史密斯圆图剖析
25史密斯圆图分析
圆心在 Re
1 的直线上
x =0;圆心(1, ∞ )半径= ∞,实轴。
Ф=cons
t
x圆
r圆
Γ圆
d.复平面上等衰减园
实际传输线有耗:反射系数Γ与阻抗仍然保持一一对应 关系,仅多了衰减因子e-2αd即:
|Γ(d)|=|ΓL|e-2αd 随d 增加而下降,实际数值可在e-2αd 为半径的同心园(圆图 左边标尺)上读出。
归一化阻抗(或导纳)的实部和 虚部的等值线簇;
z(d) Z (d) r(d) jx(d) z e j Z0
反射系数的模和辐角的等值线簇。
(d) Re (d) jIm(d) (d) e j(d)
x r =const
r x =const
Im
ф(d)=const
Re
Γ(d)=const
圆图就是将两组等值线簇画在同一张图上即可。
VL VL (1 L ) 2VL
IL IL (1
开路点
L)
0
对应电压驻 波波腹点
短路点 电抗圆与负实轴的交点B
VL VL (1
1,VSWR , z 0
(d) (d) e j(d)
3. 把阻抗(或导纳)和驻波比关系套覆在 圆上
总之Smith圆图的基本思想可描述为:消去特征参数Z0, 把β归于Γ的相位,工作参数Γ为基底,套覆zin(d)和ρ。
圆图:是一种计算阻抗、反射系数等参量简便的图解方法。
二、圆图的基本概念
由于阻抗与反射系数均为复数,而复数可 用复坐标来表示,因此共有两组复坐标:
圆图所依据的关系为: z(d) Z(d) 1 (d) Z0 1 (d)
或
(d) z(d) 1 z(d) 1
存在一一 对应关系
smith_chart(史密斯圆图)
史密期圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+其中00arctan(/)L v u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000Lj j z in u v in Z Z j eeZ Z θβ--Γ==Γ+Γ=Γ+其中0Γ=arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
Smith圆图详解
并联电感:沿导纳圆逆时针转,即从A点转到B点。从A点到B点转的长度为0.2-0.5=-0.3。即相当于外加 一个j*-0.3电纳后,即可转到B点。 并联的电感量为L,则其电抗为jwL,归一化为jwL/Z0,其电纳为Z0/jwL,则有: Z0/(jwL)=j*-0.3=>L=Z0/(0.3w)=50/(0.3*2*3.14*2.4*109)=11.06nH 串联电感:沿电阻圆顺时针转,即从B点转到C点。从A点到B点转的长度为0-1.22=-1.22。即相当于外加 一个j*-1电抗后,即可转到C点。 串联的电容量为C,则其电抗为1/jwc,归一化为1/jwcZ0,则有: 1/(jwcZ0)=j*-1.22=>c=1/(1.22wZ0)=1/(1.22*2*3.14*2.4*109*50)=1.08pF
m2 freq= 3.000GHz VSWR1=2.618
2.6180340
m3
S(1,1)
2.6180340
VSWR1
m3 freq= 10.00GHz S(1,1)=0.447 / 26.565 impedance = Z0 * (2.000 + j1.000)
2.6180340
m2
2.6180340
Smith 圆图——ADS验证
m2 freq=2.400GHz dB(S(1,1))=-37.839
-15
-20
-25
dB(S(1,1))
-30
-35
m2
-40
m1 freq=2.400GHz S(1,1)=0.013 / -160.338 impedance = Z0 * (0.976 - j0.008)
转换为dB为: 20Log|Γ|=20Log0.447=-7dB 回波损耗为:RTN LOSS=-20Log|Γ|=7dB 驻波比: SWR=(1+0.447)/(1-0.447)=2.6
通俗讲解史密斯圆图
不管这是今天1、是2、为3、干1、是该图“在我史密当中管多么经典的射是什么东东?天解答三个问题是什么? 为什么? 干什么?是什么?表是由菲利普我能够使用计算密斯图表的基本的Γ代表其线射频教程,为什题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。
数(reflection coe 史密斯圆图白的呢?让想理39年发明的,当式来表达数学上efficient)”,不再懵逼理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。
懵逼。
作。
史密斯曾说说过,即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。
当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。
简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
2、为什么?我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。
我在表述这个“掰弯”的过程,你就理解,这个图的含义了。
(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)现在,我就掰弯给你看。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
2.1、首先,我们先理解“无穷大”的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
史密斯圆图的详解
本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
图1. 阻抗和史密斯圆图基础图1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。
Smith 圆图—原理与分析
Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
3_smith圆图
XL
先进行归一化,然后 再确定电长度dmin/ 、 dmax/ 。 波节
ji
dmax、
r
RL
波腹 dmin
注意:顺时针旋转
例题
例3、已知负载归一化阻
抗 Z L,求VSWR和L。
Rmax VSWR
ji
XL
例题
例1、已知 Z L 和距离l,求 Zin 。
ji
Rin
XL
RL X in
rl Leabharlann 例题例2、负载阻抗 Z L 30 j 60 与长为d=2cm的50欧传输线相 连,工作频率为2GHz。求输入阻抗 Zin 。假定相速度是光 速的50%。 解题思路: ZL Z0 j 71.56o L Z Z 2 / 5e L 0 2 f 2 83.77 m1 vp
X 与 1 x 圆与单位圆的交 点关于虚轴对称; X 与 1 x 圆与单位圆的 交点关于原点对称;
x0
r
x
x 0.5
x 1
x 2
3.2.2 阻抗圆图
3.2.2 阻抗圆图
Smith阻抗圆图的特点: 上半圆内的阻抗为感抗, X L 0 下半圆内的阻抗为容抗, X C 0 实轴上的阻抗为纯电阻;
1 r
2
2 i
j
1 r
2i
2
i2
电阻圆
r 1 2 r i 1 r 1 r
2 2
2
2
圆心坐标
r , 0 ,半 1 r
径
1 1 r。
SMITH圆图分析与归纳
《射频电路》课程设计题目:SMITH圆图分析与归纳系部电子信息工程学院学科门类工学专业电子信息工程学号姓名2012年6月25日SMITH 圆图分析与归纳摘 要Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。
在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。
Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。
因而Smith 圆图又分为阻抗圆图和导纳圆图。
关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆一 引言通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算,二 史密斯圆图功能分析2.1 史密斯圆图的基本基本知识史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=ΓΓ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。
当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。
R 为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。
Smith圆图模板及详细介绍
向负载方向 向信号源方向
0 0.5 0.25
0.125 0.375
0.8 0.6 0.4 0.2
0
0.125 0.375
二、Smith圆图的基本构成
2. 套覆阻抗图
已知
Z
z
1 1
z z
设 且代入,有
z r j i
Z
z
r
jx
r
jx
1 r 1 r
ji ji
1
2 r
i2
1 r 2 i2
0
210
330
240
300
270
反射系数图最重要的概念是相角走向。
(z' ) l e j2z'
式中Z 是向电源的。因此,向电源是反射系数的负角
方向;反之,向负载是反射系数的正角方向。
线上移动的距离与转动的角度之间的关系为
2z 4 z
由此可见,线上移动长度 时,对应反射系数矢量
2
转动一周。一般转动的角度用波长数(或电长度) z
j
2i
1 r 2
i2
二、Smith圆图的基本构成
分开实部和虚部得 两个方程
r
1 r2 i2 1 r 2 i2
x
1
2i
r 2
i2
先考虑上式中实部方程
r 2rr rr2 ri2 1 r2 i2
1 r r2 2rr 1 r i2 1 r
r2
2r
1 r2
r
r 1
r
2
i2
0
0
0
1
1
1
2
3
3
4
1
0
2
1
第3章 Smith圆图资料讲解
和
r
12
i
1 x
2
1 x
2
一般形式: r a2 i b2 c2
其中a,b表示沿实部和虚部Γ轴的位移,c是圆的半径。
r = 0,r2 i2 1 圆心在原点, 半径为1
r = 1,r 1/ 22 i2 1/ 22
x→∞, r 12 i2 0 x =1, r 12 x 1 1
圆心都在 Γ=r +1 的 垂直线上
r→∞ r 12 i2 0
x =0, r 12 x x 越大
随着r 增加,圆心沿着+Γ 轴r 从0 移到+1 x =-1, r 12 x 1 1 半径越小
x 等电阻线(r=常数)r=0Γx +1
r=1/3 r=1
r
r=3
x 等电抗线(x=常数) Γx +1
分别与50Ω传输线相连,找出反射系数、SWR圆和回波损耗。
解:azL
1,0
zL zL
1 1
0
RL 20log 0
SWR 1 0 1 1 0
bzL 0.97,0 0.015
RL 36.5,SWR 1.03
zL=1.5+-j0.5
zL=0.97
SWR=5.05
zL=0.2-j0.1 SWR=1.03 SWR=1.77
开始顺时针旋转的度数即为2β d(β=360 /λO)。
例3.5 工作在3GHz终端开路的50Ω传输线,vp=0.77c,求出形成 2pF和5.3nH的线长度。
解:根据3.16和3.18式:d1=13.27+n38.5mm,d2=32.81+n38.5mm xC=0.53,xL=2,λ=vp/f=77mm,d1=13.24mm,d2=32.8mm
Smith 圆图—原理与分析
2-5 Smith 圆图微波工程,即传输线工程问题,主要讨论(最基本的运算是)工作参数ρΓ, Z, 之间的数量关系和传输匹配问题――怎样传输得好,没有反射,而没有反射传输就是匹配。
一般是在已知特征参数βZ和长度l 的基础上进行。
、Smith圆图正是把特征参数和工作参数形成一体,用图论的方法解决工程问题。
它是一种专用Chart,自三十年代出现以来,已历经六十年而不衰,可见其简单,方便和直观.一、Smith图圆的基本思想Smith圆图,亦称阻抗圆图。
其基本思想有三条:1. 归一化思想――特征参数归一化特征参数归一思想,是形成统一Smith圆图的最关键点,它包含了阻抗归一和电长度归一。
阻抗千变万化,极难统一表述。
现在用Z0归一,统一起来作为一种情况加以研究。
在应用中可以简单地认为Z0=1。
电长度归一不仅包含了特征参数β,而且隐含了角频率ω。
由于上述两种归一使特征参数Z0不见了;而另一特征参数β连同长度均转化为反射系数Γ的转角。
――什么阻抗都通用,什么波长都能用。
2. 反射系数Γ作基底①以系统不变量|Γ|作为Smith圆图的基底――它是一个有限量,②在无耗λ为一个周期。
所传输线中,|Γ|是系统的不变量,③Γ是频率的周期量,以2以由|Γ|从0到1的同心圆作为Smith圆图的基底,使我们可能在一有限空间表示全部工作参数Γ、Z(Y)和ρ。
ϕϕϕβj l j l z j l e e e z l ||||) ()2( 2Γ=Γ=Γ=Γ--θ的周期是1/2λg 。
这种以|Γ|圆为基底的图形称为Smith 圆图。
3. 套覆上jx r Z +=――――把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。
这样,Smith 圆图的基本思想可描述为:消去特征参数Z 0,把β归于Γ相位;工作参数Γ为基底,套覆Z(Y)和ρ。
二、Smith 圆图的基本构成1. 反射系数Γ图为基底图 7-1 反射系统Γ图反射系数图最重要的概念是相角走向。
构成史密斯阻抗导纳圆图课件
比例尺的确定
根据实际需要,选择合适 的比例尺,以便更好地表 示阻抗导纳值。
数据点的选择
在选择数据点时,应尽量 选择具有代表性的数据点 ,以便更好地反映实际情 况。
04 史密斯阻抗导纳圆图的分 析方法
阻抗导纳的转换分析
阻抗导纳转换公式
通过阻抗导纳转换公式,将阻抗 转换为导纳,或将导纳转换为阻 抗,以便在圆图上进行表示和分 析。
在其他领域的应用
音频处理
史密斯阻抗导纳圆图可以用于音频处理中,通过阻抗和导纳的分析,可以对音频信号进行更好的处理和传输。
生物医学工程
在生物医学工程中,史密斯阻抗导纳圆图可以用于生物电信号的分析和处理。通过阻抗和导纳的测量和分析,可 以对生物电信号进行更好的理解和应用。
03 史密斯阻抗导纳圆图的绘 制方法
转换方法
介绍如何使用阻抗导纳转换公式 进行转换,并说明转换过程中需 要注意的事项和可能出现的误差 。
圆图上的阻抗导纳分析
圆图上的阻抗导纳表示
介绍如何在圆图上表示阻抗和导纳,包括实部和虚部的表示方法,以及在圆图上的位置和大小。
圆图上的阻抗导纳分析方法
介绍如何通过观察圆图上的阻抗和导纳,分析电路的频率响应、输入输出阻抗以及电路的稳定性等。
作用
史密斯阻抗导纳圆图主要用于分析和设计射频和微波电路, 如滤波器、匹配网络、放大器等,通过观察圆图上的点可以 快速了解电路的性能,并进行相应的调整和优化。
圆图的基本构成
01
02
03
04
实部轴
表示阻抗或导纳的实部,单位 为欧姆(Ω)。
虚部轴
表示阻抗或导纳的虚部,单位 为欧姆(Ω)。
圆心
表示纯实数或纯虚数的点,即 阻抗或导纳值为0的点。
Smith 圆图—原理与分析
Smith 圆图—原理与分析一、引言Smith 圆图是一种用于分析和解释市场经济中的价格和数量关系的工具。
它由经济学家Adam Smith提出,被广泛应用于经济学和市场研究领域。
本文将介绍Smith 圆图的原理和分析方法,并通过实例进行说明。
二、Smith 圆图的原理Smith 圆图的核心原理是供给和需求的交互作用决定了市场价格和数量的均衡。
供给曲线表示生产者愿意以不同价格提供的商品数量,需求曲线表示消费者愿意以不同价格购买的商品数量。
当供给和需求曲线相交时,市场达到均衡状态,即供给量等于需求量,价格也达到了均衡价格。
三、Smith 圆图的分析步骤1. 收集数据:首先,需要收集相关商品的供给和需求数据。
可以通过市场调研、统计数据等方式获取。
2. 绘制供给曲线:根据收集到的供给数据,绘制供给曲线。
横轴表示商品的价格,纵轴表示供给的数量。
通常情况下,供给曲线是向上倾斜的,即价格上升时,供给数量也会增加。
3. 绘制需求曲线:根据收集到的需求数据,绘制需求曲线。
横轴表示商品的价格,纵轴表示需求的数量。
需求曲线通常是向下倾斜的,即价格上升时,需求数量会减少。
4. 确定均衡点:通过观察供给曲线和需求曲线的交点,确定市场的均衡点。
交点的横坐标即为均衡价格,纵坐标即为均衡数量。
5. 分析结果:根据均衡点的位置,可以分析市场的供需关系。
如果均衡点位于供给曲线和需求曲线的中间位置,说明市场供需相对平衡;如果均衡点偏向供给曲线一侧,说明供给过剩;如果均衡点偏向需求曲线一侧,说明需求不足。
四、实例分析假设我们研究某个市场中的苹果价格和数量关系。
根据收集到的数据,我们绘制了供给曲线和需求曲线,并找到了均衡点。
根据我们的数据和绘制的曲线,我们观察到均衡点位于供给曲线和需求曲线的中间位置。
这意味着市场供需相对平衡,供给量等于需求量,价格也达到了均衡价格。
进一步分析发现,如果苹果价格上升,供给量会增加,而需求量会减少。
如果苹果价格下降,供给量会减少,而需求量会增加。
Smith(史密斯)圆图阻抗匹配
2
2 2
等归一化电阻圆方程
2
1 1 2 a 1 b X X
等归一化电抗圆方程
归一化电阻圆
j b
R0
a=1
R 0.5
R 1
电流反射系数 与导纳的关系
两个公式在形式上是完全相同的,所以导纳 圆图与阻抗圆图在图形坐标的数值、符号和曲线 形状上是相同的,可以把阻抗圆图当作导纳圆图 来使用,但是图上各点所代表的物理含义要作不 同的解释。
1、导纳圆图的特点
' j b
B0
B 0.5
B 1
容性
G 0.5
(0,0) 开路点
2 2 z ' tan1 a b
j b 向电源 135 180 180 135 向负载 90
电刻度 起点
反射系数相角射线方程
特点:
45 a 0
90
z'变化 /4 ,变化, z'变化 /2 , 变化2,故绕圆一周相当于考察 点在线上移动/2。 旋转方向:向电源移动,z'增加, 顺时针旋转;向负载移动,z'减小, 逆时针旋转。
(1,0)
匹配点
G 1
(,) 短路点 电流波腹 Gmax=S
'a
电流波节 Gmin=K B 0.5
B0
B 1
导纳圆图使用原则: 同一张圆图,即可以 当作阻抗圆图来用, 也可以当作导纳圆图 来用,但是在进行每 一次操作时,若作为 阻抗圆图用则不能作 为导纳圆图。
感性
Y ( z ') G( z ') jB( z ')
Smith圆图详解知识分享
S(1,1)
Smith 圆图——ADS验证
m1 freq=2.400GHz S(1,1)=0.013 / -160.338 impedance = Z0 * (0.976 - j0.008)
m1
freq (2.000GHz to 3.000GHz)
VSWR1
dB(S(1,1))
m2 freq=2.400GHz dB(S(1,1))=-37.839
以实轴中心为原点,画圆,使负载点 在圆上。圆与实轴左边的那个交点上, 画一条直线下来。
从Smith 圆图中读参数_2
由上图可以看出: 驻波比SWR=2.6 回波损耗:RTN LOSS=7dB 反射系数: |Γ|=0.44
从Smith 圆图中读参数_3
在smith图中找到 负载点,如红点所 示。
通过实轴中心与负 载点画一条直线, 直线与相位圆相交 于紫色点,读出该 点相角约为26.2度
freq, GHz
m3 freq= 10.00GHz S(1,1)=0.447 / 26.565 impedance = Z0 * (2.000 + j1.000)
VSWR1
2.6180340
m2 freq=3.000GHz VSWR1=2.618
2.6180340
2.6180340
m2
2.6180340
2.6180340
Smith 圆图_ADS验证
dB(S(1,1))
-6.9897000
m1 freq=3.000GHz dB(S(1,1))=-6.990
-6.9897000
-6.9897000
m1
-6.9897000
-6.9897000
-6.9897000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z点L 沿等Γ线旋转
20lg 20lg(|V |max / |V |min ) 0 (6)
2
电压驻波最小点距负载 | G | 1/ 3 圆
0.10m
0.2λ
0
zmin 1.55
以|V |m点in 沿ρ=2的圆反时针 (向负载)旋转0.2λ
0.5
zL
zL 1.55 j0.65
j0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:K 1 1 0.4 s 2.5
zin r 0.4
找到A点
逆时针方向旋转
电刻度0.2 得B点 zl 1.67 j1.04
Zl zlZc (1.67 j1.04) 50 (83.5 j52)
例7:一传输线特性阻抗Zc为50Ω,终端负载Zl=(100-j75)Ω, 问:在距终端多么远处向负载看去输入阻抗为Zin=50+jX。
例3 在Z0为50Ω的无耗线上测得 VSWR为5,电压驻波最小点 出现在距负载λ/3处,求负 载阻抗值。
解:电压驻波最小点:
rmin K 1/VSWR 1/ 5 0.2 在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的 圆反时针旋转转λ/3得到 zL 0.77 j1.48 , 故得负载阻抗为 ZL 38.5 j74()
GIm GR x
2
1 x
2
GIm
上式为归一化电抗的轨迹
方程,当x等于常数时,
GRe
其轨迹为一簇圆弧;
圆心坐标 1, 1
x
在 Gre 的1直线上
半径 1
x
x =∞;圆心(1,0)半径=0
x =+1;圆心(1,1)半径=1
x =-1;圆心(1,-1)半径=1
x =0;圆心(1, ∞ )半径= ∞
B点距终端为: (0.329 0.291) 0.038
B处的输入阻抗为:
Zin zinZc (1 j1.28) 50 (50 j64)
C点距终端为:(0.5 0.291 0.171) 0.38
C处的输入阻抗为:
Zin zinZc (1 j1.28) 50 (50 j64)
jGi
Gr
复平面上的反射系数圆
ZL
是一簇|G|≼1同心圆。
r圆
GRe
r 1
r
2
GI2m
1 1
r
2
上式为归一化电阻的轨迹方程, 当r等于常数时,其轨迹为一簇圆;
圆心坐标 r ,0
1 r
半径
1
1 r
r =∞;圆心(1,0) 半径=0 r =1;圆心(0.5,0)半径=0.5 r =0;圆心(0,0) 半径=1
G 1 0.444 1
63.360
8
例2 已知: Z 0 50
Z L 100 j50
求:距离负载0.24波长处的Zin.
解
zL
ZL Z0
2
j
查史密斯圆图,其对应的
电波长数为 l 0.213
0.24
ZL
向电源顺时针旋转0.24(等半径) zin 0.42 j0.25 则此处的输入阻抗为: Zin zin Z0 21 j12.5
0.337 zL 0.57 j1.5
ZL 28.5 j75
zL 0
0.337
j1.5
zL
0.57
0.5
z SC in
j2.12
zL
zOC in
j0.472
zin
j1.4
例5
半波长or波长?
12
电压波 节点
G
13
例6:在特性阻抗Zc为50Ω的传输线上,测得驻波比s=2.5, 距终端负载0.2λ处是电压幅值的波节点,试求终端负载Zl。
jGb'
B0
导纳圆图使用原则:
B 0.5
容性
同一张圆图,既可以当
作阻抗圆图来用,也
B 1
G 0.5
G 1
(0,0)
(1,0)
开路点
匹配点
(,) G'a 短路点
可以当作导纳圆图来 用,但是在进行每一 次操作时,若作为阻
电流波节 Gmin=K B 0.5
B 1
电流波腹 Gmax=S
抗圆图用则不能作为 导纳圆图。
Smith圆图
史密斯圆图(Smith chart)是利用图解法来求 解传输线上任一点的参数。
在传输线上任一参考面上定义三套参量:
①反射系数Γ; ②输入阻抗Zin;
③驻波系数VSWR
两组复坐标:
1.归一化阻抗的实部和虚部 的等值线簇;
2.反射系数的模和辐角的 等值线簇。
x r =const r x =const
例4 测量获得
Z SC in
j106,ZiOnC
j23.6
终端接负载后输入阻抗 Zin 25 j70 求负载阻抗?
解:Z0
Z Z SC OC in in
50
z SC in
j2.12
向电源
d
2
arctg
(
z SC in
)
0.18
zin 0.5 j1.4 向负载波长数
0.157 0.18
解: 归一化的负载阻抗
zl
Zl Zc
100 j75 50
2
j1.5
在圆上找到zl对应的点A 对应的波长数为0.291λ
归一化的输入阻抗
zin
Zin Zc
50 jX 50
1
jX
在r=1的电阻图上
以0点为圆心,0A为半径作一圆,与r=1的圆相交于B和C两点
B : 0.329λ C : 0.171λ
阻抗圆图的特点
(0,0) 短路点
电压波节 Rmin=K
jGb
(1,0)
匹配点
X 0 容性
上半圆阻抗为感抗,
X 0
感性
下半圆阻抗为容抗;
实轴为纯电阻;
单位圆为纯电抗;
(,) Ga 开路点
实轴的右半轴皆为电压
波腹点
电压波腹 左半轴皆为电压波节点
Rmax=
匹配点、开路点和短路 点。
导纳圆图的特点
感性
B0
Y (z ') G(z ') jB(z ')
Smith圆图的应用
例1 已知输入阻抗 Z ,1求j 该点反射系数 和ρG
第一步:定位
第二步:做等反射 系数圆与实轴右半 轴交点,读驻波比
第三步:读反射 系数幅度、辐角
i 0.088
1+j
0 2.60
r
利用等反射系数 G 对系统处处有效 2.60
例8 在特性阻抗为50Ω传输线终端接一未知负载时测得
| V |max 0dB,| V |min 出现6d在B,0| V.10|mmin 0.35m、0.6m、0.85m,
而当终端为短路线代替未知负载时, 在 0、 |V |min
0.25m,0.50m和0.75m处,求工作频率和负载阻抗
解: / 2 0.25m f 3108 /0.5 600(MHz)