硅烷偶联剂选用指南

合集下载

钛酸酯偶联剂厂家告诉大家,使用硅烷偶联剂的注意事项及如何选择

钛酸酯偶联剂厂家告诉大家,使用硅烷偶联剂的注意事项及如何选择

钛酸酯偶联剂厂家告诉大家,使用硅烷偶联剂的注意事项及如何选择偶联剂是一种广泛应用于各个领域的化学品,主要用于改善材料的界面性能。

硅烷偶联剂作为一种常用的偶联剂,由于其优良的性能而备受青睐。

然而,在选择和使用硅烷偶联剂时,需要遵循一些注意事项,本文将详细介绍这些内容,并提供选择硅烷偶联剂的建议。

硅烷偶联剂的特性硅烷偶联剂是一种在有机化学中被广泛应用的物质,它主要由硅和碳两种元素构成。

其有机基团可与有机物接触,并形成相互间的化学键,而硅基则用于形成化学键,让硅烷偶联剂与无机物形成粘附力。

硅烷偶联剂可以有效地提高材料的湿润性、耐磨性、密封性和化学稳定性等性能。

硅烷偶联剂的选择选择合适的硅烷偶联剂对于材料的性能和质量至关重要。

以下是选购硅烷偶联剂需要注意的几点:1. 基质的类型不同的基质对硅烷偶联剂的选择有一定的要求。

例如,对于阳离子基质,可选择一些硅烷偶联剂,如乙酰丙酮硅氧烷偶联剂(KH560)、环氧硅烷偶联剂(KH560)、3-(甲氧基)丙基三甲氧基硅烷偶联剂(KH172)等。

对于阴离子基质,可选择一些其他类型的硅烷偶联剂。

2. 偶联剂的功能硅烷偶联剂的应用范围很广泛,在选择时需要明确所需的功能。

例如,如果需要提高材料的附着力,则可以选择非离子型硅烷偶联剂;如果需要提高材料的耐腐蚀性,则可以选择阳离子型硅烷偶联剂。

3. 交联剂的选择硅烷偶联剂有时需要与交联剂一起使用,以实现更好的效果。

在选择交联剂时,需要根据硅烷偶联剂与基质的相容性、所需性能等因素进行选择。

硅烷偶联剂的使用注意事项在使用硅烷偶联剂时,需要注意以下几点:1. 溶剂的选择合适的溶剂可以使硅烷偶联剂的作用更加明显。

通常,对于不同的硅烷偶联剂,需要选择不同的溶剂。

例如,KH550硅烷偶联剂适用的溶剂为甲醇、醋酸乙酯、环己酮等;而KH560硅烷偶联剂适用的溶剂为环己酮、乙醇、醋酸乙酯等。

在选择溶剂时还需要注意其对基质的影响。

2. 硅烷偶联剂的浓度硅烷偶联剂的浓度过高或过低都会影响到其效果。

硅烷偶联剂的使用说明

硅烷偶联剂的使用说明

硅烷偶联剂的使用说明一、硅烷偶联剂的特点:1.分子结构中含有硅键、有机键和偶联键,可以同时与无机和有机材料发生化学反应,形成稳定的化学键,提高材料的粘附性能。

2.具有低表面张力、高分子聚集性和固态润湿性,可以改善材料表面的润湿性能,提高涂层和接口的粘附性。

3.具有优异的耐候性、耐高温性、耐化学腐蚀性,能够增强材料的抗老化性能和耐久性。

4.具有良好的流动性和渗透性,能够迅速渗入材料表面并扩散到深层,提高改性效果。

二、硅烷偶联剂的性能:1.可以提高材料的粘附性能,增强材料与衬底或其他材料的结合强度。

2.可以提高材料的耐磨性、耐腐蚀性和耐化学性,延长材料的使用寿命。

3.可以改善涂料和塑料的耐候性,提高涂层和塑料制品的耐UV性能。

4.可以增强纤维材料的柔软性和抗裂性,提高纤维制品的牢度和耐撕裂性。

5.可以优化电子器件的界面特性,提高电子元件的性能和可靠性。

三、硅烷偶联剂的适用范围:1.涂料方面:可用于增强涂料的附着力,改善涂膜的耐候性和耐化学性。

适用于金属涂料、木器涂料、玻璃涂料等各种涂料体系。

2.塑料方面:可用于增强塑料制品的附着力和耐候性,改善塑料制品的表面光洁度和耐划伤性。

适用于聚丙烯、聚氯乙烯、聚酰胺等常见塑料材料。

3.橡胶方面:可用于提高橡胶制品的耐磨性和耐老化性,改善橡胶制品的硬度和强度。

适用于天然橡胶、丁苯橡胶、氯丁橡胶等各种橡胶材料。

4.纤维方面:可用于提高纤维制品的柔软性和抗裂性,改善纤维制品的牢度和耐洗涤性。

适用于棉纤维、涤纶纤维、尼龙纤维等各种纤维材料。

5.电子器件方面:可用于优化电子元件的界面特性,提高电子元件的性能和可靠性。

适用于半导体材料、玻璃基板等电子器件的制造与改性。

四、硅烷偶联剂的使用注意事项:1.在使用硅烷偶联剂前,请先进行必要的实验和测试,以确定最佳用量和适用范围。

2.在使用硅烷偶联剂时,请使用适当的防护措施,避免接触皮肤和眼睛,并保持良好的通风环境。

3.硅烷偶联剂一般为液体或溶液,应储存在密封的容器中,在避光、低温干燥的环境中保存。

什么是硅烷偶联剂

什么是硅烷偶联剂

硅烷偶联剂知识一、定义及性能特点硅烷偶联剂是一类在分子中同时含有两种不同化学性质基团的有机硅化合物,其经典产物可用通式YSiX3表示。

式中,Y为非水解基团(也是有机基团,可以为环氧基、甲基丙稀酰氧基、巯基、氨基、烷基、异氰酸酯基和乙烯基),可与高分子发生化学反应或形成氢键,从而与高分子形成牢固的结合;X为可水解基团(包括Cl、Me-O-、Et-O-、i-Pr-O-、MeO-CH2CH2-O-等),可与含羟基无机材料反应。

由于这一特殊结构,硅烷偶联剂会在无机材料(如玻璃、金属或矿物)和有机材料(如有机聚合物、涂料或粘合剂)的界面起作用,结合或偶联两种截然不同材料。

有增强有机物与无机化合物之间的亲和力作用,并可强化提高复合材料的物理化学性能,如强度、韧性、电性能、耐水、耐腐蚀性。

性能特点及优势使用玻璃纤维或矿物增强有机聚合物时,聚合物和无机材料之间的界面或界面相涉及许多物理和化学因素之间复杂交叉作用。

这些因素和粘合力、物理强度、膨胀系数、浓度梯度和产品性能保持力相关。

影响粘合的重要破坏力量就是水分迁移到无机增强的亲水表面。

水分侵蚀界面,破坏了粘接。

“真正”的偶联剂在无机和有机材料的界面可以形成耐水键结。

硅烷偶联剂具有独特的化学和物理性能,不但增强了结合强度,更重要的是,防止了在复合材料老化和使用过程中在界面上的键结解体。

偶联剂赋予了两个相异、难以结合表面之间的稳定结合。

硅烷偶联剂不仅可用作基体间的弹性桥联剂,即改善两种不同化学性能材料之间的粘接性,达到提高制品的机械、电绝缘、抗老化及憎水等综合性能的目的;也可用作材料表面改性剂,赋予防水、防静电、防霉、防臭、抗血凝及生理惰性等性能;还可以用作非交联聚合物体系的交联固化剂,使其实现常温常压固化。

在复合材料中,选择合适的硅烷可以使复合材料的弯曲强度提高40%以上。

硅烷偶联剂也增强了涂层和粘合剂之间的结合强度,同时增强了对湿度和其他恶性环境条件的抵抗力。

硅烷偶联剂可提供的其他优势包括:1、更好的浸湿无机材料2、复合时具有更低的粘度3、更光滑的复合材料表面4、降低无机材料对热固复合材料催化剂的抑制作用5、更清晰透明的增强塑料二、硅烷偶联剂的作用机理硅烷偶联剂的作用和效果以被人们认识和肯定,但界面上极少量的偶联剂为什么会对复合材料的性能产生如此显著的影响,现在还没有一套完整的偶联机理来解释。

硅烷偶联剂

硅烷偶联剂

偶联剂
亲无机物 的基团
亲有机物 的基团
降低合成树脂熔体的粘度
,改善填充剂的分散度以 提高加工性能
整理课件
3
二、偶联剂的作用
偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用, 从而大大提高复合材料的性能,如物理性能、电性能、热性能、旋光性能 等。
偶联剂在复合材料中的作用在于它既能与增强材料表面的某些基团反 应,又能与基体树脂反应,在增强材料与树脂基体之间形成一个界面层, 界面层能传递应力,从而增强了增强材料与树脂之间粘合强度,提高了复 合材料的性能,同时还可以防止其它介质向界面渗透,改善了界面状态, 有利于制品的耐老化、耐应力及电绝缘性能。
硅烷偶联剂
整理课件
1
主讲内容
偶联剂 硅烷偶联剂定义与结构 硅烷偶联剂作用机理 有机硅烷偶联剂的选择原则 硅烷偶联剂的种类及应用 硅烷偶联剂使用方法
整理课件
2
偶联剂
一、偶联剂定义 偶联剂( Coupling agent),又称表面改性劑。在塑料配混中,改善合成树脂 与无机填充剂或增强材料的界面性能的一种塑料添加剂。
硅烷偶联剂结构
结构通式为YnSiX(4-n);
1.通式中n为0~3的整数;
2. X为可水基团,遇水溶液、空气中的水分或无机物表面吸附的水分均可引起分解, 与无机物表面有较好的反应性。典型的X基团有烷氧基、芳氧基、酰基、氯基等; 最常用的则是甲氧基和乙氧基;
3. Y为非水解的、可与高分子聚合物结合的有机官能团。如乙烯基、乙氧基、氨基、 环氧基、甲基丙烯酰氧基、巯基等,与各种合成树脂、橡胶有较强的亲和力或反应 能力。
整理课件
6
常用的代表性硅烷偶联剂
偶联剂名称
乙烯基三氯硅烷 乙烯基三乙氧基硅烷 乙烯基三(β-甲氧乙氧基)硅烷

粘接pa的硅烷偶联剂

粘接pa的硅烷偶联剂

粘接pa的硅烷偶联剂
硅烷偶联剂是一种常用于改性材料表面的化学品,它可以在有
机物和无机物之间建立化学键,从而改善材料的界面性能。

在粘接
PA(聚酰胺)材料时,选择合适的硅烷偶联剂可以提高粘接强度和
耐热性。

首先,选择合适的硅烷偶联剂对于粘接PA材料至关重要。

常用
的硅烷偶联剂包括氨基硅烷、甲基硅烷、乙烯基硅烷等。

不同的硅
烷偶联剂对于不同的材料有着不同的作用,因此需要根据具体的粘
接材料和要求来选择合适的硅烷偶联剂。

其次,硅烷偶联剂的使用方法也需要注意。

在粘接PA材料时,
通常需要将硅烷偶联剂溶解于适当的溶剂中,然后涂布在材料表面,经过一定的处理后使其与粘接材料发生化学反应,从而提高粘接强度。

此外,硅烷偶联剂的使用量也需要进行合理控制。

过少的硅烷
偶联剂可能无法达到预期的效果,而过多的硅烷偶联剂则可能会导
致材料表面出现不均匀或者其他问题。

最后,需要注意硅烷偶联剂的选择和使用需要结合具体的粘接材料和粘接条件来进行综合考虑,可以进行实验验证以确定最佳的硅烷偶联剂种类和使用方法。

同时,也需要遵循相关的安全操作规程,做好防护措施,以确保操作人员的安全。

硅烷偶联剂的使用

硅烷偶联剂的使用

硅烷偶联剂的使用方法⑴表面预处理法将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。

所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。

除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。

长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。

氯硅烷及乙酰氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。

水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。

⑵迁移法将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。

涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。

对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。

实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。

硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。

硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与P H值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的P H值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节P H值至4-5 ,氨基硅烷因具碱性,不必调节。

因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。

下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HE NSHE L(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

牵头制订硅烷偶联剂的17项产品标准及检测标准

牵头制订硅烷偶联剂的17项产品标准及检测标准

硅烷偶联剂产品标准及检测标准一、硅烷偶联剂分类与命名硅烷偶联剂按化学结构可分为无机硅酸盐类、有机硅单体类和有机硅聚合物类。

根据偶联剂分子中的官能团数量,可分为单官能团硅烷偶联剂、双官能团硅烷偶联剂和多官能团硅烷偶联剂。

二、硅烷偶联剂成分与化学结构硅烷偶联剂的主要成分包括有机硅单体、催化剂、交联剂、溶剂等。

其化学结构主要由烷氧基(如甲氧基、乙氧基等)或卤素(如氯、溴等)与硅原子相连组成。

三、硅烷偶联剂纯度与杂质限制硅烷偶联剂应符合一定的纯度要求,其中有机杂质和无机杂质的含量应分别低于一定范围。

此外,硅烷偶联剂中不得含有对环境和人体有害的物质。

四、硅烷偶联剂物理性质与性能指标硅烷偶联剂应为无色至浅黄色透明液体,具有特殊气味。

其性能指标应符合表1的规定。

表1 硅烷偶联剂性能指标项目\指标要求五、硅烷偶联剂制备工艺与流程硅烷偶联剂的制备采用催化醇解法或直接合成法。

其中,催化醇解法是将有机卤素化合物在酸性催化剂存在下与醇进行醇解反应,然后水解得到硅烷偶联剂。

直接合成法则是通过直接合成含有活性官能团的有机硅化合物,再经过后处理得到硅烷偶联剂。

制备流程如图1所示。

六、硅烷偶联剂检测方法与仪器设备硅烷偶联剂的检测方法包括化学滴定法、气相色谱法、高效液相色谱法等。

检测所需仪器设备包括天平、滴定管、色谱仪等。

具体检测方法可参照行业标准进行选择和操作。

七、硅烷偶联剂质量检验与控制硅烷偶联剂的质量应符合相关国家标准和行业标准的要求,并经过质量检验合格后方可出厂销售。

质量控制包括原料质量把控、生产过程监控、成品检验等多个环节,以确保产品质量稳定可靠。

八、硅烷偶联剂包装、运输与贮存硅烷偶联剂的包装应采用密封性能良好的容器,并存放在阴凉、干燥、通风的仓库内。

运输过程中应防止日光直射和高温,严禁与易燃易爆物品混运。

贮存期间应定期检查贮存条件,确保产品质量稳定。

九、硅烷偶联剂使用说明与操作指南使用硅烷偶联剂时,应按照产品说明书的要求进行操作。

硅烷偶联剂的反应及选型方法

硅烷偶联剂的反应及选型方法

硅烷偶联剂是一类既能和有机材料又能和无机材料反应的有机硅化合物。

其反应通式如下:其中,R表示可与有机材料结合不可水解的有机官能团,比如乙烯基、环氧基、氨基等。

X表示可在水中或潮湿环境中水解的官能团,典型的X基团包括烷氧基、酰氧基、卤素、胺等。

硅烷偶联剂具有独特的化学和物理性能,能够提高有机和无机材料界面的粘接性、提高结合强度、改善材料的耐潮湿性、黏度、光滑表面度等性能。

因此,在材料的生产中具有广泛应用,比如印刷电路板用的层压板、人造大理石、塑料磁体和二氧化硅固定化生物活性物质等。

与无机材料反应硅烷偶联剂的无机反应基团,能与大多数无机基质上的金属羟基结合,特别是当亚层结构中含有硅、铝或重金属时。

硅烷偶联剂上烷氧基水解成硅烷醇,硅烷醇与无机表面的金属羟基配合,形成氧烷键,消除水。

同时,硅烷分子也可相互反应,在表面形成结合的硅烷偶联剂的多分子结构。

通常在表面形成一层以上的硅烷,使无机表面的硅氧烷网络变得更致密。

与有机聚合物材料反应与有机聚合物材料的反应是比较复杂的。

首先,硅烷偶联剂必须与有机聚合物反应相匹配。

比如:环氧硅烷或氨基硅烷能与环氧树脂结合;氨基硅烷能与酚醛树脂结合;甲基丙烯酸硅烷通过与苯乙烯交联可与不饱和聚酯树脂结合。

此外,匹配有机聚合物-硅烷偶联剂的化学性质,可以优化复合材料(有机聚合物-硅烷偶联剂)的网络结构,也有助于提高复合材料的性能。

即使对于反应性起重要作用的热固性聚合物,化学结构的匹配也会提高复合材料的物理性能。

硅烷偶联剂的选型一般连有3个水解基团的硅烷偶联剂,都能很好地一致地与无机材料反应。

硅烷偶联剂上的有机官能基团与目标树脂聚合物类型反应的匹配程度,以及硅烷偶联剂上有机基团的反应活性、化学性质(疏水或亲水性等)、热稳定性、溶解度等,决定了在该条件下使用哪种硅烷偶联剂。

常用硅烷偶联剂种类➢烷基硅烷➢丙烯基硅烷➢烯基硅烷➢环氧基硅烷➢芳基硅烷➢氟烷基硅烷➢氯烷基硅烷➢溴烷基/碘烷基硅烷➢氨基硅烷➢重氮/叠氮硅烷➢氰基硅烷➢异氰基硅烷➢巯基硅烷➢酸酐硅烷➢双峰硅烷。

硅烷偶联剂使用方法

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。

硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。

因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。

下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。

(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。

偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。

在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。

(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。

(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。

偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。

然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。

大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。

偶联剂的应用原则

偶联剂的应用原则

偶联剂的应用原则Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998选用硅烷偶联剂的一般原则一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。

因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。

选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。

例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。

由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。

因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。

为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。

硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。

增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。

对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。

二、使用方法如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。

后者经硅烷偶联剂处理,即可将其亲水性表面,转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。

Silane_Selection_Guide硅烷偶联剂选用指南-西斯博有机硅

Silane_Selection_Guide硅烷偶联剂选用指南-西斯博有机硅


Sealants Styrene Butadiene Rubber SBR Peroxide crosslinked EPDM
Polyetherketone copolymer
Polyphenylene oxide PPO
Sulfer-crosslinked EPM
E E
E
E E
E
E E
A
E
E E E E E
A A A A A E E E
E E E E E
A A A A E
A A A A E
A A A A E
E E E E E
E
A
A
E
A
E
ቤተ መጻሕፍቲ ባይዱ
E E
E
E
E E
E A
A E
A E
E E E
E E
E E
E
E = Effective, A = Alternate E = Effective, A = Alternate E = Effective, A = Alternate E = Effective, A = Alternate E = Effective, A = Alternate
E E E E
E E E E
E E E E
E E E E
E A A A E E E E E E
E E E E
A A A A E E E
E E E A E E E E A A A E E E E A
E E A A E E A E E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E E

什么是硅烷偶联剂

什么是硅烷偶联剂

硅烷偶联剂知识一、定义及性能特点硅烷偶联剂是一类在分子中同时含有两种不同化学性质基团的有机硅化合物,其经典产物可用通式YSiX3表示。

式中,Y为非水解基团(也是有机基团,可以为环氧基、甲基丙稀酰氧基、巯基、氨基、烷基、异氰酸酯基和乙烯基),可与高分子发生化学反应或形成氢键,从而与高分子形成牢固的结合;X为可水解基团(包括Cl、Me-O-、Et-O-、i-Pr-O-、MeO-CH2CH2-O-等),可与含羟基无机材料反应。

由于这一特殊结构,硅烷偶联剂会在无机材料(如玻璃、金属或矿物)和有机材料(如有机聚合物、涂料或粘合剂)的界面起作用,结合或偶联两种截然不同材料。

有增强有机物与无机化合物之间的亲和力作用,并可强化提高复合材料的物理化学性能,如强度、韧性、电性能、耐水、耐腐蚀性。

性能特点及优势使用玻璃纤维或矿物增强有机聚合物时,聚合物和无机材料之间的界面或界面相涉及许多物理和化学因素之间复杂交叉作用。

这些因素和粘合力、物理强度、膨胀系数、浓度梯度和产品性能保持力相关。

影响粘合的重要破坏力量就是水分迁移到无机增强的亲水表面。

水分侵蚀界面,破坏了粘接。

“真正”的偶联剂在无机和有机材料的界面可以形成耐水键结。

硅烷偶联剂具有独特的化学和物理性能,不但增强了结合强度,更重要的是,防止了在复合材料老化和使用过程中在界面上的键结解体。

偶联剂赋予了两个相异、难以结合表面之间的稳定结合。

硅烷偶联剂不仅可用作基体间的弹性桥联剂,即改善两种不同化学性能材料之间的粘接性,达到提高制品的机械、电绝缘、抗老化及憎水等综合性能的目的;也可用作材料表面改性剂,赋予防水、防静电、防霉、防臭、抗血凝及生理惰性等性能;还可以用作非交联聚合物体系的交联固化剂,使其实现常温常压固化。

在复合材料中,选择合适的硅烷可以使复合材料的弯曲强度提高40%以上。

硅烷偶联剂也增强了涂层和粘合剂之间的结合强度,同时增强了对湿度和其他恶性环境条件的抵抗力。

硅烷偶联剂可提供的其他优势包括:1、更好的浸湿无机材料2、复合时具有更低的粘度3、更光滑的复合材料表面4、降低无机材料对热固复合材料催化剂的抑制作用5、更清晰透明的增强塑料二、硅烷偶联剂的作用机理硅烷偶联剂的作用和效果以被人们认识和肯定,但界面上极少量的偶联剂为什么会对复合材料的性能产生如此显著的影响,现在还没有一套完整的偶联机理来解释。

硅烷偶联剂

硅烷偶联剂

当Y为无反应性的烷基或芳基时,可 用于非极性树脂,如硅橡胶、聚苯乙烯 等的胶接中。当Y含氨基时,是属于催化 性的,能在酚醛、脲醛、三聚氰胺甲醛 的聚合中作催化剂,也可作为环氧和聚 氨酯树脂的固化剂,这时偶联剂完全参 与反应,形成新键。x 基团的种类对偶联 效果没有影响。因此,根据Y基团中反应 基的种类,硅烷偶联剂也分别称为乙烯 基硅烷、氨基硅烷、环氧基硅烷、巯基 硅烷和甲基丙烯酰氧基硅烷等,这几种 有机官能团硅烷是最常用的硅烷偶联剂。
填充塑料
可预先对填料进行表面处理, 也可直接加入树脂中。能改善填 料在树脂中的分散性及粘合力, 改善无机填料与树脂之间的相容
性,改善工艺性能和提高填充塑
料(包括橡胶)的机械、电学和 耐气候等性能。
用作密封剂、粘接剂和
涂料的增粘剂
硅烷偶联剂往往可以解决某些材料长期以 来无法粘接的难题。硅烷偶联剂作为增粘剂的 作用原理在于它本身有两种基团;一种基团可 以和被粘的骨架材料结合;而另一种基团则可 以与高分子材料或粘接剂结合,从而在粘接界 面形成强力较高的化学键, 大大改善了粘接强 度。硅烷偶联剂的应用一般有三种方法:一是 作为骨架材料的表面处理剂胶粘剂工业的具体应用有如 下几个方面:
①在结构胶粘剂中金属与非金属的胶接, 若使用硅烷类增粘剂,就能与金属氧化物 缩合,或跟另一个硅烷醇缩合,从而使硅 原子与被胶物表面紧紧接触。如在丁腈酚 醛结构胶中加入硅烷作增粘剂,可以显著 提高胶接强度。
②在胶接玻璃纤维方面国内外已普遍采 用硅烷作处理剂。它能与界面发生化学反 应,从而提高胶接强度。例如,氯丁胶胶 接若不用硅烷作处理剂时,胶接剥离强度 为1.07公斤/厘米2,若用氨基硅烷作处理 剂,则胶接的剥离强度为8.7公斤/厘米2。
目 录
• 简介 • 应用领域 • 具体应用 • 其他方面应用

什么是硅烷偶联剂

什么是硅烷偶联剂

硅烷偶联剂知识一、定义及性能特点硅烷偶联剂是一类在分子中同时含有两种不同化学性质基团的有机硅化合物,其经典产物可用通式YSiX3表示。

式中,Y为非水解基团(也是有机基团,可以为环氧基、甲基丙稀酰氧基、巯基、氨基、烷基、异氰酸酯基和乙烯基),可与高分子发生化学反应或形成氢键,从而与高分子形成牢固的结合;X为可水解基团(包括Cl、Me-O-、Et-O-、i-Pr-O-、MeO-CH2CH2-O-等),可与含羟基无机材料反应。

由于这一特殊结构,硅烷偶联剂会在无机材料(如玻璃、金属或矿物)和有机材料(如有机聚合物、涂料或粘合剂)的界面起作用,结合或偶联两种截然不同材料。

有增强有机物与无机化合物之间的亲和力作用,并可强化提高复合材料的物理化学性能,如强度、韧性、电性能、耐水、耐腐蚀性。

性能特点及优势使用玻璃纤维或矿物增强有机聚合物时,聚合物和无机材料之间的界面或界面相涉及许多物理和化学因素之间复杂交叉作用。

这些因素和粘合力、物理强度、膨胀系数、浓度梯度和产品性能保持力相关。

影响粘合的重要破坏力量就是水分迁移到无机增强的亲水表面。

水分侵蚀界面,破坏了粘接。

“真正”的偶联剂在无机和有机材料的界面可以形成耐水键结。

硅烷偶联剂具有独特的化学和物理性能,不但增强了结合强度,更重要的是,防止了在复合材料老化和使用过程中在界面上的键结解体。

偶联剂赋予了两个相异、难以结合表面之间的稳定结合。

硅烷偶联剂不仅可用作基体间的弹性桥联剂,即改善两种不同化学性能材料之间的粘接性,达到提高制品的机械、电绝缘、抗老化及憎水等综合性能的目的;也可用作材料表面改性剂,赋予防水、防静电、防霉、防臭、抗血凝及生理惰性等性能;还可以用作非交联聚合物体系的交联固化剂,使其实现常温常压固化。

在复合材料中,选择合适的硅烷可以使复合材料的弯曲强度提高40%以上。

硅烷偶联剂也增强了涂层和粘合剂之间的结合强度,同时增强了对湿度和其他恶性环境条件的抵抗力。

硅烷偶联剂可提供的其他优势包括:1、更好的浸湿无机材料2、复合时具有更低的粘度3、更光滑的复合材料表面4、降低无机材料对热固复合材料催化剂的抑制作用5、更清晰透明的增强塑料二、硅烷偶联剂的作用机理硅烷偶联剂的作用和效果以被人们认识和肯定,但界面上极少量的偶联剂为什么会对复合材料的性能产生如此显著的影响,现在还没有一套完整的偶联机理来解释。

硅烷偶联剂及其应用

硅烷偶联剂及其应用

化合物
MeSi(OMe)3 ViSi(OMe)3 EtSi(OMe)3 正-BuSi(OMe)3 正-己基Si(OMe)3 PhSi(OMe)3
水的最高稀释量
水(ml)
时间

10s

45s

2min

12min

25min(轻度混浊)

7min
CH3C6H4Si(OMe)3

ClCH2C6H4Si(OMe)3
基材
硼硅酸玻璃 不锈钢 钠-钙玻璃 二氧化硅 二氧化硅 钠-钙玻璃 钠-钙玻璃 钠-钙玻璃 钠-钙玻璃 钠-钙玻璃 钠-钙玻璃
γc
14 14 22.5 26~33 30 25 28 33.5 34 35 39.5
O-CH2-CH-CH2O(CH2)3Si(OCH3)3 C6H5Si(OCH3)3 Cl(CH2)3Si(OCH3)3
非硅烷偶联剂
铬络合物:Volan(Du Pont) 原硅酸酯:原硅酸烯丙酯 其它原酸酯:磷酸氨苄酯、双十六烷基硼酸异丙
酯、辛基三异丙氧基锡、 钛酸酯:系列含取代基的钛酸酯 其它含有机官能团的化合物
硅烷偶联剂
Silane Coupling Agents
( SCA )
硅烷偶联剂
1.硅烷偶联剂概述 1.1硅烷偶联剂化学结构与性质讨论 1.2硅烷偶联剂作用原理 1.3硅烷偶联剂的选择及使用方法 2.硅烷偶联剂品种及其合成 2.1硅烷偶联剂品种及分类 2.2硅烷偶联剂的合成 2.3有关硅烷偶联剂的专利 3.硅烷偶联剂的应用 3.1硅烷偶联剂的功能 3.2常用硅烷偶联剂在各个领域的应用 4.硅烷偶联剂新应用专题 5.硅烷偶联剂与其它偶联剂的比较
偶联剂结构

硅烷偶联剂的应用和选用标准

硅烷偶联剂的应用和选用标准

硅烷对聚合物的反应机制 硅烷对有机聚合物的结合非常复杂。热固性聚合物的反应 性应和硅烷的反应性想匹配。比如,环氧硅烷或氨基硅烷将 和环氧树脂结合;氨基硅烷将和酚醛树脂结合;甲基丙烯酸 基硅烷将利用交联于不饱和聚酯树脂的苯乙烯与之结合。对 于热塑聚合物,通过硅烷偶联剂实现的结合可以解释为是在 界面区域通过相互扩散和互穿网络体系而形成的。如图 6 所 示。 为了优化 IPN 配方,硅烷和树脂的相容性是非常重要的。 一种方法就是匹配两种材料的溶解度参数。这将提高形成具 有最优性能良好复合材料的几率。即使对于反应性起重要作 用的热固聚合物来说,溶解度参数的匹配将提高复合材料的 物理性能。 图 6:互相渗透网络(IPN)结合机理 化学结合界面 分散界面
硅烷对无机材料的反应机制
硅原子上含有三个无机反应基团的硅烷偶联剂(通常是甲氧基、 乙氧基或乙酸基)可以很好地结合多数无机材料的金属羟基,特别是 结构中含有硅、铝或重金属的材料。通过与添加的或者无机表面的残 留的水反应,硅原子上的烷氧基水解成硅醇,然后这些硅醇和无机表 面的金属羟基反应,形成烷氧结构并脱去水,如图 4 和图 5 所示。 硅烷也可以相互结合,在表面形成硅偶联剂的多分子结构。通常 在表面上会使用不只一层或相当于一层的硅烷。 这将在无机表面形成 的紧贴致密硅氧烷层,并使得无机表面更远离界面。
含有一个或以上碳硅键(XH3-Si-)结 构的硅烷称为有机 硅。碳-硅键非常稳 定,没有极性,并且 使化合物具有地表 面能量、非极性和疏 水性能,虽然通常硅 烷会增强类似性能。 硅-氢(-Si-H)结构 反应性强,它和水反 应形成反应性硅醇 (-Si-OH) ,另外, 通过与碳-碳双键加 成,形成新碳-硅材 料料。碳化合物上的 甲氧基团形成稳定 的甲基醚,当它和硅 结合时,形成极具反 应性、可水解的甲氧 基硅烷结构。有机官 能基团,氨丙基取代 基,在有机硅化合物 中的化学性能和碳 基化合物中的相同。 胺和其他有机硅官 能基团距离硅的远 近将决定硅原子是 否影响有机官能团 的化学性能。如果有 机间隔基团是一个

偶联剂正确选用参考

偶联剂正确选用参考

偶联剂正确选用参考引用jcx的偶联剂正确选用参考一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。

因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。

选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。

例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。

由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。

因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。

为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。

硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。

增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。

对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。

二、使用方法如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。

后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。

但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。

硅烷偶联剂及其应用

硅烷偶联剂及其应用
硅醇直接法循环体系超纯石英材料纳米二氧化硅有关硅烷偶联剂的专利巯基有机基烷氧基硅烷的制备方法cn20041009228143n2氨乙基氨烷基烷氧基硅烷的制备方法cn20041004199293氯丙基三氯硅烷的制备方法cn941182975r23环氧丙氧丙基三甲氧基硅烷的制备方法cn031134025r氯丙基三氯硅烷的制备工艺cn901056677烯烃链烯基硅烷共聚物及其制备方法cn901096903氨丙基三乙氧基硅烷的制备方法cn941142663包括双烷氧基硅烷四硫化物作为偶联剂的轮胎及行驶胎面cn028080432长链烷基硅烷的制备方法cn200410041990x从硅烷中去除含氢硅烷的方法cn931205816带有氰硫基的有机烷氧基硅烷的制备方法cn028181727硅烷交联电力电缆工艺cn951159291含氨乙基氨丙基基团的有机硅烷偶联剂的生产废料的回收处理方法cn031128742含硫硅烷偶联剂cn018034802含取代氨基硅烷化合物的烯烃聚合催化剂cn981259375含异氰酸酯基团的硅烷的制备方法cn2003101127069含有三氟丙基取代的硅烷作为聚合烯烃的催化剂cn911054057环己基烷氧基硅烷的制备方法cn011336862甲硅烷基化聚合物和氨基硅烷粘合促进剂的组合物cn008116628经过硅烷处理的无机颜料cn961987170具有亲水基团的硅烷及其制备方法和应用cn941078213聚硫硅烷化合物的生产方法cn001097695可用作偶联剂的多官能有机硅烷及其制备方法cn018187889巯烃基烷氧基硅烷的制备方法cn2003101127073三甲氧基硅烷的工业化制备方法cn031133592室温硅烷交联聚乙烯塑料及其制备方法cn2003101090100双叔丁氨基硅烷的生产和纯化方法cn2004100018694铜基催化剂及其制备方法和用途以及制备烷基卤代硅烷的方法cn961185473烷基氨基二烷氧基硅烷的制备cn998037028烷基卤硅烷的生产方法cn86107649烷氧基硅烷的直接合成工艺cn021135940烯丙基硅烷的制备方法cn2005100401455一种含硫硅烷偶联剂与炭黑白炭黑的混合物颗粒cn03221555x以含环氧基的硅烷为基础的涂料组合物cn988086263阴离子聚合物与具有硅氢键的三烷氧基硅烷的偶联cn961940034应用再分配反应的改进的有机

道康宁硅烷偶联剂的选用

道康宁硅烷偶联剂的选用

lane; PhNHC3H6Si(OMe)3
Alkoxysilane
Z-6137 SILANE
Aminoethylaminopropylsilane triol homopolymer H2NC2H4NHC3H6-Si(OH)3 in water, 22% actives – methanol-free adhesion promoter, an alternative to Z-6020
Raw material for silicone synthesis; hydrophobe for inorganic materials.
Donor for PP production: Increased catalyst efficiency and isotactic content of polypropylene; improved molecular weight distribution. Also hydrophobe for inorganic substrates and filler dispersion.
Coupling agent for many resin systems; especially useful for fiberglass-reinforced printed circuit boards. Improved adhesion of organic polymer to inorganic substrate or filler; improved wet and dry physical properties of composite; improved mixing and compatibility of filled systems. Compatible with epoxies for PCBs, polyolefins, all polymer types.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅烷偶联剂选用指南
硅烷偶联剂的水解速度取决于可水解官能团Si(OR)3,而与有机聚合物的反应活性则取决于有机官能团-Y。

因此,对于不同的基材或处理对象,选择适用的硅烷偶联剂至关重要。

下表可以帮助您做出选择:
备注:☆——首选;◇——适用;□——只适用于特种硅烷。

声明:上表只适用于一般情况,并非绝对的标准。

对于具体的、特定的应用领域,用户在正式使用本公司产品前,应先详细了解该产品的性能和适用性,并做必要的试验,以确定该产品是否适合您的特定用途。

本公司只对产品本身的品质负责,而对其适用性不承担责任。

相关文档
最新文档