导数及其应用
考研数学-专题5 导数的概念及应用
f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0
则
lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n
导数的七种应用
导数的七种应用导数是微积分里面非常重要的概念之一,它是求解函数的变化率的重要工具。
在现实世界中,各种科学领域和工程学都有着广泛的应用。
本文将介绍导数的七种应用,包括微积分学,物理学,经济学,机械工程,数学,生物学和计算机科学。
一、微积分学导数在微积分学中有各种广泛的应用,例如求解定积分以及求解复合函数的极值问题。
比如,我们可以使用梯度(即导数)来求解函数的最小值或最大值,这在实际工程中也经常用到。
二、物理学导数在物理学中也有广泛的应用,其中最重要的是用导数来求解动量。
根据动量定理,物体的动量是受速度函数的变化来决定的,而速度函数的变化正是由导数来求解的。
三、经济学导数在经济学中又有广泛的应用,例如用来求解经济的最优状态。
在经济学中,基本的决策问题都可以用导数来求解,从而找到满足所有参与者条件的最佳解决方案。
四、机械工程导数在机械工程中也有广泛的应用,最常用的就是热力学运用。
它可以用来表示流体在特定温度和压强条件下的特性,从而确定机械系统的传热量、流量及其他物理参数。
五、数学导数在数学中也有广泛的应用,例如用来求解方程组的最优解,以及线性规划问题、最小二乘问题和其他优化问题。
六、生物学导数在生物学中也有广泛的应用,主要用于研究植物的生长状况,以及植物体内及周围环境中生物活动的影响。
七、计算机科学导数在计算机科学中也发挥了重要作用,比如使用导数解决数值优化问题,以及机器学习中的梯度下降法,这都是实现机器智能的重要技术。
综上所述,导数在各种科学和工程领域有着广泛的应用。
它是一种重要的数学工具,在现实世界中有着各种各样的应用,从而改变了我们对函数变化和流体传热的认识,为探索现实世界科学规律,提供了重要依据。
(七)导数概念及应用
(七)导数概念及应用1.理解导数的概念及几何意义(1)函数y =f (x )在x =x 0处的导数:)(0x f '=0lim→∆x Δy Δx=0lim →∆x f (x 0+Δx )-f (x 0)Δx .函数y =f (x )在(a ,b )内的导函数:f ′(x )=0lim→∆x Δy Δx=0lim →∆x f (x +Δx )-f (x )Δx .函数y =f (x )在x =x 0处的导数f ′(x 0)=f ′(x )︱x =0x(2)函数f (x )在点x 0处有导数,则函数f (x )在该点处必有切线,且导数值等于该切线的斜率,但函数f (x )在点x 0处有切线,函数f (x )在该点处不一定可导.求函数的导数有两种方法:一种方法是用定义求,先求函数的改变量,再求平均变化率,最后取极限,得导数;另一种方法是利用公式与法则求导数.2.熟记八个求导公式和五条求导法则(加、减、乘、除、复合函数求导(理)). 3.导数的应用十分广泛,如求函数的单调区间、极值、最值,求曲线的切线以及解决某些实际问题等.利用导数作工具,考查函数、不等式的综合应用已成为高考的又一热点.利用函数的导数研究函数的性质:先对函数求导,再利用导数y '的正负判断函数的单调性或求函数的极值(或最值).导数的实质是函数值相对于自变量的变化率,体现在几何上就是切线的斜率.高考对导数的考查定位在作为解决初等数学问题的工具这一目标上,主要体现在以下方面:①运用导数有关知识研究函数的单调性和最值问题;②利用导数的几何意义,研究曲线切线的斜率也是导数的一个重要内容之一;③对一些实际问题建立数学模型后求解.导数类型的问题从题型上来看有几下特点:①以选择填空题考查概念、求单调区间和函数的极值、最值;②利用导数求实际问题中的最值为中档题;③与向量、解几、数列相联系的的一些综合题,着眼于导数的几何意义和应用为中档偏难题. 考点1 考查相关概念例1.下列命题中,正确的是( ) ①若函数f (x )在点x 0处有极限,则函数f (x )在x 0处连续;②若函数f (x )在点x 0连续,则函数f (x )在x 0处可导;③若函数f (x )在点x 0处取得极值,则f ′(x 0)=0;④若函数在点x 0有f ′(x 0)=0,则x 0一定是函数的极值点.A .0个 B .1个 C .2个 D .3个解析: ①是错误的,如f (x )=⎩⎨⎧ x 1 00=≠x x 在点x =0处不连续;②是错误的,如f (x )=︱x ︱在x =0处连续,但不可导;③是错误的,f (x )在点x 0不一定可导,反例同②;④是错误的,如f (x )=x 3在x =0的导数为零,但x =0不是函数的极值点.答案A评析:函数f (x )在点x 0有极限、连续、可导、有极值,四者之间关系要区分清楚.函数f (x )在x 0处连续是f (x )在x 0处有极限的充分非必要条件,只有可导函数在x 0取得极值,才有f ′(x 0)=0,注意其前提条件. 考点2 考查导函数与原函数图象间关系例2.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )解析:由()y xf x '=图象可知:)(/x f y =在]1,1[-上小于等于零,故原函数在]1,1[-上为减函数,故选C .评注:函数()y xf x '=图象提供了很多信息,但要抓住关键特点,如导数为零的点、导数为正值或负值的区间等.考点3 考查导数的几何意义例3.设f (x )=-23x 3+x 2+4x ,则过点(0,0)的曲线y =f (x )的切线方程是 .解析:设所求切线方程为:y =kx ,切点(x 0,y 0),又k =y ′︱x =0x =(-2x 02+2x 0+4). 则切线方程为y =(-2x 02+2x 0+4)x ,∴⎪⎩⎪⎨⎧++-=++-=003000020432)422(x x x y x x x y 解之得x 0=0或x 0=34.∴k =4或k =358,故所求的切线方程为4x -y =0或35x -8y =0.评析:导数)(0/x f 的几何意义是曲线数)(x f y =在某点0x 处切线的斜率.所以求切线的方程可通过求导数先得到斜率,再由切点利用点斜式方程得到,求过点p (x 0,y 0)的切线方程时,一要注意p (x 0,y 0)是否在曲线上,二要注意该点可能是切点,也可能不是切点,因而所求的切线方程可能不只有1条.。
导数的概念导数公式与应用
导数的概念导数公式与应用导数是微积分中的一个重要概念,用于描述函数的变化率。
导数的概念在不同领域都有广泛应用,例如物理学、经济学和工程学等。
本文将介绍导数的概念、导数公式以及导数在实际应用中的一些例子。
导数的概念可以理解为函数在其中一点处的变化率。
具体来说,如果函数在其中一点处具有导数,那么导数等于函数在该点处的斜率。
直观地说,如果一个函数在其中一点的导数为正,意味着函数在该点附近的值在增加;如果导数为负,意味着函数在该点附近的值在减小。
如果导数等于零,在该点附近的值则没有变化。
导数的计算可以使用导数公式来简化。
对于一些常见的函数,我们可以使用已知的导数公式来得到它们的导数。
例如,对于多项式函数,如果f(x) = ax^n ,其中a和n为常数,那么它的导数为f'(x) = nax^(n-1)。
而对于指数函数f(x) = e^x ,它的导数等于它自身,即f'(x) = e^x。
通过使用这些已知的导数公式,我们可以计算更复杂函数的导数。
导数在实际应用中有着广泛的应用。
一个常见的应用是在物理学中,用于描述物体的运动。
例如,我们可以通过计算一个物体的位移函数的导数来得到它的速度函数。
同样地,计算速度函数的导数可以得到加速度函数。
通过这样的导数计算,我们可以更好地理解物体的运动规律。
另一个应用是在经济学中,用于描述供需关系。
导数可以提供给我们有关价格和数量之间关系的更多信息。
如果一个函数表示价格对其中一变量的依赖关系,那么它的导数可以告诉我们,当这个变量改变一个单位时,价格将会如何改变。
这种信息对于制定合理的价格策略和优化资源配置非常重要。
除了物理学和经济学,导数在工程学和计算机科学中也有许多应用。
在工程学中,导数可以用于解决建筑结构的优化问题,确保建筑物的稳定性。
在计算机科学中,导数可以用于图像处理和机器学习等领域,提供对图像和数据的更深入的理解。
总结起来,导数是微积分中的一个重要概念,用于描述函数的变化率。
函数的导数及其应用
函数的导数及其应用
函数的导数是指函数y=f(x)的斜率,表示函数在每个点上的变
化率。
导数表示了函数在某一点的瞬时变化率。
导数的符号和大小
可以告诉我们函数在该点的增长或减少程度,以及函数变化的速率。
导数在实际应用中有很多重要的作用,包括:
1. 切线和切平面的计算:导数可以用来计算曲线在某一点的切
线以及曲面在某一点的切平面。
2. 极值的计算:导数可以用来找出函数的最大值和最小值,以
及函数的拐点和凸凹性。
3. 增长率和加速度的计算:导数可以用来计算物体的速度和加
速度,而这些量在物理学中有重要的应用。
4. 构建数学模型:导数是数学建模中不可或缺的工具,可以用
来描述各种现象,从物理学到经济学、生态学等学科。
总之,导数是数学中非常重要的概念,可以应用于各个领域的
问题中,深受科学家和工程师的青睐。
导数及其应用生活中的优化问题举例
模型参数设置
为预测模型设置合适的参数,以便进行模型训练和预测。
模型训练和优化
使用历史数据训练预测模型,并不断优化模型参数,以提高预测准 确性。
时间序列预测模型的检验与应用
模型检验
使用独立的验证数据集评估预测模型的性能,比较实际值与预测值的差异。
导数及其应用生活中的优化 问题举例
2023-11-08
contents
目录
• 导数的定义与计算 • 导数在生活中的应用 • 导数在优化问题中的应用举例 • 导数在最优问题中的应用 • 导数在时间序列预测中的应用 • 导数在其他领域的应用举例
01
导数的定义与计算
导数的定义
函数在某一点的导数
函数在某一点的导数描述了函数在该点的变化率。
通过运用导数,企业可以找到运营成本的最优解,以 降低企业的运营成本。
在最小成本问题中,企业需要通过对运营成本的分析 ,寻找降低成本的途径。导数方法可以通过对成本函 数进行求导,找到成本最低的运营方案。例如,在物 流行业中,通过优化运输路线和装载方式可以降低运 输成本。
04
导数在最优问题中的应用
最优路径问题
模型应用
将经过验证的预测模型应用于实际时间序列数据的预测,为决策提供支持。
06
导数在其他领域的应用举 例
工程领域:结构优化设计、强度分析等
结构优化设计
在航空航天、建筑等领域,结构优化设计是至关重要的。导数可以帮助我们更好地理解结构的形状、尺寸和材料 等参数对结构强度、刚度和稳定性的影响,从而优化设计。例如,通过有限元分析方法,利用导数求解结构中的 应力、应变分布,进一步优化结构设计。
导数的定义及其应用
导数的定义及其应用导数是微积分中一个非常重要的概念,它在自然科学、工程学、经济学等多个领域都有广泛的应用。
本文将从导数的定义、导数的计算方法和导数的应用三个方面进行论述。
一、导数的定义导数是函数在某个点上的变化率,它描述了函数在一点附近的斜率,可以表示为函数在该点的极限。
具体地说,如果函数$f(x)$在点$x_0$处可导,那么它的导数为:$$f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h}$$其中$h$为趋近于$0$的实数。
如果这个极限存在,则称$f(x)$在$x_0$处可导。
例如,求函数$f(x)=x^2$在$x=2$处的导数,我们可以将$x_0=2$代入上式,得到:$$f'(2)=\lim_{h\to0}\frac{(2+h)^2-2^2}{h}=\lim_{h\to0}(4+4h+h^2)/h=4$$因此,$f(x)=x^2$在$x=2$处的导数为$4$。
二、导数的计算方法导数的计算方法有很多种,这里介绍三种常用的方法。
1. 用定义式计算。
根据导数的定义,我们可以将函数在某个点的导数表示为极限,通过计算该极限来求出导数的值。
这种方法往往比较繁琐,适用于简单函数或需要进行特殊推导的函数。
2. 利用导数的性质计算。
导数具有很多有用的性质,如加减法、乘法、链式法则等,可以帮助我们快速计算导数。
例如,对于两个函数$f(x)$和$g(x)$,它们的和函数$(f+g)(x)$的导数为$f'(x)+g'(x)$,积函数$(f\cdot g)(x)$的导数为$f'(x)g(x)+f(x)g'(x)$,以及由复合函数$u(x)=f(g(x))$构成的函数$v(x)=u'(x)=f'(g(x))g'(x)$的导数等等。
3. 利用数值计算方法计算。
数值计算方法是一种近似计算导数的方法,常用的方法有差分法、牛顿-莱布尼茨公式、微分方程法等等。
导数的概念导数公式与应用
导数的概念导数公式与应用一、导数的概念导数是微积分中的重要概念之一,表示函数在其中一点处的变化率。
具体来说,对于函数f(x),在点x处的导数可以用极限表示为:f'(x) = lim┬(Δx→0)〖(f(x+Δx) - f(x))/Δx 〗其中,Δx表示自变量x的一个增量。
导数表示了在自变量x发生微小变化的过程中,函数f(x)相应地发生的变化。
二、导数的公式1.常数的导数公式:如果f(x)=c是一个常数函数,其中c是常数,则f'(x)=0。
这是因为无论x如何变化,函数的值始终保持不变。
2.幂函数的导数公式:如果f(x)=x^n,其中n是任意实数,则f'(x)=nx^(n-1)。
3.指数函数的导数公式:如果f(x)=a^x,其中a>0且a≠1,则f'(x)=a^xln(a)。
这个公式表明指数函数的导数与指数函数的底数有关。
4.对数函数的导数公式:如果f(x)=logₐ(x),其中a>0且a≠1,则f'(x)=1/((xln(a))。
5.三角函数的导数公式:- sin(x)的导数:(sin(x))'=cos(x)。
- cos(x)的导数:(cos(x))'=-sin(x)。
- tan(x)的导数:(tan(x))'=sec^2(x)。
6.反三角函数的导数公式:- arcsin(x)的导数:(arcsin(x))'=1/√(1-x^2)。
- arccos(x)的导数:(arccos(x))'=-1/√(1-x^2)。
- arctan(x)的导数:(arctan(x))'=1/(1+x^2)。
以及其他常用函数的导数公式,如指数函数、对数函数的复合函数求导法则等。
三、导数的应用导数作为一种变化率的度量,有许多实际应用。
1.切线与法线:通过计算函数的导数,可以求得函数曲线在特定点处的导数值,从而得到曲线上该点处的切线方程。
导数的性质及其应用
导数的性质及其应用性质单调性(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。
需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:如果函数的导函数在某一区间内恒大于零(或恒小于零) ,那么函数在这一区间内单调递增(或单调递减) ,这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点) 。
进一步判断则需要知道导函数在附近的符号。
对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。
函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
凹凸性可导函数的凹凸性与其导数的单调性有关。
如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。
曲线的凹凸分界点称为曲线的拐点。
应用导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念,又称变化率。
如一辆汽车在10小时内走了600千米,它的平均速度是60千米/小时。
但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。
为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为:那么汽车在由时刻t0变到t1这段时间内的平均速度是:当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。
导数初步导数的定义计算与应用
导数初步导数的定义计算与应用导数初步导数是微积分学中的重要概念,用于描述函数在某一点上的变化率。
导数的定义、计算以及应用都是我们学习微积分的基础知识。
本文将初步介绍导数的定义、计算方法以及一些实际应用。
1. 导数的定义在数学中,导数的定义是函数在某一点上的变化率。
对于一个函数f(x),它在点x处的导数表示为f'(x),也可以写作dy/dx或者df(x)/dx。
导数的定义可以通过极限来表示。
当x自变量趋于某一点a时,函数f(x)在点a处的导数可以用以下极限式来定义:f'(a) = lim(x→a) [f(x) - f(a)] / (x - a)其中lim表示极限,x→a表示x趋向于a,[f(x) - f(a)] / (x - a)表示函数在x处两点间的差值,即斜率。
2. 导数的计算方法导数的计算在微积分中有一套具体的方法,可以帮助我们计算各种类型的函数的导数。
2.1. 常数函数的导数对于常数函数f(x) = C,其中C是一个常数,其导数为零,即f'(x) = 0。
因为常数函数在任何一点上的斜率都为零,表示该函数的变化率为零。
2.2. 幂函数的导数幂函数f(x) = x^n(其中n是一个实数)的导数可以通过以下公式计算:f'(x) = n * x^(n-1)例如,对于f(x) = x^2,其导数是f'(x) = 2 * x^(2-1) = 2 * x。
2.3. 指数函数和对数函数的导数指数函数和对数函数是导数计算中常见的函数类型。
以下是一些常见的导数计算公式:指数函数f(x) = a^x(其中a是常数)的导数为f'(x) = a^x * ln(a)。
对数函数f(x) = log_a(x)(其中a是常数)的导数为f'(x) = 1 / [x * ln(a)]。
2.4. 三角函数的导数三角函数在导数计算中也常见,以下是一些常见的三角函数导数计算公式:正弦函数f(x) = sin(x)的导数为f'(x) = cos(x)。
导数的原理与应用
导数的原理与应用一、导数的定义•导数是微积分中的重要概念,用于描述函数在某点处的变化率。
•函数在某点处的导数,表示该点处函数曲线的切线斜率。
二、导数的计算方法1.利用极限–导数f′(x)可以通过极限 $f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x}$ 来计算。
–这种方法适用于所有类型的函数,但计算较为繁琐。
2.常用的导数公式–f(x)=C,其中C为常数,导数f′(x)=0。
–f(x)=x n,其中n为常数,导数f′(x)=nx n−1。
–$f(x)=\\sin(x)$ ,导数 $f'(x)=\\cos(x)$。
–$f(x)=\\cos(x)$ ,导数 $f'(x)=-\\sin(x)$。
三、导数的性质1.导数的可加性–若函数 f(x) 和 g(x) 都在某点处可导,则(f+g)′(x)=f′(x)+ g′(x)。
2.导数的乘法法则–若函数 f(x) 和 g(x) 都在某点处可导,则 $(f \\cdot g)'(x)=f'(x) \\cdot g(x)+f(x) \\cdot g'(x)$。
3.导数的链式法则–若函数 y=f(u) 和 u=g(x) 都在某点处可导,则 $(f \\circg)'(x)=f'(g(x)) \\cdot g'(x)$。
四、导数的应用1.切线和切线方程–导数可以描述函数曲线在某点处的切线斜率。
–切线方程为y=f′(x)(x−x0)+f(x0),其中x0为切线与函数曲线的交点横坐标。
2.极值和拐点–导数可以用来判断函数的极大值、极小值和拐点。
–在导数图像中,极大值对应导数从正数到负数的转折点,极小值对应导数从负数到正数的转折点,拐点对应导数的极值点。
3.函数图像的性态–导数可以用来研究函数的递增、递减和凹凸性。
导数的定义及其应用
导数的定义及其应用在数学中,导数是一个十分常见的概念,它的定义和应用范围都非常广泛。
本文将分别从导数的定义和应用这两个方面进行详细探讨。
一、导数的定义导数,又称微商,是数学中一个十分基础的概念。
它表示函数在某一点处的变化速率,具体定义如下:设函数 f(x) 在点 x0 处连续,则函数 f(x) 在点 x0 处的导数f’(x0) 定义为:f’(x0) = lim f(x) - f(x0)x→x0 ----------------x - x0其中,x0 是任意实数,x 与 x0 之间的差值可以趋近于0但不能等于0。
这个定义可以简单解释为:在函数的某一点处,如果微小的变化量 dx 对应的函数变化量为 dy,那么导数f’(x) 就是 dy/dx 的极限值。
二、导数的应用导数具有许多实际应用,下面我们将就导数在各个领域中的应用进行探讨。
1. 极值问题在微积分中,一个函数在某一点的导数可以告诉我们该函数在该点处是否有极值。
换句话说,如果一个函数在某一点处的导数为0,则该点就是函数的一个可能的极值点。
我们可以通过对该函数导数的符号进行分析来确定是极大值或极小值。
2. 斜率问题导数也可以用来描述曲线的斜率。
当我们求出一条曲线在某一点的导数时,这个导数就可以告诉我们该点处该曲线的切线的斜率。
切线的斜率在几何学的角度来讲,就代表了曲线在该点处的斜率。
3. 最速下降线导数还可以用于求解物理问题,如最速下降线。
假设一个物体在空气中落下时受到阻力,那么它将在空气中以一个最快的速度下落。
这个速度可以通过求解物体所受阻力的函数的导数来得到,这个导数的零点就表示物体以最快速度下落时的速度。
4. 泰勒级数最后,导数还可以用于计算函数的泰勒级数。
泰勒级数是一个多项式,它可以代表一个周期性函数,并且可以用无限个次数的导数来确定。
总的来说,导数是微积分中一个重要的概念,它不仅可以用来解决极值问题和斜率问题,还可以用于计算最速下降线和泰勒级数等。
《导数的概念及应用》课件
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
导数的意义及应用
-1
0
-2
1
3
x
y
f(x)=x3-3x
2
3
-1
0
1
2
3
x
-2
变题三:区间为0, a (a 0)上的最小值呢?
最大值呢?
y
f(x)=x3-3x
2
3
-1
0
1
2
3
x
-2
(4):求曲线y=f(x)在点A(2,2)处的切线 方程。 (若改为过A(2,2)作曲线切线呢?)
若改为过点B(0,16)呢?
y
x1
0
x2
x
y
x1
0
x2
x
二.导数的应用。 例题:已知函数 f ( x) x3 3x
(1)求函数 f ( x) 的单调区间; (2)求函数 f ( x) 的极值;
分析:(f′(x)=3x2-3,令f′(x)=0,得x=±1 f(x)随x变化如下表:
X f′(x) (-∞,-1) + -1 0 极大值: 2 (-1,1) _ 1 0 极小值: -2 (1,+∞) +
导数的意义及应用导数的几何意义二阶导数的意义偏导数的几何意义一阶导数的几何意义二阶导数的几何意义导数的几何意义ppt导数的意义导数的物理意义三阶导数的几何意义
导数的意义及应用
一.导数的几何意义
问题 : 直线y kx 1与曲线y x ax
3
b相切于点A(1,3), 求b的值.
函数在某点处的导数几何意义是: 函数在该点处的切线的斜率.
f(x)
上的最值; (3)求 f ( x)在区间0,2
f(x)min=-2,f(x)max=2
第1讲 导数及其应用(知识点串讲)(解析版)
第1讲 导数及其应用(知识点串讲)知识整合考点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=lim Δx →0()()f x x f x x+∆-∆为f (x )的导函数. 例1、(2018·山东东营期中)曲线f (x )=x 2-3x +2ln x 在x =1处的切线方程为____________.【答案】x -y -3=0 [f ′(x )=2x -3+2x ,f (1)=-2,f ′(1)=1,故切线方程为y +2=x -1,即x -y -3=0.][跟踪训练]1、(2019·山东济南联考)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2【答案】B [设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ). 又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1. 又y 0=ln(x 0+a ), 所以y 0=0,则x 0=-1,所以a =2.]考点2.基本初等函数的导数公式考点3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)()()()()()()()2'''f x f xg x f x g xg x g x⎡⎤-=⎢⎥⎡⎤⎣⎦⎣⎦(g(x)≠0).考点4.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y 对u的导数与u对x的导数的乘积.例2、(2019·山东菏泽模拟)已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-6【答案】D[由题意f(1)=f′(1)+2+2f(1),化简得f(1)=-f′(1)-2,而f′(x)=2f′(1)x+2,所以f′(1)=2f′(1)+2,得f′(1)=-2,f(x)=-2·x2+2x+2f(1).所以f′(x)=-4·x+2.所以f′(2)=-4×2+2=-6.] [跟踪训练]2、(2019·山东临沂期中)设函数f(x)在(0,+∞)可导,其导函数为f′(x),若f(ln x)=x2-ln x,则f′(1)=________.【答案】2e2-1[设ln x=t,则x=e t,∵f(ln x)=x2-ln x,∴f(t)=e2t-t,∴f(x)=e2x-x,∴f′(x)=2e2x -1,∴f′(1)=2e2-1.]考点5.与导数相关的重要结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).(3)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点6.函数的单调性(1)在(a ,b )内函数f (x )可导,f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x ) ≥0⇔f (x )在(a ,b )上为增函数. f ′(x ) ≤0⇔f (x )在(a ,b )上为减函数.(2)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(3)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x ) ≥0(f ′(x ) ≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.例3、(2019·山东青岛模拟)已知函数f (x )=x 2+ax ,若函数f (x )在x ∈[2,+∞)上是单调递增的,则实数a的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)【答案】B[f (x )=x 2+a x 在x ∈[2,+∞)上单调递增,则f ′(x )=2x -a x 2=2x 3-ax2 ≥0在x ∈[2,+∞)上恒成立. 则a ≤2x 3在x ∈[2,+∞)上恒成立. 所以a ≤16.][跟踪训练]3、(2019·山东临沂阶段检测)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .f (ln 2)<2f (0),f (2)<e 2f (0)B .f (ln 2)>2f (0),f (2)>e 2f (0)C .f (ln 2)<2f (0),f (2)>e 2f (0)D .f (ln 2)>2f (0),f (2)<e 2f (0)【答案】A [令()()xf xg x e =,则()()()2''x x x e f x e f x g x e -==()()'x f x f x e -.∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )是减函数,则有g (ln 2)<g (0),g (2)<g (0),即()ln 2ln 2f e <()00f e,()()2020f f e e <,所以f (ln 2)<2f (0),f (2)<e 2f (0).]考点7.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 例4、(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1【答案】A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1. 所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0. 所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.] [跟踪训练]4、(2019·山东淄博模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞C .⎝⎛⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 【答案】D [因为f (x )=x 3-2cx 2+x 有极值点,f ′(x )值有正有负,所以f ′(x )=3x 2-4cx +1=0有两个不同的根,Δ=(4c )2-12>0,解得c <-32或c >32.]考点8.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例5、已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.【答案】-13 [f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13.]。
导数及其应用函数的极值与导数
2023《导数及其应用函数的极值与导数》contents •导数及其应用概述•函数的极值•导数与极值的关系•导数的其他应用目录01导数及其应用概述函数在某一点的导数如果一个函数在某一点处的变化率恒定,那么该函数在该点处可导。
导数表示函数在某一点处的变化趋势和速度。
导数的几何意义导数在几何上表示函数曲线在该点处的切线斜率。
导数的物理意义导数在物理中表示速度或加速度。
1 2 3如果函数在某区间内单调递增(或递减),那么该函数的导数在此区间内大于等于0(或小于等于0)。
函数单调性与导数的关系导数可以通过加、减、乘、除等运算进行计算,并遵循相应的运算法则。
导数的计算法则高阶导数是指一个函数对自变量求导的次数大于1的导数。
高阶导数的计算需要使用递推关系和低阶导数的计算结果。
高阶导数的计算03医学导数在医学中用于研究药物浓度、生理参数等变量的变化规律和趋势,为疾病诊断和治疗提供依据。
导数的应用场景01经济学导数在经济学中用于研究成本、收益、利润等变量的变化规律和趋势。
02工程学导数在工程学中用于研究物体的运动规律、机械振动、流体动力学等问题。
02函数的极值局部极小值函数在某一点的函数值比其邻域内的函数值都小,则称该点为局部极小值点,该点对应的函数值为局部极小值。
全局极小值在整个函数定义域内,函数值比其定义域内所有点的函数值都小,则称该点为全局极小值点,该点对应的函数值为全局极小值。
全局极大值在整个函数定义域内,函数值比其定义域内所有点的函数值都大,则称该点为全局极大值点,该点对应的函数值为全局极大值。
局部极大值函数在某一点的函数值比其邻域内的函数值都大,则称该点为局部极大值点,该点对应的函数值为局部极大值。
极值的定义极值的判定条件必要条件一阶导数在该点的值为零。
充分条件二阶导数在该点的符号发生变化(由正变为负或由负变为正)。
根据极值的定义,通过比较函数值与其邻域内的函数值来判断是否为极值点,然后求出极值。
先求出函数的导数,令导数为零得到极值点,然后根据极值的定义判断是否为极值点,并求出极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.函数的单调性与导数的关系
。
5.极值点的性质及应用注意事项、求函数极值的基本步骤
。
6.求闭区间上函数最值的基本步骤
《易错题重现》
1.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()
A.A.11或18B.11C.18D.17或18
2.【2012黄冈中学第一模拟考试】若函数 在其定义域内的一个子区间 内不是单调函数,则实数k的取值范围是()
(2)在(1)的条件下,若对于任意 ,不等式 恒成立,求实数 的取值范围;
(3)若函数 在区间[-2,1]上单调递增,求实数 的取值范围.
【总结升华】(写出本节课你的所学、所思、所悟、所疑)
【当堂检测】
1.已知函数 无极值,则实数 的取值范围是.
2.已知函数
(I)若函数 在[0,2]上是单调递增函数,求a的取值范围;
(II)求函数 在[0,2]上的最大值.
【课后作业】
1.设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则()
A.a>-3B.a<-3 C.a>-D.a<-
2.函数 的单调增区间为.
3. ; ; 和 围成的区域面积是
*4.若函数f(x)=lnx-ax2-2x存在单调递减区间,则实数a的取值范围____.
②若 ,则由(1)得:当
,此时 在[0,2]上是减函数,
当 时, 在[0,2]上是单调增函数,
课后作业5.解:(Ⅰ)因为 ,
所以 ,整理得:
又 ,所以 .……………………………………………………………………………3分
(Ⅱ)因为 ,
所以 .………………………………………………………………4分
由条件 .……………………………………………5分
3.情感、态度与价值观:进一步提升综合分析问题与解决问题的能力。
【学习重点】导数在解决切线问题,单调性问题及极值、最值问题中的应用。
【学习难点】含参函数的分类讨论问题。
【学习过程】
《自我检查》
1.基本初等函数导数公式表
。
2.导数四则运算法则、复合函数求导法则
。ቤተ መጻሕፍቲ ባይዱ
3.导数的几何意义及应用时所要注意的问题
②当 时,由 得 ,而 .
若 ,则 ,k单调递增;
若 ,则 ,k单调递减.
故当 时,k取得最大值,
且最大值等于 .……………………………………13分
综上, …………………………………………………14分
A. B. C. D.
3.已知函数f(x)=-x3+ax在区间(-1,1)上是增函数,则实数a的取值范围是.
4.已知函数 既有极大值又有极小值,则实数a的取值范围.
5.设函数 ,则 =____________________
6.求抛物线 过点( ,6)的切线方程。
7.已知函数 .讨论函数 的单调性。
《典例探析》
例1(2010江西理数)设函数 。
(1)当a=1时,求 的单调区间。
(2)若 在 上的最大值为 ,求a的值。
变式训练1.已知函数 其中
(1)当 时,求曲线 处的切线的斜率;
(2)当 时,求函数 的单调区间与极值。
变式训练2.已知函数 ,在曲线 上的点 处
的切线方程为 .
(1)若 时有极值,求 的表达式;
**5.已知定义在实数集上的函数 N ,其导函数记为 ,且满足
,其中 、 、 为常数, .设函数
R且 .
(Ⅰ)求实数 的值;
(Ⅱ)若函数 无极值点,其导函数 有零点,求m的值;
(Ⅲ)求函数 在 的图象上任一点处的切线斜率k的最大值.
附:参考答案
当堂检测
2.解:(1) 恒成立.
恒成立
(2)①若 在[0,2]上是减函数,
因为 有零点而 无极值点,表明该零点左右 同号,又 ,所以二次方程 有相同实根,即
解得 .………………………………………………………………………………………8分
(Ⅲ)由(Ⅰ)知, ,因为 ,所以 [12,+∞],所以①当 或 时, 恒成立,所以 在(0, ]上递增,
故当 时,k取得最大值,且最大值为 ,……………………………………………10分
潍坊七中高三数学二轮复习“导数及其应用”分层导学案
主备人:刘宝娟审核人:曹贤波责任人:董树征
注:带有*的题目是为学有余力的学生准备的,请同学们自己选择完成。
【三维目标】
1.知识与技能:熟记导数公式及导数四则运算法则,能熟练运用导数解决切线问题,单调性问题及极值、最值问题。
2.过程与方法:在一轮复习的基础上,查漏补缺,结合典型例题、最新模拟题重点强化易错点与难点。