁)1、吊装重量计算(1)钢箱梁自重:132.4T(2)滑轮组自量:18T(3)吊钩自重:10T(4)缆载吊机下钢绳重量(靠近索塔处取值):8T缆载吊机吊装重量(1)+(2)+(3)+(4):168.4T缆载吊机设计重量(取1.2倍冲击系数):Q=168.4×1.2=202T每段钢箱梁采用2组吊点吊装,每组吊点传递给缆载吊机荷载:P=202/2=101T2、缆载吊机杆件内力计算(按单片桁架进行计算,计算简图见附图1)缆载吊机中梁部分由型钢组拼,按桁架结构进行计算,节点按铰支进行简化。

端梁由整体型钢组焊,计算时简化为桁架和刚体两部分进行计算(假定9’和8’杆件、3’和0’杆件组成不可变体系,1’、4’、5’、6’、7’与其铰接连接),缆载吊机自重简化为集中荷载均匀分布在各个节点上。

(1)缆载吊机支点反力计算Ra=1.8+0.6+0.6+0.3+0.5+0.5+0.5+0.5/2+50.5=55.55T (2)中梁与端梁连接铰点A、B水平向受力计算(忽略竖向受力)N A= -[1.8×(1.24+0.74/2)+0.6×(2.48+0.74/2)+0.6×3.84+50.5×3.35]/1.75=-100.6T由力的平衡条件知:N B =-N A=100.6T(3)各杆件受力计算(单位:T)中梁:N1=0 N2=4.5(拉) N3=-107.5(压)N4=104.3(拉) N5=-3.2(压) N6=-2.1(压)N7=-109(压) N8=107.5(拉) N9=-1.5(压)N10=1.1(拉) N11=-109.8(压) N12=109(拉)N13=-0.7(压) N14=-110(压) N15=109.8(拉)N16=0.7(拉) N17=-0.5(压)端梁:N1’=55.55×1.61/1.60=55.9(拉)N4’=55.2√2=78.1(拉)N5’=-(55.55 ×0.365)/1.68=-12.1(压)N6’=-(55.65×3.35+1.8 ×1.24)/1.73=-109(压)N7’=sin6.6×12.1-55.55=-54.2(压)3、强度校核(1)中梁上弦杆件受压,按压杆进行校核,对弱轴进行验算。

钢箱梁—40 60 40钢箱梁计算书

钢箱梁—40 60 40钢箱梁计算书

1 设计要点1.1 总体设计达连坝大桥主桥为钢箱连续梁桥,跨径组合为(40+60+40)m,全长140m。

1.2 主桥上部结构设计概况(1)结构布置主桥为(40+60+40)m三跨钢箱连续梁桥,全长140m。

边中跨比为0.667。

桥梁横断面布置为:(0.5m防撞墙)+(14.75m车行道)+(0.5m防撞墙)=单幅桥总宽15.75m (2)钢箱梁主梁方案主梁采用等截面钢箱梁,单箱五室断面,桥面宽15.75m,箱宽12.0m,悬臂长1.925m。

主梁中心高度2.4m,高跨比1/25。

1.3 主桥下部结构设计概况见施工图纸。

1.4 主要材料(1)混凝土C15:承台基础垫层C30:过渡墩承台、防撞栏、桩基、主墩墩身、过渡墩墩身及盖梁C40:支座垫石(2)钢材主体结构采用Q345qD;附属结构采用Q235B;(3)支座主墩:LQZ3000GD、LQZ3000DX、LQZ3000SX;过渡墩:LQZ1500DX、LQZ1500SX;(4)伸缩缝伸缩缝:D160型伸缩缝。

2 计算依据2.1设计规范及参考资料(1)执行规范:《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)《钢结构设计规范》(GB 50017-2003)《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)(2)参考规范及文献资料:《日本道路桥示方书·同解说》《钢桥、混凝土桥及结合桥》BS5400 (1978~1982)《公路钢结构桥梁设计规范—征求意见稿》《现代钢桥》(上册)(吴冲主编 2006年4月)《公路钢结构桥梁设计规范》( 征求意见稿)《公路钢箱梁桥面铺装设计与施工技术指南》2.2技术标准(1)公路等级:双向6车道,一级公路。

桥梁钢箱梁计算书

桥梁钢箱梁计算书

某钢箱梁复核计算报告目录1概述 (1)1.1钢箱梁概况 (1)1.2钢梁的安装及顶推 (1)2计算模型与方法 (2)2.1计算参数 (2)2.1.1材料 (2)2.1.2计算荷载 (2)2.2荷载组合 (2)2.3计算模型 (3)3主梁内力 (4)3.1.1顶推施工阶段 (4)3.1.2(恒载+活载)组合一 (5)3.1.3(恒载+活载+支座沉降+温度)组合二 (6)4主梁应力 (8)4.1控制断面内力 (8)4.1.1顶推施工阶段 (8)4.1.2(恒载+活载)组合一 (8)4.1.3(恒载+活载+支座沉降+温度)组合二 (8)4.2截面有效宽度 (8)4.3局部稳定系数 (9)4.4控制截面应力 (10)5加劲肋验算 (13)5.1主梁顶底板加劲肋 (13)5.2主梁腹板加劲肋 (15)5.3支座加劲肋 (16)5.3.1支座反力 (16)5.3.2支座加劲肋构造 (16)5.3.3支座加劲肋验算 (17)5.3.4顶推施工加劲肋验算 (20)6中间横隔板验算 (21)6.1横隔板构造 (21)6.2横隔板的开口率 (21)6.3横隔板最小刚度 (22)7挠度 (27)7.1恒载挠度 (27)7.2活载挠度 (27)1概述1.1钢箱梁概况主梁为四跨一联的连续钢箱梁,两幅桥错孔布置,位于半径R=1190m的平面圆曲线上,跨径布置为(25+35+35+25)m,每幅桥顶面宽17.25m,箱梁顶板为单向横坡2%,箱梁中心线位置梁高 1.8m,采用单箱三室闭合截面。

桥面铺装为防水粘结层(环氧粘结层+5mm碎石覆盖)+3.0cm环氧沥青混凝土+4cm高弹改性沥青SMA13钢箱梁为正交异性板,一般截面:顶面板厚14mm,底面板厚14mm,设4道竖直腹板,厚度12mm,顶板采用U型加劲肋,厚8mm、高260mm、间距600mm,底板采用T型加劲肋,竖肋厚8mm、高120mm;水平肋厚10mm、100mm宽,腹板加劲肋厚度14mm、高度160mm,横隔板采用板结构, 间距2m,板厚为10mm。

Midas Civil计算书(钢箱梁)

Midas Civil计算书(钢箱梁)
钢箱梁为正交异性板,一般截面:顶面板厚16mm;底面板厚16mm底板加厚段厚度为 25mm;设1道竖直腹板、2道斜腹板,厚度14mm;顶底板采用U型加劲肋,厚8mm、高260mm、 间距600mm;顶板T型加劲肋,竖肋厚14mm、高120mm、间距30cm;水平肋厚10mm、100mm 宽;顶板I型加劲肋,竖肋厚10mm、高120mm、间距30cm;腹板加劲肋厚度12mm、高度150mm, 横隔板采用板结构, 间距3m,板厚为14mm。
(4)《钢结构设计规范》
(GB50017-2003)
(5)《公路桥涵钢结构及木结构设计规范》
(JT40+60+40)计算书
(6)《公路桥涵施工技术规范》 (7)《钢结构工程施工质量验收规范》 (8)《铁路桥涵钢结构设计规范》
(JTG/T F50-2011) (GB 50205-2001) (TB 10002.2-2005)
处L为的计算跨径:边跨L/600 = 40000/600 = 66.7mm,中跨L/600=60000/600=100mm
2.5 复核计算标准、规范及其它依据
(1)《公路工程技术标准》
(JTG B01-2003)
(2)《公路桥涵设计通用规范》
(JTG D60-2004)
(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)
图 4.1 活载正挠度
图 4.1 活载负挠度 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.1.5条规定:如果车辆荷 载在一个桥跨范围内移动产生正负两个方向的挠度时,计算挠度应为其正负挠度的最大 绝对值之和,边跨和中跨最大挠度均位于跨中分别为:22.6mm、40.8mm结构刚度满足规范 要求。

米钢箱梁计算书

米钢箱梁计算书

米钢箱梁计算书公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]目录1.工程概况本项目跨径组合为35+50+35 米。

上部结构箱梁梁高米(箱梁内轮廓线高度)。

顶面全宽米,两侧各设米宽挑臂,箱梁顶底板设%横坡,腹板间距布置为++ 米。

箱梁顶板厚16 毫米,下设“U”形和板式加劲肋,“U”形加劲肋板厚8 毫米,板式加劲肋160×14 毫米;箱梁底板厚14 毫米,设“T”形加劲肋,加劲肋腹板120×8 毫米,翼缘100×10 毫米,间距300 或350 毫米;腹板厚12 毫米,设三道140×14 毫米板式加劲肋,各加劲肋除支承隔板处断开与支承隔板焊连外,其余加劲肋均穿过横隔板或挑臂并与之焊连。

普通横隔板间距约3 米,厚10 毫米,中部挖空设100×10 毫米翼缘。

桥台简支处支撑隔板板厚20 毫米,桥墩连续处支撑隔板板厚30 毫米,支撑隔板为围焊。

简支处隔板四角不设焊缝通过的切口,保证整个钢箱梁安装完成后的气密性;其他横隔板四角均设置焊缝通过的切口。

挑臂为“T”形截面,腹板厚10 毫米,下翼缘300×14 毫米。

2.结构计算分析模型2.1.主要规范标准.(1)《城市桥梁设计规范》(CJJ 11-2011)(2)《公路桥涵设计通用规范》(JTG D60-2004)(3)《公路圬工桥涵设计规范》(JTG D61-2005)(4)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(5)《公路桥涵地基与基础设计规范》(JTG D63-2007)(6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)(7)《混凝土结构设计规范》(GB50010-2010)(8)《公路桥涵施工技术规范》(JTG/T F50-2011)(9)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008)(10)《公路桥涵钢结构及木结构设计规范》(JTJ025—86)(11)《钢结构工程施工质量及验收规范》(GB50205-2001)(12)《铁路桥梁钢结构设计规范》(TB )2.2.主要材料及力学参数Q345qD:弹性模量E=×105MPa剪切模量G=×105MPa轴向容许应力:200MPa剪切容许应力:120MPa表2-1 钢材容许应力表2.3.计算荷载取值(1)结构设计安全等级:一级(2)永久作用自重:实际结构建立计算模型,由程序自动计算,材料容重取m3;横隔板:横隔板处按节点荷载加载,支点截面45kN,其余隔板处15kN;二期:8cm沥青混凝土铺装:25××13=26kN/m,墙式护栏按10kN/m计算,共计36kN/m。

MIDAS钢箱梁计算书

MIDAS钢箱梁计算书
计算结果如下图所示:
12
恒+活应力云图(主拉应力,单位:MPa)
由上述结果可知,桥面板顶板局部最大主拉应力为 196.9Mpa,虽能满足规 范要求,但主拉应力偏大。建议悬臂处的加劲肋改为 T 型加劲肋或 U 型加劲 肋。
恒+活应力云图(主压应力,单位:MPa)
由上述结果可知,桥面板顶板局部最大主压应力为 151.1Mpa,满足规范要 求。发生在翼缘挑梁根部下缘。
部位 钢箱梁
截面位置 上缘 下缘
腹板剪力
最大压应力 -12.98 -128.15 /
最大拉应力 124.3 12.98 /
最大剪应力 /
103.25
容许值 210 210 120
从上表可以看出正应力满足要求,腹板剪应力虽满足要求,但偏大,建议 对腹板至支座之间的横隔板进行局部加强。
1.1.5端横梁计算
步骤
施工内容
cs1
中间支点节段架设
cs2
其余梁段架设
cs3
合拢段施工
cs4
二期恒载
(2)施工阶段应力计算
上缘最大应力(压应力为负,单位:MPa)
上缘最小应力(压应力为负,单位:MPa)
下缘最大应力(压应力为负,单位:MPa)
4
下缘最小应力(压应力为负,单位:MPa)
最大剪应力(单位:MPa)
施工阶段主梁应力(压应力为负,单位:MPa)



最大剪 应力
/ -50.21
容许值
210 210 120
由上图表可以看出,在施工阶段,主梁的正应力和剪应力均满足规范要
求。
(3)施工阶段变形
跨中竖向位移(单位:mm)
从上图可以看出成桥阶段跨中竖向位移为向下 96.8mm。 1.1.3.1.5纵向计算分析结果

箱梁钢支撑平台及支架计算书

箱梁钢支撑平台及支架计算书

箱梁钢支撑平台及支架计算书一、钢平台计算根据箱梁横断面图计算出各个典型截面的截面积。

横梁处(I-I)箱梁截面积为:18.3m2。

箱室端头处(II-II)箱梁截面积为:12.74m2。

箱室标准段处(III-III)箱梁截面积为:9.04m2。

根据箱梁跨径初步进行钢管桩的纵向排布,如附图。

因为实际拼装过程中,由于中间墩柱影响,纵向贝雷梁不可能连接成通长的整体,而且若各跨按照简支梁进行计算,其跨中弯矩、挠度均偏于安全,因此纵向贝雷梁验算均按简支梁计算。

从排布图中可以看出钢管桩纵向间距分为7米、6米、4米4种。

分别按照简支梁的形式,对贝雷梁进行受力计算,并计算钢管桩需要承受的承载力。

在计算荷载中,在箱梁自重荷载的基础上还需要加上以下荷载:模板、支架及贝雷梁自重:约为144kN/m;施工人员及机具产生的纵向均布荷载:1.5kPa×15.74=24 kN/m;砼浇筑产生的荷载:6.0 kPa×15.74=95kN/m;砼振捣产生的荷载2.0 kPa ×15.74=32kN/m ; 共计:295 kN/m 。

(一)贝雷梁计算 1、贝雷梁布置(1)钢管桩7米间距,顶部承受箱梁标准段自重荷载则跨中最大弯矩:M max =ql 2/8=(241+295)×72/8=3283kN ·m ; 最大支反力:Q max =ql/2=(241+295)×7/2=1876kN 。

(2)钢管桩6米间距,顶部承受箱梁标准段自重荷载则跨中最大弯矩:M max =ql 2/8=(241+295)×62/8=2412kN ·m ; 最大支反力:Q max =ql/2=(241+295)×6/2=1608kN 。

(3)钢管桩6米间距,上部承受箱梁箱室变化段自重荷载6则跨中最大弯矩:M max =2615.04kN ·m ;两端支反力:Q max1=1788.48kN ,Q max2=1698.24kN 。

钢箱梁—40 60 40钢箱梁计算书

钢箱梁—40 60 40钢箱梁计算书

1 设计要点1.1 总体设计达连坝大桥主桥为钢箱连续梁桥,跨径组合为(40+60+40)m,全长140m。

1.2 主桥上部结构设计概况(1)结构布置主桥为(40+60+40)m三跨钢箱连续梁桥,全长140m。

边中跨比为0.667。

桥梁横断面布置为:(0.5m防撞墙)+(14.75m车行道)+(0.5m防撞墙)=单幅桥总宽15.75m (2)钢箱梁主梁方案主梁采用等截面钢箱梁,单箱五室断面,桥面宽15.75m,箱宽12.0m,悬臂长1.925m。

主梁中心高度2.4m,高跨比1/25。

1.3 主桥下部结构设计概况见施工图纸。

1.4 主要材料(1)混凝土C15:承台基础垫层C30:过渡墩承台、防撞栏、桩基、主墩墩身、过渡墩墩身及盖梁C40:支座垫石(2)钢材主体结构采用Q345qD;附属结构采用Q235B;(3)支座主墩:LQZ3000GD、LQZ3000DX、LQZ3000SX;过渡墩:LQZ1500DX、LQZ1500SX;(4)伸缩缝伸缩缝:D160型伸缩缝。

2 计算依据2.1设计规范及参考资料(1)执行规范:《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)《钢结构设计规范》(GB 50017-2003)《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)(2)参考规范及文献资料:《日本道路桥示方书·同解说》《钢桥、混凝土桥及结合桥》BS5400 (1978~1982)《公路钢结构桥梁设计规范—征求意见稿》《现代钢桥》(上册)(吴冲主编 2006年4月)《公路钢结构桥梁设计规范》( 征求意见稿)《公路钢箱梁桥面铺装设计与施工技术指南》2.2技术标准(1)公路等级:双向6车道,一级公路。

35 35 45 35 35m钢箱梁计算书.

35 35 45 35 35m钢箱梁计算书.

钢箱梁计算书(2)1.结构特点上部结构采用5孔一联钢箱梁结构,桥跨布置为(35+35+45+35+35)=185m,桥面宽度为25m,单箱多室截面,道路中心线处梁高2000mm,箱宽25m。

横隔梁的布置间距为2.0m。

钢材材质为Q345C。

钢箱梁顶面设1.5%双向横坡。

桥面铺装采用4cm细粒式沥青混凝土面层和4cm中粒式沥青混凝土底层,桥面铺装层总厚度为8cm。

另设8cm钢筋砼层。

采用混凝土防撞护栏。

2.设计荷载汽车荷载:城-A级。

3.箱梁顶板板厚的确定钢箱梁的顶板板厚对全桥的经济指标影响较大,根据目前钢箱梁的设计经验和实际汽车荷载超重的影响,箱梁顶板板厚宜取14mm。

4.箱梁标准段截面5.纵肋设计横肋布置间距a=2000mm顶板纵肋布置间距b=300mm城-A车辆前轮着地宽度2g=0.25m,分布宽度:0.25+0.08*2=0.41 m城-A车辆后轮着地宽度2g=0.6m,分布宽度:0.6+0.08*2=0.76 m5.1纵肋截面几何特性1)桥面板有效宽度的确定关于桥面板的有效计算宽度,参考日本道路桥示方书的规定进行计算。

纵肋等效跨度L=0.6a=1200mm, b/2L=0.125λ=(1.06-3.2(b/2L)+4.5(b/2L)2)*b=219.1mm, 取有效宽度为210mm。

2)截面几何特性计算纵肋板件组成:1-210x14(桥面板),1-90x10(下翼缘),1-156x8(腹板)A=50.88 cm2I= 2399.5 cm4Yc=12.2 cm (距下翼缘)Wt=413.7 cm3;Wb=196.7 cm35.2纵肋内力计算1)作用于纵肋上的恒载a)纵肋自重q1=21.48*1e-4*7.85e3*1.1=18.5 kg/mb)钢桥面板自重q2=0.014*b*7.85e3=38.5 kg/mc)桥面铺装(厚8cm)q3=0.08*b*2.4e3=67.2 kg/md)砼桥面板(厚8cm)q4=0.08*b*2.6e3=72.8 kg/me)恒载合计∑q=197.0 kg/m2)汽车冲击系数(1+μ)=1+0.4=1.43)作用于纵肋上的活载纵肋反力计算图式(尺寸单位:mm)采用Midas/Civil程序计算纵肋荷载横向分配值,后轮:在0.76m宽度内布1.0 t/m的均布力时,计算得到纵肋的最大反力为0.367 t。

42m钢箱梁计算书

42m钢箱梁计算书

ES匝道钢箱梁上部结构计算书2017.11目录一、概述 (1)1.1桥梁简介 (1)1.2 模型概况 (1)1 设计规范 (1)2 参考规范 (1)3 主要材料及性能指标 (1)4 荷载 (2)二、模型概述 (3)2.1 第一体系建模 (3)2.2 第二体系建模 (4)三、结果验算 (5)3.1顶底板强度验算 (5)1 计算结果 (5)2 强度验算 (6)3.2 腹板验算 (7)1 厚度验算 (7)2 腹板强度验算 (7)3 腹板纵向加劲肋构造验算 (8)4 腹板横向加劲肋构造验算 (8)3.3 构件设计验算 (9)1 加劲肋构造验算 (9)2 受压板加劲肋刚度验算 (10)3 闭口肋几何尺寸验算 (10)4 支承加劲肋验算 (11)3.4刚度验算 (12)1 车道荷载挠度值 (12)2 正交异形板桥面顶板挠跨比 (12)3 横隔板刚度验算 (13)3.5 整体稳定验算 (13)3.6 疲劳验算 (13)四、结论 (14)一、概述1.1桥梁简介ES匝道桥为一单跨42m简支钢箱梁桥。

截面采用等截面形式,梁宽10.2m,梁高2m。

主梁线型为圆曲线,中心线位于半径R=682m的圆弧上。

顶板厚18mm,腹板和底板厚20mm,顶板U肋厚8mm,开口肋厚20mm。

材料采用Q345C材质。

图1.1典型钢箱梁横断面(mm)1.2 模型概况1 设计规范《公路工程结构可靠度设计统一标准》(GB/T 50283-1999);《公路工程技术标准》(JTG B01-2014)《公路桥涵设计通用规范》(JTG D60-2015)《公路钢结构桥梁设计规范》(JTG D64-2015)《钢结构设计规范》(GB50017-2014)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2 参考规范《道路桥示方书·同解说》(日本道路协会,平成8年12月)3 主要材料及性能指标主梁采用Q345C钢材,其主要力学性能见下表。

25-40m箱梁张拉计算书

25-40m箱梁张拉计算书

25-40m箱梁张拉计算书箱梁及预应力盖梁张拉计算书第一章:25m预制箱梁张拉计算一、概况1、设计要求(1)预应力钢束:采用高强度底松弛7丝捻制的预应力钢绞线,公称直径15.2mm,公称面积140mm2,标准强度f pk=1860Mpa,弹性模量E p=1.95*105Mpa,1000h后应力松弛不大于2.5%。

(2)箱梁混凝土达到设计强度的85%,且混凝土龄期不小于7d,方科张拉。

(3)施加预应力应采用张拉力与引伸量双控,当预应力钢束张拉达到设计张拉力时,实际引伸值与理论引伸值的误差应控制在6%以内。

(4)锚下控制力为:0.75pk二、计算数据汇总1、公称面积(mm2):As=140 mm2;2、标准强度(Mpa):f pk=1860Mpa;3、预埋金属螺旋管道每延米影响系数:K=0.0015;4、预埋金属螺旋管道每延米摩擦系数:u=0.25;5、张拉根数(个):n=2;6、超张系数:b=1.0三:计算式1、理论伸长值(mm):ΔL=P p*L/(A s*E s)2、预应力平均张拉控制力(N):P p=P*[1-ε-(K*X+ u*θ)]/( K*L+ u*θ)三、预制箱梁中跨计算步骤1、钢绞线长度计算本项目梁板钢绞线共8束,每束2根,张拉时从张拉端至计算截面孔道长度(L)mm,见下表(表1-1)张拉端至计算截面孔道长度表1-12、弧度根据设计图纸,N1-----N6切线角换算为弧度,其数值见下表(表1-2)切线角换算弧度值表1-23、钢绞线有效长度根据设计图纸钢绞线圆弧半径及对应切线角,计算钢绞线有效长度,经计算,其数值见下表(表1-3)钢绞线有效长度表1-34、1-ε-(K*X+ u*θ)经计算,其具体数值见表1-4。

1-ε-(K*X+ u*θ)值表1-45、锚下张拉控制力控制张拉应力(0.75*1860)*钢绞线截面面积(140m㎡)*张拉根数(4)*超张系数(1.0)】/根数/1000。

钢箱梁顶推计算书

钢箱梁顶推计算书

计算书一、设计依据 1.《广济北延 GY-A1 项目“钢箱梁顶推专项施工方案”(论证稿)》 2.《公路桥涵设计通用规》(JTG D60-2004) 3.《公路桥涵地基与基础设计规》(JTJ024-85) 4.《公路桥涵钢结构及木结构设计规》(JTJ025-86) 5.《公路桥涵施工技术规》(JTJ041--2000) 二、设计参数 1.箱梁自重:钢箱梁自重按 80.7kN/m 进行计算。

2、导梁自重:导梁总重为 316kN,建模时对其结构进行简化,按 14.1kN/m 进行计算。

3、其它结构自重:由程序自动记入。

4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力 F1 作用,取摩 檫系数μ为 0.1;在 11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用 力 T,同时受到墩顶摩檫力 F2 的作用,取摩檫系数μ为 0.1。

三、设计工况及荷载组合 根据施工工艺及现场的结构形式,确定荷载工况如下: 工况一:钢箱梁拼装阶段。

荷载组合为:钢箱梁自重+导梁自重+其它结构 自重。

工况二:钢箱梁顶推阶段。

在钢箱梁顶推阶段按每顶推 2.5m 为一个工况,以箱梁端头顶推至 12#墩为 最后一个工况,共 30 个工况,以此进行各墩顶的受力和导梁的受力分析,其荷 载组合为:钢箱梁自重+导梁自重。

根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。

对于 11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各 临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。

四、钢箱梁拼装阶段的受力分析 4.1 贝雷支架的计算分析 钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为 14m。

每个断面布置有四组贝雷片进行箱梁支撑,考虑 1.4 的不均匀分配系数,作用在每组 贝雷片的作用力为 F=80.7/4×1.4+2.7/3=29.2kN/m。

其计算模型及结果如下:计算模型弯矩图剪力图通 过 计 算 得 贝 雷 片 所 受 到 的 最 大 弯 矩 为 M=715.4kNm , 最 大 剪 力 为 V=204.4kN。

桥梁钢箱梁计算书

桥梁钢箱梁计算书

某钢箱梁复核计算报告苏通长江公路大桥施工图设计阶段钢箱梁合理构造与受力特性研究目录1概述 (1)1.1钢箱梁概况 (1)1.2钢梁的安装及顶推 (1)2计算模型与方法 (2)2.1计算参数 (2)2.1.1材料 (2)2.1.2计算荷载 (2)2.2荷载组合 (2)2.3计算模型 (3)3主梁内力 (4)3.1.1顶推施工阶段 (4)3.1.2(恒载+活载)组合一 (5)3.1.3(恒载+活载+支座沉降+温度)组合二 (6)4主梁应力 (8)4.1控制断面内力 (8)4.1.1顶推施工阶段 (8)4.1.2(恒载+活载)组合一 (8)4.1.3(恒载+活载+支座沉降+温度)组合二 (8)4.2截面有效宽度 (8)4.3局部稳定系数 (9)4.4控制截面应力 (10)5加劲肋验算 (13)5.1主梁顶底板加劲肋 (13)5.2主梁腹板加劲肋 (15)5.3支座加劲肋 (16)5.3.1支座反力 (16)5.3.2支座加劲肋构造 (16)5.3.3支座加劲肋验算 (17)5.3.4顶推施工加劲肋验算 (20)6中间横隔板验算 (21)6.1横隔板构造 (21)6.2横隔板的开口率 (21)6.3横隔板最小刚度 (22)7挠度 (27)7.1恒载挠度 (27)7.2活载挠度 (27)1概述1.1钢箱梁概况主梁为四跨一联的连续钢箱梁,两幅桥错孔布置,位于半径R=1190m的平面圆曲线上,跨径布置为(25+35+35+25)m,每幅桥顶面宽17.25m,箱梁顶板为单向横坡2%,箱梁中心线位置梁高 1.8m,采用单箱三室闭合截面。

桥面铺装为防水粘结层(环氧粘结层+5mm碎石覆盖)+3.0cm环氧沥青混凝土+4cm高弹改性沥青SMA13钢箱梁为正交异性板,一般截面:顶面板厚14mm,底面板厚14mm,设4道竖直腹板,厚度12mm,顶板采用U型加劲肋,厚8mm、高260mm、间距600mm,底板采用T型加劲肋,竖肋厚8mm、高120mm;水平肋厚10mm、100mm宽,腹板加劲肋厚度14mm、高度160mm,横隔板采用板结构, 间距2m,板厚为10mm。

模板-箱梁模板(碗扣式)计算书

模板-箱梁模板(碗扣式)计算书

箱梁模板(碗扣式)计算书计算依据:1、《建造施工模板安全技术规范》 JGJ162-20222、《建造施工碗扣式钢管脚手架安全技术规范》 JGJ166-20223、《混凝土结构设计规范》 GB50010-20224、《建造结构荷载规范》 GB 50009-20225、《钢结构设计标准》 GB 50017-2022一、工程属性箱梁断面图 二、构造参数底板下支撑小梁布置方式 垂直于箱梁断面 横梁和腹板底的小梁间距l 2(mm) 150 箱室底的小梁间距l 3(mm) 250 翼缘板底的小梁间距l4(mm) 250标高调节层小梁是否设置 否 可调顶托内主梁根数n2主梁受力不均匀系数ζ0.5立杆纵向间距l a (mm)600箱梁类型 B(mm) D(mm) F(mm) H(mm) 四室梁 950 1250 350 150 A(mm) C(mm) E(mm) G(mm) I(mm) 4500 1750 250 1850 1450700 1100 2000300 500 250K(mm) M(mm) O(mm)J(mm) L(mm) N(mm)支架立杆步数 9次序 横杆挨次间距hi(mm)1350 2 1200 3 1200 4 1200 5 1200 6 1200 7 1200 81200 9600横梁和腹板下立杆横向间距l b (mm) 600 箱室下的立杆横向间距l c (mm) 900 翼缘板下的立杆横向间距l d (mm) 900 模板支架搭设的高度H(m) 13.5 立杆计算步距h(mm) 1200立杆伸出顶层水平杆长度a(mm)250斜杆或者剪刀撑设置剪刀撑符合《规 范》 JGJ166-2022设 置要求箱梁外侧防护栏杆高度Hm(mm) 1200脚手架安全等级I 级箱梁模板支架剖面图 三、荷载参数风荷载参数:浙江 0.3杭州市C 类(有密集建造群 市区)0.6513.50.196省份 地区地面粗糙度模板支架顶部离建筑物地面高度(m) 单榀模板支架μst基本风压ω0(kN/m 2)风荷载高度变化系 数μz风荷载体型系数μ s 风荷载标准值 ωk (kN/m 2)ωk =ω0μz μst =0.038新浇筑混凝土、钢筋自重标准值模板及支撑梁(楞)等自重标准值G 1k (kN/m 3)25.5G 2k (kN/m 2)其它可能产生的荷载标准值0.75支架杆系自重标准值G 3k (kN/m)施工人员及设备荷载标准值 0.15 G 4k (kN/m 2)0.4Q 1k (kN/m 2)4取单位宽度面板进行计算,即将面板看做一 扁梁 ,梁宽b=1000mm ,则其: 截面惯性矩I=bt 3/12=1000×153/12=281250mm 4 截面反抗矩W=bt 2/6=1000×152/6=37500mm 31、横梁和腹板底的面板承载能力极限状态的荷载设计值:活载控制效应组合:q 1=1.1×[1.2b(G 1k h 0+G 2k +G 4k )+1.4bQ 1k ]=1. 1×[1.2×1×(25.5×1.7+0.75+0.4)+1.4×1×4]=64 .9kN/mh 0--验算位置处混凝土高度(m)恒载控制效应组合:q 2=1.1×[1.35b(G 1k h 0+G 2k +G 4k )+1.4×0.7bQ 1k ]=1.1×[1.35×1×(25.5×1.7+0.75+0.4)+1.4×0 .7×1×4]=70.395kN/m取两者较大值q=max[q 1 ,q 2]=max[64.9,70.395]=70.395 kN/m正常使用极限状态的荷载设计值:q ˊ=b(G 1k h 0+G 2k +G 4k )=1×(25.5×1.7+0.75+0.4)=44.5kN/m计算简图如下: l=150mm面板类型复合木纤维板 厚度t(mm) 15 抗弯强度设计值f(N/mm 2)15 弹性模量E(N/mm 2) 6000抗剪强度设计值fv(N/mm 2)1.6计算方式简支梁整体模板支架μstw 支架外侧模板μ s四、面板计算ωfk =ω0μz μstw =0.371 ωmk =ω0μz μ s =0. 1951.90411)、抗弯强度验算M=0. 125ql 2 =0.125×70.395×0.152=0.198kN · mσ=M/W=0. 198×106/37500=5.28N/mm 2≤f=15N/mm 2 满足要求! 2)、抗剪强度验算V=0.5ql =0.5×70.395×0. 15=5.28kNτ=3V/(2bt)=3×5.28×103/(2×1000×15)=0.528N/mm 2≤f v =1.6 N/mm 2 满足要求! 3)、挠度变形验算 ω=5qˊl 4/(384EI)=5×44.5×1504/(384×6000×281250)=0. 174mm≤[ω]=l/400=150/400=0.375mm满足要求! 2、箱室底的面板同上计算过程 ,h 0=0.6m ,l =l 3=250mm3、翼缘板底的面板同上, h 0(平均厚度)=0.475m ,l =l 4=250mm项次 抗弯强度验算 抗剪强度验算 挠度变形验算 验算值 σ=5.013N/mm 2 τ=0.3N/mm 2ω=0.4mm允许值f =15N/mm 2f v =1.6N/mm 2[ω]=l/400=250/400=0.625mm项次 抗弯强度验算 抗剪强度验算 挠度变形验算 验算值 σ=6N/mm 2 τ=0.359N/mm 2 ω=0.496mm允许值f =15N/mm 2f v =1.6N/mm 2[ω]=l/400=250/400=0.625mm 结论符合要求符合要求符合要求符合要求五、小梁计算小梁材质及类型 截面惯性矩I(cm 4) 抗弯强度设计值f(N/mm 2)抗剪强度设计值fv(N/mm 2) 1201、横梁和腹板底的小梁承载能力极限状态的荷载设计值:活载控制效应组合:q 1=1.1×[1.2b(G 1k h 0+G 2k +G 4k )+1.4bQ 1k ]=1. 1×[1.2×0.15×(25.5×1.7+0.75+0.4)+1.4×0.15 ×4]=9.735kN/mh 0--验算位置处混凝土高度(m)恒载控制效应组合:q 2=1.1×[1.35b(G 1k h 0+G 2k +G 4k )+1.4×0.7bQ 1k ]=1.1×[1.35×0. 15×(25.5×1.7+0.75+0.4)+1.4 ×0.7×0.15×4]=10.559kN/m取两者较大值q=max[q 1 ,q 2]=max[9.735,10.559]=10.559 kN/m 因此, q 静=1.1×[1.35b(G 1k h 0+G 2k +G 4k )]=1. 1×[1.35×0. 15×(25.5×1.7+0.75+0.4)]=9.912kN/mq 活=1.1×1.4×0.7bQ 1k =1.1×1.4×0.7×0.15×4=0.647kN/m正常使用极限状态的荷载设计值:qˊ=b(G 1k h 0+G 2k +G 4k )=0.15×(25.5×1.7+0.75+0.4)=6.675kN/m计算简图如下: l=l a =600mm计算截面类型 截面反抗矩W(cm 3) 弹性模量E(N/mm 2) 计算方式10号槽钢 39.7 206000 三等跨梁槽钢 198.3 205符合要求 符合要求 结论1)抗弯强度验算M =0. 1q l 2+0. 117q l 2=0. 1×9.912×0.62+0. 117×0.647×0.62=0.384kN · m静 活σ=M/W=0.384×106/(39.7×103)=9.673N/mm 2≤f=205N/mm 2 满足要求! 2)挠度变形验算 ω=0.677qˊl 4/(100EI)=0.677×6.675×6004/(100×206000×1983000)=0.014mm≤[ω]=l/400=600/400=1.5mm满足要求!3)最大支座反力计算 小梁传递最大支座反力:承载能力极限状态R max1=1.1q 静l+1.2q 活l=1.1×9.912×0.6+1.2×0.647×0.6=7.008kN 正常使用极限状态Rˊmax1=1. 1qˊl =1. 1×6.675×0.6=4.405kN2、箱室底的小梁同上计算过程 ,h 0=0.6m ,b =l 3=250mm项次 抗弯强度验算 挠度变形验算验算值 σ=6.675N/mm 2 ω=0.009mm允许值 f =205N/mm 2 [ω]=l/400=600/400=1.5mm 结论 符合要求 符合要求3、翼缘板底的小梁同上, h 0(平均厚度)=0.475m ,b =l 4=250mm项次 抗弯强度验算 挠度变形验算最大支座反力计算 R max2=4.807kN , R ˊmax2=2.714kN / /最大支座反力计算验算值允许值结论六、主梁计算σ=5.617N/mm2f=205N/mm2符合要求ω=0.007mm[ω]=l/400=600/400=1.5mm符合要求R max3=4.026kN,Rˊmax3=2. 189kN//主梁材质及类型槽钢计算截面类型10号槽钢截面惯性矩I(cm4) 198.3 截面反抗矩W(cm3) 39.7抗弯强度设计值f(N/mm2) 205 弹性模量E(N/mm2) 2060001、横梁和腹板底主梁承载能力极限状态:p =ζ Rmax1=0.5×7.008=3.504kN正常使用极限状态:pˊ =ζRˊmax1=0.5×4.405=2.203kN横梁底立杆的跨数为2、1、2跨,腹板底立杆的跨数有3跨,按三等跨计算小梁计算简图如下,l =lb=600mm1)抗弯强度验算M=0.788kN · mσ=M/W=0.788×106/(39.7×103)=19.849N/mm 2≤f=205N/mm 2 满足要求! 2)挠度变形验算ω=0.031mm ≤[ω]=l/400=600/400=1.5mm 满足要求!3)最大支座反力计算横梁和腹板底主梁传递给可调顶托的最大支座反力: R max4=15.33kN /ζ=15.33/0.5=30.66kN2、箱室底主梁同上计算过程, p =ζR max2=0.5×4.807=2.404kN ,p =ζRˊmax2=0.5×2.714=1.357kN ,l c =900mm ,按二等跨 计算。

钢箱梁—40+60+40钢箱梁计算书

钢箱梁—40+60+40钢箱梁计算书
x= 1
fy= 345
b/t 106.7
[b/t] 340.2
钢箱梁腹板局部稳定
b=2350mm
t=16mm
a=1500mm
E=210Gpa
ν=0.3
MPaMPa9.03-47.66.68
1,,
.15)1500/2350(434.5)/(434.522abk
BS5400 (1978~1982)
(上册)(吴冲 主编 2006年4月)
( 征求意见稿)
技术标准
1)公路等级:双向6车道,一级公路。
2)设计荷载:公路-I级。
3)设计基准期:100年。
4)设计安全等级:一级。
5)环境类别:I类。
6)主桥纵断面:-1.5%纵坡。
7)桥梁宽度:单幅桥宽15.75m,单幅行车道净宽14.75m。
MPa) 规范 限值 是否 满足 最大拉 最大压 最大拉 最大压
70.5 58.5 66.2 210 是 30.9 120 是
主梁刚度
主梁
位移 方向 位移值δ(cm) δ/L(计算值) δ/L (规范限值)
主跨 竖向 5.73 1/1047 1/500
竖向 2.24 1/1785 1/500
第二体系
U肋下翼缘最大拉应力
7478MPa
1)计算假定:结构横隔板间距为3.0m,箱梁腹板间距为3.2m。将U形纵肋简化为支承于主
将顶板切开,不计顶板的剪切刚度。考虑到纵肋处顶板剪力滞影响,顶板
BS5400及《公路钢结构桥梁设计规范》征求意见
3.0m多跨的单根U形纵肋及相
L= 3000 mm
、冲击系数:按自振频率选取;

钢箱梁顶推计算书

钢箱梁顶推计算书

计算书一、设计依据1.《苏州广济北延GY-A1项目“钢箱梁顶推专项施工方案”(论证稿)》2.《公路桥涵设计通用规范》(JTG D60-2004)3.《公路桥涵地基与基础设计规范》(JTJ024-85)4.《公路桥涵钢结构及木结构设计规范》(JTJ025-86)5.《公路桥涵施工技术规范》(JTJ041--2000)二、设计参数1.箱梁自重:钢箱梁自重按80.7kN/m进行计算。

2、导梁自重:导梁总重为316kN,建模时对其结构进行简化,按14.1kN/m 进行计算。

3、其它结构自重:由程序自动记入。

4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力F1作用,取摩檫系数μ为0.1;在11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用力T,同时受到墩顶摩檫力F2的作用,取摩檫系数μ为0.1。

三、设计工况及荷载组合根据施工工艺及现场的结构形式,确定荷载工况如下:工况一:钢箱梁拼装阶段。

荷载组合为:钢箱梁自重+导梁自重+其它结构自重。

工况二:钢箱梁顶推阶段。

在钢箱梁顶推阶段按每顶推2.5m为一个工况,以箱梁端头顶推至12#墩为最后一个工况,共30个工况,以此进行各墩顶的受力和导梁的受力分析,其荷载组合为:钢箱梁自重+导梁自重。

根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。

对于11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。

四、钢箱梁拼装阶段的受力分析4.1 贝雷支架的计算分析钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为14m。

每个断面布置有四组贝雷片进行箱梁支撑,考虑1.4的不均匀分配系数,作用在每组贝雷片的作用力为F=80.7/4×1.4+2.7/3=29.2kN/m。

其计算模型及结果如下:计算模型弯矩图剪力图通过计算得贝雷片所受到的最大弯矩为M=715.4kNm,最大剪力为V=204.4kN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.工程概况 (1)2.结构计算分析模型 (1)2.1.主要规范标准 (1)2.2.主要材料及力学参数 (2)2.3.计算荷载取值 (2)2.4.边界条件 (3)2.5.计算模型 (3)2.6.荷载组合 (4)3.计算结果 (4)3.1.结构成桥内力图 (4)3.2.结构成桥应力验算 (7)3.3.主梁刚度验算 (8)3.4.支座反力 (9)3.5.支座部位局部承压计算 (11)3.6.腹板局部稳定计算 (13)3.7.底板局部稳定验算 (13)4.结论 (15)1.工程概况本项目跨径组合为35+50+35 米。

上部结构箱梁梁高2.0 米(箱梁内轮廓线高度)。

顶面全宽13.0 米,两侧各设2.25 米宽挑臂,箱梁顶底板设6.0%横坡,腹板间距布置为2.8+2.9+2.8 米。

箱梁顶板厚16 毫米,下设“U”形和板式加劲肋,“U”形加劲肋板厚8 毫米,板式加劲肋160×14 毫米;箱梁底板厚14 毫米,设“T”形加劲肋,加劲肋腹板120×8 毫米,翼缘100×10 毫米,间距300 或350 毫米;腹板厚12 毫米,设三道140×14 毫米板式加劲肋,各加劲肋除支承隔板处断开与支承隔板焊连外,其余加劲肋均穿过横隔板或挑臂并与之焊连。

普通横隔板间距约3 米,厚10 毫米,中部挖空设100×10 毫米翼缘。

桥台简支处支撑隔板板厚20 毫米,桥墩连续处支撑隔板板厚30 毫米,支撑隔板为围焊。

简支处隔板四角不设焊缝通过的切口,保证整个钢箱梁安装完成后的气密性;其他横隔板四角均设置焊缝通过的切口。

挑臂为“T”形截面,腹板厚10 毫米,下翼缘300×14 毫米。

2.结构计算分析模型2.1.主要规范标准.(1)《城市桥梁设计规范》(CJJ 11-2011)(2)《公路桥涵设计通用规范》(JTG D60-2004)(3)《公路圬工桥涵设计规范》(JTG D61-2005)(4)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(5)《公路桥涵地基与基础设计规范》(JTG D63-2007)(6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)(7)《混凝土结构设计规范》(GB50010-2010)(8)《公路桥涵施工技术规范》(JTG/T F50-2011)(9)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008)(10)《公路桥涵钢结构及木结构设计规范》(JTJ025—86)(11)《钢结构工程施工质量及验收规范》(GB50205-2001)(12)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)2.2.主要材料及力学参数Q345qD:弹性模量E=2.1×105MPa剪切模量G=0.81×105MPa轴向容许应力:200MPa剪切容许应力:120MPa表2-1 钢材容许应力表2.3.计算荷载取值(1)结构设计安全等级:一级(2)永久作用自重:实际结构建立计算模型,由程序自动计算,材料容重取78.5kN/m3;横隔板:横隔板处按节点荷载加载,支点截面45kN,其余隔板处15kN;二期:8cm沥青混凝土铺装:25×0.08×13=26kN/m,墙式护栏按10kN/m计算,共计36kN/m。

(3)可变作用1)汽车荷载效应车道荷载:公路—I级车道荷载;冲击系数:车道荷载冲击系数根据《公路桥涵设计通用规范》(JTG D60-2004)第4.3.2条取值计算。

2)整体温度作用按结构整体升温25℃、降温25℃计算。

3)梯度温度作用2.4.边界条件表2-2 支座布置表墩号P13 P14 P15 P16位置内侧双向单向双向双向外侧单向固定单向单向2.5.计算模型采用大型有限元分析软件Midas Civil 2013 ( V8.2.1 R1)。

上部结构为35+50+35m连续钢箱梁结构,梁高2米,采用单箱三室箱形截面,桥梁宽度13米,采用三维梁单元建立单梁模型,全桥共计55个节点,46个单元,如图2-1所示。

图2-1 有限元计算模型图2-2 箱梁标准横断面(单位mm)2.6.荷载组合表2-3 荷载组合表荷载组合整体升温整体降温梯度升温梯度降温移动荷载恒荷载sLCB1 1 1sLCB2 1 1 1 1sLCB3 1 1 1 1sLCB4 1 1 1 1sLCB5 1 1 1 1sLCB6 1sLCB7 1 1sLCB8 1 1 1 1sLCB9 1 1 1 1sLCB10 1 1 1 1sLCB11 1 1 1 1sLCB12 1 3.计算结果3.1.结构成桥内力图3.1.1.成桥阶段恒载主梁内力图图3-1成桥阶段主梁恒载弯矩图(单位: kN-m)图3-2成桥阶段主梁剪力图(单位: kN)3.1.2.活载作用下主梁内力图图3-3车道荷载作用主梁弯矩包络图(单位: kN-m)图3-4车道荷载作用主梁剪力包络图(单位: kN) 3.1.3.基本组合作用下主梁内力图图3-5基本组合弯矩包络图(包络)(单位: kN-m)图3-6基本组合剪力包络图(包络)(单位: kN)3.2.结构成桥应力验算3.2.1.成桥阶段主梁正应力验算图3-7主梁上缘正应力图(包络)(单位: MPa)图3-8主梁下缘正应力图(包络)(单位: MPa)由以上应力图知,单梁计算截面上缘最大压应力-42.8MPa,最大拉应力62.9MPa;下缘最大压应力-76.1MPa,最大拉应力84.4MPa。

Q345钢的容许正应力210MPa,主梁强度满足规范要求。

3.2.2.成桥阶段主梁剪应力验算图3-9主梁剪应力图(包络)(单位: MPa)由以上应力图知,单梁计算截面最大剪应力45.3MPa。

Q345钢的容许剪应力120MPa,主梁抗剪强度满足规范要求。

3.3.主梁刚度验算3.3.1.挠度验算结构恒载及汽车荷载作用下,空间曲线单梁挠度如下图:图3-10恒载作用主梁最大挠度图(单位: mm)图3-11移动荷载作用主梁最大挠度图(单位: mm)由以上位移图知,汽车荷载作用下单梁计算最大挠度23.7mm,挠度跨度比为23.7/50000=1/2110。

规范容许挠度跨度比为L/600,故主梁刚度满足规范要求。

3.3.2.预拱度计算图3-12恒载+静活载作用主梁最大挠度图(单位: mm)由图3-12可知,主梁在恒载和静活载载作用下的最大挠度为55mm>L/1600=50×1000/1600=31.25mm,需设置预拱度。

按照公路钢桥涵钢结构及木结构设计规范(JTJ 025—86)1.1.6的要求计算预拱度,预拱度值按结构自重和1/2可变荷载频遇值之和采用。

图3-13预拱度设置示意图(单位: mm)3.4.支座反力图3-14恒载作用下支座反力(单位:kN)图3-15移动荷载作用下支座最小反力(单位:kN)图3-16移动荷载作用下支座最大反力(单位:kN)图3-17基本组合作用下支座最小反力(单位:kN)图3-18基本组合作用下支座最大反力(单位:kN)图3-19支座布置图由以上图示可以看出,在荷载作用下,支座未出现脱空现象且支反力均小于所选支座承载力,支座满足要求。

3.5.支座部位局部承压计算支座处横隔板及加劲肋局部承压计算公式如下:[]vb bs eb DRA B tσσ=≤+式中:[σb]——局部承压容许应力;R v——支座反力;A s——横向加劲肋净面积;t D——横隔板厚度;B eb——横隔板有效宽度,考虑支点板的45°扩散作用。

B ——支座垫板厚度;t f——下翼板厚度。

图3-20支座处局部承压及竖向应力计算图式按以上计算公式,分别对中支点和端支点的局部承压进行计算,结果见下表。

表3-1中支点局部承压计算项目单位数值支反力Rv kN 4247横向加劲肋净截面积As mm248560横隔板厚度td mm 20支座垫板宽度B mm 900下翼板厚度tf mm 14表3-2端支点局部承压计算支座处横隔板及加劲肋竖向应力计算公式如下:2[]vc c s ev DR A B t σσ=≤+式中:[σc ]——轴心受压容许应力;B ev ——横隔板竖向应力有效宽度,考虑支点板的45°扩散作用。

按以上计算公式,分别对中支点和端支点的竖向应力进行计算,结果见下表。

表3-3中支点竖向应力计算表3-4端支点竖向应力计算3.6.腹板局部稳定计算按照《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)第1.5.10条,对于Q345钢,当腹板高厚比60<h0/δ≤140时,仅需设置竖向加劲肋,间距a应满足下式计算要求,且不得大于2m。

≤aδ——腹板厚度,以mm计;τ——验算板梁处的腹板平均剪应力,以MPa计。

根据上表,本钢箱梁支点处和跨中处的腹板高厚比h0/δ为166.67,均大于60,因此需设置竖向加劲肋。

由上表得,支点处和腹板处的竖向加劲肋最大间距分别为1.7m和3.3m。

本钢箱梁设置了横隔板,相当于竖向加劲肋,在支点处的间距为1.5m,跨中处的间距为3.0m,均小于计算值,且小于2m。

故本桥腹板局部稳定满足规范要求。

另外本钢箱梁腹板上设置了两道纵向水平加劲肋,增加了腹板的局部稳定性,以作为安全储备。

3.7.底板局部稳定验算构件的长细比:λx L r x:=λx 46.166=λy L r y:=λy 41.405=构件的换算长细比:α 1.8:=h 350:=λe αL r x ⋅h r y⋅⋅:=λe 13.838=中心受压杆件的容许应力折减系数:φ10.6550.7330.655-7060-λx 60-()⋅+:=φ10.547=构件只在一个主平面内受弯时的容许应力折减系数:φ2 1.0:=整体计算中板的纵向最大压应力(M pa ):σn 84.4:=一根纵肋及其对应的翼缘板所构成的"T"型断面所承受的轴向压力(N):N A m σn⋅:=考虑弯矩因构件受压二增大所引用的值:μ11n 1N ⋅λx2⋅2-:=μ10.852=1、 面板及加劲肋局部稳定验算底板板厚14mm ,最大横隔板间距L=3000mm 。

钢材的弹性模量(M P a):E 2.1105⋅:=钢材的容许应力(M P a):σarrow 191.2:=构件受压翼缘计算长度(取最大横梁的腹板间距):L 3000:=一根纵肋及其对应的桥面翼缘板所构成的"T"型断面绕X-X,Y-Y 轴的抗弯惯性矩(m m 4):I x 26012693.3333:=I y 32338453.3333:=一根纵肋及其对应的桥面翼缘板所构成的"T"型断面的截面面积(m m 2):A m 6160:=中性轴距加劲肋下缘距离(m m ):y x 105.13:=中性轴距桥面板上缘距离(m m ):y s 38.87:=一根纵肋及其对应的桥面翼缘板所构成的"T"型断面绕X-X,Y-Y 轴的回转半径(m m ):r x I x A m:=r y I y A m:=r x 64.983=压杆容许应力安全系数:n 1 1.7:=PB1"稳定性满足要求"=φ1σarrow⋅σ1.232=PB1"稳定性满足要求"σφ1σarrow⋅≤if "不满足要求"otherwise:=桥面板在两个横梁之中位置处稳定性验算:σ84.899=σN A mφ1μ1φ2⋅MW s ⋅+⎛⎝⎫⎪⎭:=桥面板在两个横梁之中位置处稳定计算应力(M pa):W s 6.692105⨯=W s I x y s:=W x 2.474105⨯=W x I x y x:=一根纵肋及其对应的翼缘板所构成的"T"型断面绕X-X 轴的计算截面抵抗矩(m m 4):作用在一根纵肋及其对应的翼缘板所构成的"T"型断面上M N e 0⋅:=纵肋附加偏心弯矩值(N*m m):e 01:=纵肋附加偏心矩mm ()4. 结论根据以上结果可知,结构的强度、刚度等均能满足规范要求。

相关文档
最新文档