2014年数学建模国家一等奖优秀论文设计

合集下载

14建模A题论文

14建模A题论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):16048028所属学校(请填写完整的全名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):关于解决嫦娥三号软着陆轨道设计与控制策略的问题摘要本文主要解决的问题为嫦娥三号软着陆轨道设计与控制策略的优化问题,以及对基于模型的问题设计方案的误差分析和敏感性分析。

针对问题一,确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

通过分析月球卫星运动的主要摄动源—月球非球形引力摄动因素,从而确立月球卫星运动的力模型。

月面经纬坐标(纬度ϕ,经度λ)可以用月心直角坐标,,X Y Z 表示,借助卫星的运动方程可以求出卫星在近日点位置为W N km,通过建立的卫星运动力模型和万有引力公式确定近日(19.0472,29.0243,14.865)点和远日点的速度为1.6925/m s,俯仰姿态角为84.2o。

2014年数学建模国家一等奖优秀论文

2014年数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):小区开放对道路通行的影响摘要2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。

2014高顿杯全国大学生数学建模竞赛优秀文章

2014高顿杯全国大学生数学建模竞赛优秀文章

2014高顿杯全国大学生数学建模竞赛优秀文章近数学教育在经历了几个世纪的发展变革后,在21世纪之初呈现了国际化、大众化、技术化和理论化的四大发展趋势.首先,各国的数学教育已经不再是以前的闭门造车.与此同时,各国的数学家和教育家也在为能找到最为适合本国国情的数学教育方法而互相借鉴、互相探讨.一个共识就是数学建模有利于数学教育发展,因而对一个国家的科技发展和人才素质培养的作用和地位是十分重要的.本文重点研究了数学建模教育对于学生素质的作用.首先,我们介绍了教育的起源以及中西方思想家和教育家对其所下的定义,对数学这一学科的教育及伴随它产生的数学教育研究进行了简要的分析.由于我国数学教育研究是在近代才开始经历巨大的变革,在这些变革过程中我国的数学教育的研究范围、研究目的、研究特点和研究手段方法等都有了根本性的变化,各种学科的不断融入使数学教育成为这些学科与数学交叉的综合性的学科,使它的研究力量得到了不断的壮大和加强.其次,我们论述了数学建模教育的含义,从以下几个方面对数学建模教育进行了分析:1、对数学教育及数学建模教育的认识,2、数学建模活动教育意义的理论分析,3、数学建模活动的实证分析,4、数学建模活动的开展以及对策.第三,我们以大学生就业为主线,分析了数学建模教育对学生综合素质的影响,通过对素质、素质教育、数学素质和数学文化的理论分析,体现了数学建模教育的四大功效:培养品质、启迪心智、磨练意志、提升素质,进而阐述数学建模教育对于学生素质的影响.第四,针对高中数学教育的历史和现状,结合新课标的实施,对高中数学课程新标准全面解读和理解的基础上,建立数学-生活之间的联系,通过数学建模,体现数学的文化内涵,反映数学与其他学科领域间联系.提出了中学数学教育改革的重点应该是提升学生素质、培养动手能力、激发创新意识、提高教学质量.第二篇全国大学生数学建模竞赛论文样文:基于素质模型的高校创新型科技人才培养研究创新,是一个历久弥新的话题.一部人类社会的文明史,即是一部不断创新和创造的历史.尤其是进入21世纪以后,科技创新更是成为知识经济发展的灵魂深刻地改变着人类文明的基本构成和核心理念,作为科技创新活动主体的创新型科技人才的培养亦因此而成为当今时代世界诸国人力资源开发活动中普遍关注的焦点.自1990年代中期以来,我国先后提出了“可持续发展战略”、“科教兴国战略”、“人才强国战略”以及“国家创新体系建设”等一系列事关中华民族长远发展的国家战略,对于这些战略的实现而言,创新型科技人才的培养无疑是其中一项基础性工程.目前,我国的国家综合创新能力在世界主要国家中依然处于比较落后的地位,加紧创新型科技人才的培养是改变这一状况的基础性条件之一.高等教育作为创新型国家建设重要主体,承担着人才培养、科学研究和社会服务三大基本职能.其中,人才培养是高等学校的根本职能.近十几年来,我国高等教育发展持续进行了量的扩张而进入大众化发展阶段,但与此同时,人才培养质量却日益成为一个饱受社会各界诟病的热点论题,发人深省的“钱学森之问”即是对这一问题的集中反映.在《国家中长期教育改革和发展规划纲要(2010-2020年)》制定过程的意见征询阶段亦将“如何培养创新人才”作为面向社会各界公开征询意见的二十个基本问题之一,充分体现了这一艰深命题的极度重要性和现实紧迫性.由于包括创新型科技人才在内的创新型人才的培养是一项复杂的系统工程,其中涉及诸多复杂的因素.但对于这一问题的研究无论采取何种视角,其最终回归点都将指向对培养对象的某种与创新相关的素质或能力的培育方面.由此而引发出另一个与此直接相关且更为基础性的问题:创新型科技人才应该具备什么样的素质结构其中又包括哪些具体素质要素对这一问题的研究探索不仅有利于从理论层面科学地认识和把握创新型科技人才这一特定人才群体的共同素质特征.同时,也有利于为在科技人才的培养实践中有针对性地加强那些关键素质要素的开发培育提供更为客观的和具体的逻辑依据.而从国内目前的研究现状来看,对这一问题的研究却未能得到应有的关注.为此,本论文试图通过借助人力资源管理学中素质模型这一研究工具来构建创新型科技人才的素质模型,以系统地勾勒创新型科技人才的共性素质特征,明晰创新型科技人才培养的素质开发取向,并以该素质模型所提供的素质要素体系作为参照,着重从高等教育本科阶段人才培养实践中学生创新素质建构的角度来探讨未来潜在创新型科技人才的培养问题,以求为“如何培养创新型人才”这一现实难题提供可资参考的路径.论文研究是以素质模型理论、创造力理论和创新教育理论为主要理论依托,采用理论研究与实证研究相结合、定性分析与定量分析相结合的方法,沿着三个在逻辑上相互关联的问题脉络而展开,即(1)什么是创新型科技人才(2)为什么我国高校培养的创新型科技人才严重不足(3)如何培养创新型科技人才在进行文献回顾、关键概念解说和相关理论阐释之后,围绕以上三个问题,论文分别进行了较为集中的研究.。

A数学建模优秀论文精选文档

A数学建模优秀论文精选文档

A数学建模优秀论文精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2014 高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D 中选择一项填写): A 我们的报名参赛队号为(8 位数字组成的编号): 10009072 所属学校(请填写完整的全名):东南大学参赛队员 (打印并签名) :1. 吉张鹤轩2.杨升3.陈同广指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 09 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014 高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本题要求我们以嫦娥三号登月为背景,分析登月轨道参数,重点探讨了登月过程最具难度的着陆轨道设计优化,并对所使用的优化方案进一步作出了误差分析与灵敏度分析。

14年国赛数模B题优秀论文

14年国赛数模B题优秀论文
当考虑稳定性时,重心越低稳定性越高,投影的矩形面积越大,而考虑用材少最少 时,最长桌腿长度越短用材越少,投影矩形面积越小。因为桌面高度一定,当矩形为正 方形时即 A2 A3 A2 A5 ,达到整体最优,桌子稳定性好且用材少。此时:
h tan r 2 l 2 r 将桌高 70 cm,桌面直径 80 cm 代入上述公式,求得: 27.13 ,最长桌腿的长度 l1 78.65 。 则得到此时平板尺寸为 181.3cm 80cm 。 根据模型二求得的槽长 Ri 与 的函数关系,解出此时各木条的槽长矩阵,考虑到加工方 便,本文令所有槽长都等于最长槽长 34.87cm。 运用 matlab 软件,运用仿真技术(见附录),画出折叠桌展开的动态过程(图 9)。
五、模型的建立与求解
5.1 问题一 5.1.1 模型一的建立与求解
已知长方形平板尺寸为 120 cm × 50 cm × 3 cm,要将该平板裁剪为桌面呈圆形 的折叠桌,由于圆形桌面的对称性和木条的已知宽度,本文假设每组桌腿条数为 19, 考 虑实际裁剪过程,去掉平板两侧长为 120cm,宽为 1.25cm 的两部分(见图 1 阴影部分) 由图 1 将每根木条对应在半圆内的矩形抽象出来,得到图 2,设圆形桌面半径为 r , 已知木条宽 d 为 2.5cm ,那么根据勾股定理: l2 d 2 r2
赛区评阅编号(由赛区组委会评阅前进行编号):
2014 高教社杯全国大学生数学建模竞赛
编 号 专 用 页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛获奖名单正式稿

2014高教社杯全国大学生数学建模竞赛获奖名单正式稿

2014高教社杯全国大学生数学建模竞赛获奖名单
本科组高教社杯获得者:程双泽、李君昌、陈凌勤(信阳师范学院)
专科组高教社杯获得者:丁晓彤、回荣洲、段君宜(海军航空工程学院青岛校区)本科组MATLAB创新奖获得者:陈超、唐梦珏、杨克宇(浙江工业大学)
专科组MATLAB创新奖获得者:王磊、蒋国辉、蔡姗姗(四川建筑职业技术学院)[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共293名)
本科组二等奖(共1256名)
专科组一等奖(共47名)
专科组二等奖(共197名)。

2014年全国大学生数学建模竞赛A题论文

2014年全国大学生数学建模竞赛A题论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。

针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。

再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线方m s,2程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。

针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

2014数学建模国赛山东省省一论文

2014数学建模国赛山东省省一论文

在 matlab 中获得曲面图像如下图:
图 6 直纹曲面图形
Print to PDF without this message by purchasing novaPDF (/)
`
对该折叠桌,当 x 取值±2.5n,n=1,2……9,10 时,即可表示单侧桌腿组的动态 变化过程。另一侧由于关于 xoz 平面对称,当 y 取相反数时,即可表示。 5.1.3 桌角边缘线(红线)模型 取任一木条与桌面做纵切面如图, 从木条边缘点 C 与钢筋点 C’分别向桌面做垂线 CA, C‘A’,可知△ ABC∽△ A‘B’C‘,即可得
Print to PDF without this message by purchasing novaPDF (/)
`
图 5
由坐标系 I 可知,x 为 n 号木条外边缘距原点的垂直距离,可得该折叠桌平面状态时 桌腿长度方程 M0:
M (x,y,z):
60 625 x 2 ; y= 60 5.16 54.84 ;
A B B C A C Equation 6 AB BC AC
图 7
由等式 2 木条长度方程 M 可得 BC 方程,等式 4 钢筋运动方程 G 可得 A’C’、 A’B’与 B’C’ 方程,由等式 6 比例关系即可得出 C 点运动轨迹,即边缘线方程:
Equation 7
0 7507 B x, y, z : 25 x 25 60 625 x 2 y 625 x 2 z 2 2 2 2 27.42sin 27.42 cos 5.16 625 x (27.42cos 5.16 625 x ) 27.42sin

2014南昌大学第十一届数学建模竞赛 一等奖论文

2014南昌大学第十一届数学建模竞赛 一等奖论文

2014南昌大学第十一届数学建模竞赛承诺书我们仔细阅读了南昌大学数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B中选择一项填写): A .报名序号是(没有或不清楚可不填):________________.参赛队员(打印并签名) :所属院系(请填写完整的全名):1._______________签名:_________________院系: __________________________2._______________签名:_________________院系: __________________________3._______________签名:_________________院系: __________________________日期:年月2014南昌大学第十一届数学建模竞赛编号专用页评阅编号:评阅记录:评阅人备注工程投标问题摘要投标报价是获得工程项目的重要组成部分,如何在众多竞标企业中脱颖而出以中标,使复杂的信息或资料通过一定的方法得出一个明确的结论对于承包商有着重要的意义。

本文就A题中给出的不完全信息下工程合理投标报价问题进行研究,分析建立数学模型,并利用相关的数学软件进行求解。

最后就建立的模型给出相应的评价和推广。

对于问题一,我们建立了两个模型,模型一是将求最优报价值的问题转化成求扣分函数的最小值问题,首先根据题目给出的报价得分的计算公式构造了扣分函数,然后通过求导的方法来求出函数的最小值问题,最后得出结论即扣分最少的有效报价值即为得分最多的投标报价点。

2014年全国数学建模联赛论文设计B题参考问题详解

2014年全国数学建模联赛论文设计B题参考问题详解

高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):农业大学参赛队员(打印并签名) :1. 富顺2. 安明梅3. 熊万丹指导教师或指导教师组负责人(打印并签名):指导组日期: 2014年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的设计摘要太阳能利用的重点是建筑,其应用方式包括利用太阳能为建筑物供热和供电,因此在设计电池时考虑太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等对电池产电量的影响非常重要。

问题一,从题目给出的数据和收集到的资料出发,我们对所有数据进行处理,分析得到小屋每个面的总辐射强度,然后对其排序得到各个面的辐射强度的比例,利用模糊综合评判以及matlab模拟仿真得出问题的顶面最优值,小屋在35年的寿命期的发电量为343139.88KW,经济效益32万元,投资的回收年限14.33年。

2014全国数学建模A题一等奖论文

2014全国数学建模A题一等奖论文

v2 = 526.94m / s 。即远月点的速度为 526.94 m / s .方向为水平方向。
图 3 着陆准备轨道环绕模拟
由于近月点和远月点分别是椭圆轨道的长半轴的两个端点, 且两点的连线经过月心 (图 3),因此由对称性可知远月点的位置为(19.51E,32.31S),高度为 100000 米。
360 = 30.301千米 / 度 2πR P 为纬度改变 1o 水平距离的改变量。 p=
根据能量守恒定律可知:
1 2 1 2 mv1 + mg ′h近 = mv 2 + mg ′h远 2 2 其中: v1 为近月点的速度; v2 为远月点的速度。
⑵模型的求解 在本题中由于我们无法确定任意时刻减速动力以及速度的大小及方向, 因此我们通 过假设简化模型,从而对问题进行求解。由于发动机推力主要是用于减少飞行器的横向 速度,同时克服由月球引力引起的径向速度,我们假设了嫦娥三号可以通过自身调节机 制使得自己在运动过程中竖直方向受恒力作用,方向向下,水平方向也受恒力作用,方 向与水平速度方向相反,初速度为 1700m/s。 因此我们可以将抛物线下降的过程分解成竖直方向匀加速,水平方向匀减速的运 动。(如图 1)由附件 2 可知,嫦娥三号在 3000m 时已经基本位于目标上方,所以我们 认为在 3000 米处水平速度近似为 0,57 m / s 为其竖直方向速度。
§3 模型的假设
1.由给出的附件月球的形状扁率为1/963.7256,数量级较小,假设月球为一个球体。 2.由于从近月点100km左右的高度降落到地球表面的时间比较对短,假设嫦娥三号不受 非球项、日月引力摄动等影响因素的影响。 3.假设月球引力场为平行定常引力场,嫦娥三号着陆轨道不受月球自转的影响。 4.假设月球表面海拔为零的球面势能为0。 5.假设嫦娥三号水平移动的距离近似为着陆划过月球表面弧度长度。 6.假设月球的重力加速度恒定,为 1 / 6 g 。

2014研究生数学建模竞赛优秀论文_高考自主招生考试成绩管理系统

2014研究生数学建模竞赛优秀论文_高考自主招生考试成绩管理系统

1 问题重述高校自主招生是高考改革中的一项新生事务,现在仍处于探索阶段。

学生面试问题理所当然的成为高校自主招生中考察考生综合素质的重要环节之一。

现有某高校拟在全面衡量考生的高中学习成绩及综合表现后再采用专家面试的方式决定录取与否。

该校在今年自主招生中,经过初选合格进入面试的考生有N人,拟聘请老师M人。

其中每位学生需要分别接受4位老师(简称该学生的“面试组”)的单独面试。

在面试时,各位老师独立地对考生提问并根据其回答问题的情况给出评分。

由于这是一项主观性很强的评价工作,老师的专业可能不同,他们的提问内容、提问方式以及评分习惯也会有较大差异,因此面试同一位考生的“面试组”的具体组成不同会对录取结果产生一定影响。

同时为了保证面试工作的公平性,要求:Y1. 每位老师面试的学生数量应尽量均衡;Y2. 面试不同考生的“面试组”成员不能完全相同;Y3. 两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4. 被任意两位老师面试的两个学生集合中出现相同学生的人数尽量的少。

需要解决如下问题:问题1:当考生人数N已知时,在满足条件:两位学生的“面试组”都没有两位以及三位面试老师相同的情形时,该校至少要聘请的老师数M。

问题2:在满足条件Y2的要求下,当学生数N=379,聘请的教师数M=24时,建立学生与教师之间合理的分配模型,并给出具体的分配方案。

问题3:假设当面试老师中理科与文科的老师各占一半,而每位学生都分别要接受两位文科与两位理科老师面试的情况下重新分析问题1与问题2。

问题4:在解决以上问题的基础上,针对考生与面试老师之间分配的均匀性和面试公平性的关系,同时也是为了保证面试的公平性,提出一些合理化的意见及建议。

2 问题分析高考自主招生考试是通过笔试成绩和面试成绩两方面的综合评定鉴定学生的录取情况的。

因此面试的成绩不容忽视。

确定合理的面试老师分配方案,保证使录取工作达到真正的公平合理。

针对这个问题提出了一些公平性准则(Y1--Y4),最终目的是合理分配老师。

2014高教社杯全国大学生数学建模竞赛D题获奖论文设计

2014高教社杯全国大学生数学建模竞赛D题获奖论文设计

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. (隐去论文作者相关信息等)2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储药柜的设计摘要面向消费者的药品零售药房,日常运行中需要执行大量的药品存储和分拣工作,目前自动化药房的研发及逐渐应用提高了药品存储和分拣效率,为医疗工作提供了极便利。

储药通道即为自动化药房的重要部分,合理的储药槽设计可以减少储药槽的设计成本、合理的利用储存处空间、提高药品的存储率和分拣效率。

本文根据问题中所给的数据,利用统计方面的知识联系实际问题,作出了相应的解答和处理。

2014年国赛数学建模论文-嫦娥三号

2014年国赛数学建模论文-嫦娥三号

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》以下简称为(“竞赛章程和参赛规则” 可从全国大学生数学建模竞赛网站下载),。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

A 我们参赛选择的题号是(从A/B/C/D 中选择一项填写):我们的报名参赛队号为(8 位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2014 年9 月15日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要采用软轨道方式使探测器相对于月球的速度小,能够使探测器安全着月,嫦娥三号软轨道的设计关键考虑探测器安全着陆在相对平坦的区域和燃料的节省。

本文主要解决以下三个问题:针对问题一,假设嫦娥三号着陆过程为类平抛运动。

依据嫦娥三号的着陆准备轨道、着月点、月心在同一平面上的原理,利用万有引力提供向心力公式M 1M 2V2,计算求得嫦娥三号在近月点的速度为1.6725km/s,远月点速度G M22R h1R h1 为1.633km/s。

2014高教社杯全国大学生数学建模竞赛获奖名单正式稿

2014高教社杯全国大学生数学建模竞赛获奖名单正式稿

2014高教社杯全国大学生数学建模竞赛获奖名单
本科组高教社杯获得者:程双泽、李君昌、陈凌勤(信阳师范学院)
专科组高教社杯获得者:丁晓彤、回荣洲、段君宜(海军航空工程学院青岛校区)本科组MATLAB创新奖获得者:陈超、唐梦珏、杨克宇(浙江工业大学)
专科组MATLAB创新奖获得者:王磊、蒋国辉、蔡姗姗(四川建筑职业技术学院)[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共293名)
本科组二等奖(共1256名)
专科组一等奖(共47名)
专科组二等奖(共197名)。

2014年全国统计建模大赛获奖论文一等奖1-7 一种基于网络爬虫技术的价格指数计算模型

2014年全国统计建模大赛获奖论文一等奖1-7  一种基于网络爬虫技术的价格指数计算模型

一种基于网络爬虫技术的价格指数计算模型国家统计局城市社会经济调查司孙易冰、赵子东、刘洪波内容摘要:近年来国内外机构已经开展基于大数据的网络购物价格指数分析研究。

本文参照官方CPI的制度方法,设计了一种基于网络爬虫技术的价格指数计算模型。

通过模型试算值与官方数据的比较,以及对原始数据的特征挖掘,我们发现该种模型具有时效性强和灵敏度高的优点。

关键词:价格指数;网络爬虫;聚类分析;幂律分布;季节调整A Model of Compiling Price Index Based on the‘Web Scraping’ TechnologyAbstract:In recent years,some domestic and foreign institutions have been taking researches on using big data in compiling online price indexes. This paper refers to the official CPI methodology,designing a model of compiling price index based on the ‘web scraping’technology. By comparing results of this model with official CPI data,and analyzing characteristics of raw data,we find out that our model has the advantages of strong timeliness and high-sensitivity.Keywords:Price Index;Web scraping;Cluster Analysis;Power-Law Distribution ;Seasonal Adjustment一、问题的提出近年来大数据技术已经深刻影响着统计工作的具体实践,也要求统计部门积极应用大数据技术,更好地为有关部门决策提供依据。

2014年全国研究生数学建模竞赛一等奖论文(E题)-乘用车物流运输计划问题

2014年全国研究生数学建模竞赛一等奖论文(E题)-乘用车物流运输计划问题

(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校西安理工大学参赛队号队员姓名(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目乘用车物流运输计划问题摘要:本文主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案。

针对前三问,由于不考虑目的地和轿运车的路径选择,将问题抽象为带装载组合约束的一维装车问题,优化目标是在保证完成运输任务的前提下尽可能满载,选择最优装载组合方案使得所使用的轿运车数量最少。

对于满载的条件,将其简化为考虑轿运车的空间利用率最大,最终建立了空间利用率最大化和运输成本最小化的两阶段装载优化模型。

该模型类似于双目标规划模型,很难求解。

为此,将空间利用率最大转换为长度余量最少,并为其设定一个经验阈值,将问题转换为求解整数规划问题,利用分支定界法进行求解。

由于分支定界法有时并不能求得最优解,设计了一种基于阈值的启发式调整优化算法。

最后,设计了求解该类问题的通用算法程序,并对前三问的具体问题进行了求解和验证。

通过求解得出,满足前三问运输任务的1-1型轿运车和1-2型轿运车数量如下表所示(具体的乘用车装载方案见表2、表5、表7):第一问第二问第三问1-1 16 12 251-2 2 1 5针对问题四,其是在问题一的基础上加入了整车目的地的条件,需要考虑最优路径的选择。

在运输成本上,加入了行驶里程成本,因而可以建立所使用的轿运车数量最少和总里程最少的双目标整数规划模型。

对于此种模型,可以采用前三问所设计的通用算法进行求解。

此时,需要重新设计启发式调整优化算法。

为此,根据路线距离的远近和轿运车数量需要满足的比例约束条件设计了新的调整优化方案。

最终求得的各目的地的轿运车使用数量如下表所示,此时的总路程为6404,具体装载方案见表9。

A B C D 总数1-1型 1 6 9 5 211-2型 4 0 0 0 4总量 5 6 9 5 25针对问题五,作为问题四的扩展研究,类似于问题四建立了双目标规划模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):创意平板折叠桌摘要目前住宅空间的紧导致越来越多的折叠家具的出现。

某公司设计制作了一款折叠桌以满足市场需要。

以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。

针对问题一,根据木板尺寸、木条宽度,首先确定木条根数为19根,接着,根据桌子是前后左右对称的结构,我们只以桌子的四分之一为研究对象,运用空间几何的相关知识关系,推导并建立了几何模型。

接着用MATLAB软件编程,绘制出折叠桌动态变化过程图。

然后求出折叠桌各木条相对桌面的角度、各木条长度、各木条的开槽长度等数据,相关结果见表1。

然后建立相应的三维坐标系,求出桌角各端点坐标,绘出桌角边缘线曲线图,并用MATLAB工具箱作拟合,求出桌角边缘线的函数关系式,并对拟合效果做分析(见表3)。

针对问题二,在折叠桌高度、桌面直径已知情况下,综合考虑桌子稳固性、加工方便、用材最少三个方面因素,我们运用材料力学等相关知识,对折叠桌作受力分析,确定稳固性、加工方便、用材最少三个方面因素间的相互制约关系,建立非线性优化模型。

用lingo软件编程,求出对于高70 cm,桌面直径80 cm的折叠桌,平板尺寸、钢筋位置在桌腿上距离铰链46.13cm处、各木条的开槽长度(见表3)、最长木条(桌脚)与水平面夹角。

针对问题三,对任意给出的桌面边缘线(f(x)),不妨假定曲线是对称的(否则,桌子的稳定性难以保证),将对称轴上n等份,依照等份点沿着木板较长方向平行的方向下料,则这些点即是铰接处到木板中垂线(相对于木板长方向)的距离。

然后修改问题立的优化模型,用lingo软件编程,得到最优设计加工参数(平板尺寸、钢筋位置、开槽长度等)。

最后,我们根据所建立的模型,设计了一个桌面边缘线为椭圆的折叠桌,并且给出了8个动态变化过程图(见图10)和其具体设计加工参数(见表5)。

最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方法。

关键字:折叠桌曲线拟合非线性优化模型受力分析一、问题重述1.1引言创意平板折叠桌注重于表达木制品的优雅和设计师所想要强调的自动化与功能性。

为了增大有效使用面积。

设计师以长方形木板的宽为直径截取了一个圆形作为桌面,又将木板剩余的面积切割成了若干个长短不一的木条,每根木条的长度为平板宽到圆上一点的距离,分别用两根钢筋贯穿两侧的木条,使用者只需提起木板的两侧,便可以在重力的作用下达到自动升起的效果,相互对称的木条宛如下垂的桌布,精密的制作工艺配以质朴的木材,让这件工艺品看起来就像是工业革命时期的机器。

1.2问题的提出围绕创意平板折叠桌的动态变化过程、设计加工参数,本文依次提出如下问题:(1)给定长方形平板尺寸(120 cm × 50 cm × 3 cm),每根木条宽度(2.5 cm),连接桌腿木条的钢筋的位置,折叠后桌子的高度(53 cm)。

要求建立模型描述此折叠桌的动态变化过程,并在此基础上给出此折叠桌的设计加工参数和桌脚边缘线的数学描述。

(2)折叠桌的设计应做到产品稳固性好、加工方便、用材最少。

对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。

对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。

(3)给出软件设计的数学模型,可以根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状,并根据所建立的模型给出几个设计的创意平板折叠桌。

要求给出相应的设计加工参数,画出至少8动态变化过程的示意图。

一、模型假设(1)忽略实际加工误差对设计的影响;(2)木条与圆桌面之间的交接处缝隙较小,可忽略;(3)钢筋强度足够大,不弯曲;(4)假设地面平整。

三、符号说明符号意义D 木条宽度(cm)缝宽L 木板长度(cm)W 木板宽度(cm)N 第n根木条T 木条根数木板从外起第1个木条的长度(cm)木板从外起第n个木条的长度(cm)H 桌子高度(cm)R 桌子半径(cm)R 桌子直径(cm)桌子厚度(cm)第n根木条到木板边沿的距离(cm)第n根木条顶点位置到圆面轴线径向距离(cm)第n根木条与水平面的夹角(度)第n根木条开槽长度(cm)四、问题分析4.1问题一分析题目要求建立模型描述折叠桌的动态变化图,由于在折叠时用力大小的不同,我们不能描述在某一时刻折叠桌的具体形态,但我们可以用每根木条的角度变化来描述折叠桌的动态变化。

首先,我们知道折叠桌前后左右对称,我们可以运用几何知识求出四分之一木条的角度变化。

最后,根据初始时刻和最终形态两种状态求出桌腿木条开槽的长度。

4.2问题二分析题目要求从折叠桌的稳固性好、加工方便、用材最少三个角度,确定设计加工参数。

我们可以从应力、支撑面积考虑稳固性,从开槽长度考虑加工方便,从木板长度考虑用材最少。

而它们之间又是相互制约,我们需要确定最优设计加工参数,可以建立非线性规划模型,用lingo软件来求解最优设计加工参数(平板尺寸、钢筋位置、开槽长度等),这里以合力的方向(斜向上)与最长木条(桌腿)的夹角方向最小为目标函数,以木条所承受应力小于木条的许用应力、支撑面积大于桌面面积、木条的开槽长度小于木条本身长为约束条件。

4.3问题三分析题目要求制作软件的意思就是客户给定折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,将这些信息输入程序就得到客户想要的桌子。

我们在求解最优设计加工参数时,自行给定桌面边缘线形状(椭圆、相交圆等),桌脚边缘线形状,折叠桌高度,应用第二问的非线性规划模型,用MATLAB软件绘制折叠桌截面图,得到自己设计的创意平板折叠桌。

问题三流程图:已知f(x)、g(x)、h、wd、N、五、模型建立和解决5.1 问题一的模型建立和解决5.1.1 模型的准备(1)符号说明为求出各木条角度关系,现引入下列符号::木板从外起第n个木条的长度(cm):第n个木条到木板边沿的距离:第n个木条与桌面铰接处到桌面轴线距离:第n个木条与第n-1个木条桌面铰接处到桌面轴线距离差:第n个木条与桌面的夹角(2)木条数的确定根据题目意思,长方形平板尺寸,宽50 cm,每根木条宽2.5 cm,知道木条数越多,桌子越不易松动,即稳固性更好,最大根数为根,考虑木条间的间隙和刀片的厚度,定为19根,此时,缝宽为:(3)模型近似从折叠桌实物可以看出,桌面并非为标准的圆面,圆面边上是锯齿形状,考虑到锯齿长度和圆半径的差异,我们假定圆为过木条中点的圆,在作示意简图和实际计算时,都以木条端点中点为木条与桌面接触点。

另外,折叠桌以材料最省为设计原则,在木板尺寸一定情况下,应该做到桌面尽可能大,这里我们取木板宽度为桌面直径。

5.1.2 模型的建立为帮助理解,我们做折叠桌子两个最长脚(即在未折叠时的木板的同一侧最长木条)示意图,如图1所示:图1 折叠桌子两个最长脚截面图(其中A 点为最长木条一端到水平面的距离,由于桌实际高度包括桌面厚度3cm ,则A 点到水平面距离要减去3cm)其中为57cm ,因为木板厚度为3cm,有AD 为两倍厚度,因为则知为57cm 。

记h-3A 点B 点C 点D 点E 点下面,我们作出平板俯视示意图,如下图2所示第n根木条第n-1根木条图2 平板俯视示意图对于第n 个木条到木板边沿的距离,应该包括(n-1)条缝宽,(n-1)根木条长度以及它自身一半的长度,则有:0.5(1)从几何关系上,应用勾股定理可以得出:0.5(2)则第n个木条与第n-1个木条顶点位置到圆面轴线径向距离差:0.5(3)第n 根木条长度:为了求解木条旋转角度,我们沿着钢筋的角度,作出折叠凳示意简图,如图3所示:图3 折叠桌示意简图由上图知0.50.5h0.5(4)同理可得递推公式,即每根木条旋转角度:(由图3知,可能为负值,说明)开槽长度综合以上所分析,可建立如下几何模型:5.1.3 模型的解决(1)动态变化过程动态变化过程:由于用力大小未知,折叠桌与时间的关系不能确定,我们只能确定桌子从平板到折叠完成后这一过程中,任一角度的桌角位置,(程序见附0.5(6)0.5(7)(5)录problem1_3.m )例如当最长木条转过、、,通过程序可以得到各木条相对桌面旋转角度,如表1所示:表1最长木条转过、、时各木条转动角度夹角为60°夹角为65°夹角为70°第1根606570第2根71.510676.821982.0272第3根79.72884.982890.063第4根85.97791.041495.8979第5根90.765395.6054100.2279第6根94.383599.0138103.1289第7根97.0267101.484105.7333第8根92.8285103.1591107.2893第9根99.8766104.1306108.1893(2)长槽长度、木条长度、旋转角度根据以上建立的模型,运用MATLAB 软件,编程计算每根木条长度、旋转角度、长槽长度结果如下表2所示:表2 木条长度、旋转角度、长槽长度第1根第2根第3根第4根第5根第6根第7根第8根第9根第10根111.1111.38旋转角度73.71985.83393.73799.39103.5438.76537.33836.28735.563106.59108.78110.2535.143514.79316.16417.12817.70217.892木条长度52.08946.60943.15440.6512.994卡槽长度4.50187.943410.73从表1可以看出,第一根木条卡槽长度为0cm,符合实际。

相关文档
最新文档