矿山压力及岩层控制之7.采场岩层移动与控制
矿山压力与岩层控制分析PPT课件
不能对采场上覆岩层的结构状态作出更全面的描述。
18.01.2021
.
资源与环境工程学院-资源工程1系
18
Ground Pressure and Strata Control
(2)“预生裂隙梁”假说低应力区 高应力区 假塑性变形区
12
3
Ⅱ
Ⅲ
Ⅰ
σ1
σ3
σ3
σ1
优点:煤层超前破坏以及临近采场的部分岩层出露前可能预先产生 裂隙这一点,已经为实践所证实。
②假说没有正确的揭示采场支架与围岩间的力学关系, 无法解释采场支架上显现的压力往往与支架本身力学特性有 关的现象。
18.01.2021
.
资源与环境工程学院-资源工程1系
16
绪论
Ground Pressure and Strata Control
1.3.2掩护“梁”假说 ①采场是在一系列“梁”的掩护之下。这些梁在冒落前能将
人数所占比重超过30%以上,每年顶板事故影响的产量约占总产量的5%,
达到3000万t至4000万t的巨大数字。
40%
60%
35%
50%
30%
40%
瓦斯 25%
30% 20%
顶板 20%
水
15%
运输
10%
其它 10% 5%
瓦斯 顶板 水 运输 其它
0% 2004
2005
0% 2004
2005
图1.1 中国煤矿安全事故比例
关键层定义:在采场上覆岩层中存在多个岩层时,对 岩体活动全部或局部起控制作用的岩层称为关键层 。
18.01.2021
.
资源与环境工程学院-资源工程1系
23
绪论
矿山压力与岩层控制
矿山压力与岩层控制一.名词解释矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力。
原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力,也称为岩体初始应力、绝对应力或地应力。
充填开采:就是用充填材料来充填已采空间,借以支撑围岩,防止或减少围岩垮落和变形的顶板管理技术,采用此方法管理顶板的采煤方法称为充填开采。
关键层:对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层。
锚固力:锚杆对围岩所产生的约束力称为锚固力。
根据约束方式分为:托锚力,黏锚力,切向锚固力;根据锚固阶段分为:初锚力,工作锚固力,残余锚固力。
沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,作为下区段工作面的回采时的回风平巷称为沿空留巷。
沿空掘巷:在上一区段工作面运输平巷废弃后,待采空区上覆岩层移动基本稳定后,沿被废弃的巷道边缘,掘进下一工作面的区段回风平巷称为沿空掘巷。
冲击矿压:是压力超过煤岩体强度极限,聚积在采掘工程周围煤岩体之中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏等。
充分开采:当采空区尺寸相当大时,地表最大下沉值不再随采空区尺寸增大而增大的开采状态称为充分采动。
二.简答题1.原岩应力概念组成部分以及场规律特点:(☆)答:天然存在于原岩内与人为因素无关的应力场称为原岩应力场。
其主要组成部分是自重应力场和构造应力场。
其规律特点:(1)实测铅直应力基本上等于上覆岩层重量。
(2)水平应力普遍大于铅直应力。
(3)平均水平应力与铅直应力的比随深度增加而减小。
(4)最大水平主应力和最小水平主应力一般相差较大。
2.构造应力场的特点:答:由于地质构造运动而引起的应力场称为构造应力场。
其特点:(1)构造应力以水平应力为主,具有明显的区域性和方向性。
矿山压力与岩层控制复习资料
第一部分:名词解释1.矿山压力:采动后作用于岩层边界上或存在于岩层之中的这种促使围岩向已采空间的运动的力(即采动后促使围岩运动的力),称为矿山压力。
既是指分布于岩层内部各点的应力,又包括了作用于围岩任何一部分边界上的力。
2.矿山压力显现:采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,统称为“矿山压力显现”。
3.直接顶:所谓直接顶是指在老塘(采空区)内已垮落,在采场内由支架暂时支撑的悬臂梁岩层,其结构特点是在采场推进方向上不能始终保持水平力的传递。
因此,控制直接顶的基本要求是:当其运动时,支架应能承担其全部作用力。
4.基本顶:基本顶是指运动时对采场矿压显现有明显影响的传递岩梁的总合,在初次来压后,是一组在推进方向上能始终传递水平力的不等高裂隙梁。
对于基本顶各岩梁控制的基本要求是:防止由于基本顶运动对采场产生动压冲击和大面积切顶事故发生,把基本顶岩梁运动结束时在采场形成的顶板下沉量控制在要求的范围。
5.传递岩梁:把每一组同时运动或近乎同时运动的岩层看做一个运动的整体,称为“传递力的岩梁”,简称“传递岩梁”6.支承压力:煤(矿)层采出后,在围岩应力重新分布的范围内,作用在煤(岩)层和矸石上的垂直压力。
包括高于和低于原始应力的整个区间,来源于上覆岩层的重量。
7.支承压力显现:在支承压力作用下,发生的煤岩层破坏压缩,相应部位的顶底板相对移动以及支架受力等现象。
8.冲击地压:又称岩爆,是指井巷或工作面周围岩体,由于弹性变形能的瞬时释放而产生突然剧烈破坏的动力现象,常伴有煤岩体抛出、巨响及气浪等现象。
9.垮落步距,来压步距:当直接顶垮落高度达到1m 以上,垮落长度达工作面长度一半以上时,就叫做直接顶初次垮落(初次放顶)。
直接顶初次垮落时自开切眼到支架后排放顶线的距离叫做初次垮落步距。
回采工作面开采后的初次断裂,使工作面支架承受较大的静载荷或冲击载荷,这种矿山压力显现叫做基本顶初次来压。
带目录完美版《矿山压力与压力控制》课后习题答案
目录第0章绪论 (1)第1章矿山压力与矿山压力显现 (6)第2章采场上覆岩层运动和发展的基本规律 (7)第3章采场围岩支承压力及矿压显现与上覆岩层运动间的关系 (10)第4章回采工作面顶板控制设计 (14)第5章综采放顶煤采场矿压控制 (16)第6章矿柱支护采矿法的岩体控制 (20)第7章回采巷道矿压理论 (21)第8章冲击地压及其监测 (35)矿山压力与压力控制习题第0章绪论1、顶板事故频繁发生的基本原因是什么?答:顶板事故频繁发生的基本原因是:(1)没有很好地研究和掌握各个具体煤层需要控制的岩层范围及其运动的规律(包括运动发生的时间和条件等),顶板控制设计缺少基础;2)没有深入地研究和掌握各种类型支架的特性,特别是在生产现场所能达到的实际支撑能力。
没有解决好针对具体煤层条件选好和用好支护手段方面的问题;3)没有更好地揭示支架与顶板运动间的关系,达到正确合理的选择控制方案。
2、矿山压力与岩层控制研究的主要任务是什么?答、矿山压力与岩层控制研究的主要任务为:(1)研究随采场推进在其周围煤层及岩层中重新分布的应力(包括应力大小及方向等)及其发展变化的规律。
该应力的存在和变化是煤及岩层变形、破坏和位移的根源,也是采场及周围巷道支架上压力显现的条件。
搞清分布在煤层及各个岩层上的应力状况,揭示它们随采场推进及岩层运动而变化的规律,是采场矿山压力研究的重点。
(2)研究采场支架上显现的压力及其控制方法。
包括压力的来源、压力大小及与上覆岩层运动间的关系、正确的控制设计方法等。
(3)研究在采场周围不同部位开掘和维护的巷道的矿山压力显现及其控制办法。
包括不同时间开掘的巷道压力的来源、巷道支架上显现的压力大小及其影响因素、以及支架与围岩运动间的关系等。
(4)控制采动岩层活动的主要因素分析。
从十分复杂的采动岩层活动中建立采动岩层的结构力学模型,从而展开对采场顶板矿压、采场突水、岩层移动及地表沉陷规律等进行系统描述。
(5)深部开采时采场支承压力分布、岩层结构及运动特点、围岩大变形的控制机制等。
矿山压力与岩层控制
矿山压力与岩层控制1.名词解释1.矿山压力: 由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力;2.矿山压力显现: 由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象;4.原岩应力:未受开采影响的岩体内,由于岩体自重和构造运动等原因引起的应力;4.支撑压力:回采空间周围煤岩体内应力增高区的切向应力;5.周期来压: 老顶平衡结构周期性失稳而施加给工作面以大型压力的过程6.初次来压: 老顶平衡结构第一次失稳而施加给工作面以大型压力的过程7.砌体梁: 工作面上下两区破断的岩块咬合形成的外表似梁,实质是拱的平衡结构8.关键层:对采场上覆岩层局部或直至地表的全部岩层活动起主要控制作用的岩层9.冲击地压: 聚集在矿井巷道和采场周围岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架与设备损坏,人员伤亡,部分巷道垮落破坏的力学现象。
10.底板比压:底板单位面积所受支架的压力11.回采工作面:在煤层或矿床的开采过程中,直接进行采煤或采有用矿物的工作空间2.简答题1.原岩应力分布规律答:(1)实测铅直应力基本上等于上覆岩层重量;(2)水平应力普遍大于铅直应力;(3)平均水平应力与铅直应力的比值随深度增加而减小;(4)最大水平主应力和最小水平主应力一般相差较大。
2.绘图说明横三区/竖三带三区:A煤壁支撑影响区B离层区:C重新压实区:三带:I垮落带:II裂隙带III弯曲带(硬度越高,三带发育越好)(自下至上)3.绘图说明支柱特性工作支柱力学特性——受顶板压力作用,支柱变形(下缩)性质。
4.关键层具有的特征①几何特征,相对于其他同类岩层单层厚度较厚;②岩性特征,相对于其他岩层较为坚硬,即弹性模量较大,强度较高;③变形特征,关键层下沉变形时,其上覆全部或局部岩层的下沉量同步协调;④破断特征,关键层的破断将导致全部或局部岩层的破断,引起较大范围内的岩层移动⑤支承特征,关键层破坏前以“板”(或简化为“梁”)结构作为全部岩层或局部岩层的承载主体,断裂后则成为砌体梁结构,继续成为承载主体5.影响采场矿山压力显现的因素答:①采高与控顶距的影响;②工作面推进速度的影响;③开采深度的影响;④煤层倾角的影响;⑤分层开采对矿山压力显现的影响;6.采场围岩与支架之间相互作用原理答:支架围岩是相互作用的一对力,支架受力的大小及其在回采工作面分布的规律与支架性能有关,支架结构及尺寸对顶板压力有一定影响。
《矿山压力及岩层控制》(Ground Pressure and Strata Control)课程教学大纲
课程编号:012102《矿山压力及岩层控制》(Ground Pressure and Strata Control)课程教学大纲48学时 3学分一、课程的性质、目的及任务《矿山压力与岩层控制》课程是采矿工程专业必修的专业核心课程和主干课程。
该课程全面反映了我国矿山压力与岩层控制研究方面所取得的科研成果和生产实践经验,适当介绍了可借鉴的国外相关理论和技术。
本课程的任务是使学生掌握:煤矿回采工作面和采区巷道矿山压力及其控制的基本理论和基础知识,采掘空间周围岩体内的应力重新分布规律,回采工作面围岩结构及其移动、破坏规律,支架-围岩相互作用关系以及矿山压力的控制方法等。
通过课程学习,使学生能够针对矿山生产地质条件,合理布置巷道和回采工作面,合理设计回采工作面顶板和巷道围岩的控制方法,掌握防治顶板事故和冲击地压预测、预防技术。
了解矿山压力研究的基本方法,具备分析和解决矿山压力问题的能力。
二、适用专业采矿工程。
三、先修课程材料力学、岩石力学。
四、课程的基本要求1.掌握矿山压力、矿山压力显现、矿山压力控制等基本概念,了解研究矿山压力的目的、意义。
2.掌握开采空间围岩应力重新分布规律,原岩应力、构造应力、支承压力、极限平衡状态、超前支承压力、残余支承压力等概念,岩体内的弹性变形能。
3.掌握回采工作面及其采空区上覆岩层所形成的“竖三带”与“横三区”;掌握直接顶的稳定性,老顶岩层“梁”与“板”模型,老顶岩层破断块体形成的“砌体梁”结构及其稳定性;了解“关键层”理论、采场岩层移动与控制以及底板岩层破坏规律。
4.掌握回采工作面老顶初次来压、周期来压及其来压步距;掌握矿山压力显现的影响因素,顶板压力的构成及其估算,老顶来压预报方法。
5.掌握直接顶分类与老顶分级。
掌握工作面支架与围岩相互作用关系,工作面支架的基本类型和性能,支架合理工作阻力的构成及其估算;支撑式、掩护式、支撑掩护式支架的特点及其适应条件。
掌握综采工作面端面顶板稳定性影响因素;综放工作面顶板稳定性影响因素。
第六章 采场岩层移动及控制
第二节
岩层控制的关键层理论
一、关键层的概念
1、关键层:在直接顶上方存在厚度不等、强 度不同的多层岩层,其中一层至数层厚硬岩层在 采场上覆岩层活动中起主要控制作用,将对采场 上覆岩层局部或直至地表的全部岩层活动起控制 作用的岩层称为关键层。前者称为亚关键层和后 者称为主关键层。 2、关键层的特征: ⑴几何特征,相对其他同类岩层厚度较大。 ⑵岩性特征,坚硬、弹性模量大、强度高
2、覆岩离层区充填 1、 基本原理:利用岩层移动过程中覆岩内 形成的离层空洞,从钻孔向离层空洞充填外来 材料来支撑覆岩,从而减缓岩层移动往地表的 传播。 2、关键层理论对覆岩离层充填技术的认识 归纳四点(见P.192)
1’
2’
3’
1
2
3
⑶变形特征,关键层下沉变形时,Байду номын сангаас上覆全部或
局部岩层的下沉量协调同步。
⑷破断特征,破断层的破断将导致全部或局部上
覆岩层的同步破断,引起较大范围内的岩层移动。
⑸承载特征,关键层破断前的结构形式作为全部 岩层或局部岩层的承载主体,破断后成为砌体梁 结构,继续成为承载主体。
3、关键层理论意义:关键层理论的提出实现了 矿山压力、岩层移动与地表沉陷、采动煤岩体中水 与瓦斯流动研究的有机统一,为更全面、深入地解 释采动岩体活动规律与采动损害现象奠定了基础, 为煤矿绿色开采技术研究提供了新的理论平台。 二、覆岩关键层位置的判断 成为关键层的条件: ⑴其所承受的载荷已不需其下部岩层来承担 即
一、留设煤柱控制岩层移动
1、部分开采(条带开采和房柱式) 2、留设保护煤柱
二、充填法控制岩层移动
1、水力充填:以水为输送介质,利用自然水压和泵压, 从制备站沿管道或管道相连的孔,将河砂等水力充填材料输 送到采空区。 2、干式充填:采用人力、重力、机械式风力等方式将矸 石等干式材料运送到待充填的采空区。 3、胶结充填:将采集和加工的细沙等充填材料掺入适量 的胶凝材料,加水混合搅拌制备成胶结充填料浆,沿钻孔、 管道向采空区输送,充填材料胶结后形成具有一定强度和完 整性的充填体
采场矿山压力及其控制方法(三篇)
采场矿山压力及其控制方法在矿体没有开采之前,岩体处于平衡状态。
当矿体开采后,形成了地下空间,破坏了岩体的原始应力,引起岩体应力重新分布,并一直延续到岩体内形成新的平衡为止。
在应力重新分布过程中,使围岩产生变形、移动、破坏,从而对工作面、巷道及围岩产生压力。
通常把由开采过程而引起的岩移运动对支架围岩所产生的作用力,称为矿山压力。
在矿山压力作用下所引起的一系列力学现象,如顶板下沉和垮落、底板鼓起、片帮、支架变形和损坏、充填物下沉压缩、煤岩层和地表移动、露天矿边坡滑移、冲击地压、煤与瓦斯突出等现象,均称之为矿山压力显现。
因此,矿山压力显现是矿山压力作用的结果和外部表现。
2.煤矿直接顶稳定性分类与老顶压力显现强度分级直接顶是指直接位于煤层之上的易垮落岩层。
煤矿直接顶稳定性分类主要以直接顶初次垮落步距为主要指标,将直接顶分为不稳定、中等稳定、稳定和非常稳定4类。
老顶是位于直接顶之上较硬或较厚的岩层。
老顶压力显现分为4级,即老顶来压不明显、来压明显、来压强烈和来压极强烈。
3.回采工作面支架主要有单体摩擦式金属支柱、单体液压支柱和液压自移支架等几种,少数矿井也还使用木支柱。
采场矿山压力及其控制方法(二)矿山压力是指矿山开采活动对地表和地下岩石造成的压力,包括矿体的应力变化、地表和地下岩石的变形和断裂等。
矿山压力的控制是矿山安全生产的重要环节,对于降低矿山事故发生率,保护人员和设备安全具有重要意义。
本文将介绍矿山压力的分类及其控制方法。
一、矿山压力的分类矿山压力可分为两类:地应力和岩层压力。
1.地应力地应力是指地球的重力作用下,岩石所受到的压力。
地应力可分为垂直应力和水平应力。
垂直应力是指地球的重力在垂直方向上对岩石所产生的压力,水平应力是指岩石在水平方向上所受到的压力。
地应力的大小与地下深度、地下岩石的物理性质等因素有关。
一般来说,地下深度越深,地应力就越大。
地应力的大小对矿山开采活动的影响较小,但在矿山开采过程中,地应力的变化会导致岩石的断裂和变形,从而对矿山安全产生影响。
矿山压力与岩层控制山东科技大学
矿山压力与岩层控制一、概念题1、矿山压力:采动后作用于岩层边界或存在于岩层之中使围岩向已采空间运动的力,即采动后促使围岩向已采空间运动的力,称为矿山压力。
3、矿山压力显现采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现出来的矿山压力现象,其基本表现形式为围岩运动与支架受力。
4、直接顶在采空区内已跨落、在采煤工作面内由支架暂时支撑的悬臂梁,其结构特点是在采煤工作面推进方向上不能始终保持水平力的传递。
5、基本顶指运动时对采煤工作面矿压显现有明显影响的传递岩梁的总和,在初次来压后,是一组在推进方向上能够始终保持传递水平力的不等高裂隙梁。
7、支承压力煤炭采出后,在围岩应力重新分布的范围内,作用在煤层、岩层和矸石上的垂直压力,属于矿山压力的范畴。
9、初次来压采煤工作面从切眼开采至基本顶首次断裂,使工作面发生明显的顶板下沉和支架承受较大的静载荷或冲击载荷,这种矿山压力显现叫做基本顶初次来压。
10、周期来压基本顶周期性裂断及回转下沉引起的明显矿山压力显现。
11、直接顶初次垮落25、冲击地压由矿山采动(采掘工作面)诱发高强度煤(岩)体变形能的瞬间释放,在相应采动空间引起强烈围岩震动和挤出的动力现象。
二、简答题2、如何理解矿山压力与矿山压力显现的相互关系?所谓矿山压力是指采动后作用于岩层边界上或存在于岩层之中促使围岩向已采空间运动的力。
而矿山压力显现是指采动后,在矿山压力作用下通过围岩变形与支架受力等形式所表现出来的矿山压力现象。
矿山压力的存在是绝对的、客观的,它存在于采动空间的周围岩体中,而矿山压力显现则是相对的、有条件的,它不仅是矿山压力作用的结果,同时它还与围岩的条件有关,围岩中有矿山压力存在不一定有明显的矿压显现,压力显现强烈的部位也不一定是压力高峰的位置。
4、简述采场上覆岩层沿纵向运动发展运动的特点?(1)随采场推进,岩层悬露达一定跨度、弯曲沉降到一定值,强度低的软弱夹层或接触面在轴向剪应力作用下破坏,发生离层,并为下部岩层的自由沉降和运动向上部岩层发展创造了条件;(2)岩层的纵向运动总趋势大体上是由下而上发展的;(3)离层后上下岩层的运动组合情况由岩层的强度(包括岩性、厚度、裂隙等)差别决定,上部岩层强度较下部岩层越高,下部岩层越先于上部岩层运动,上部岩层运动滞后的时间越长。
第六章 采场岩层移动与控制
本科生课程:矿山压力与岩层控制
煤炭开采形成的环境问题之三
• 对大气环境的污染
主要来自矿井排出的瓦斯和矸石山的自燃。 瓦斯即煤层气,它是比CO2还严重的温室气体, 也是导致煤矿重大安全事故的根源。同时瓦斯 又是最好的清洁能源。煤矿每年向大气排放瓦 斯70-190亿m3。
本科生课程:矿山压力与岩层控制
自80年代后期抚顺矿务局在我国首次采用离层注浆减缓地表下沉的试验取得成功之后此项技术引起了我国从事开采沉陷及三下采煤的专家和工程技术人员的重视先后在大屯徐庄煤矿新汶华丰煤矿兖州东滩煤矿开滦唐山矿等进行了离层注浆减缓地表沉降现场试验注浆钻孔离层带裂隙带覆岩离层多层位注浆示意图本科生课程
第六章
采场岩层移动与控制
i34
4 3
l34
, mm / m l
地表相邻两点的移动和变形
本科生课程:矿山压力与岩层控制
2)曲率变形(K) 指相邻线段的倾斜差与两线段中点间的水平距离的比
值。它反映观测线断面上的弯曲程度。曲率有正、负
之分,下沉曲线上凸为正,下凹为负。 i 1 k , mm / m 2 l K 3) 水平变形(ε) 指两相邻点的水平移动差值与两点间水平距离 的比值。它反映相邻两点间单位长度的拉伸(正)或压 缩(负)值。
煤炭开采形成的环境问题之四
• 对地面建筑物及人文环境的破坏
以淮北矿业集团为例,2001年,13个村庄因 采煤塌陷被迫搬迁,共计1412户、5535人迁徙
本科生课程:矿山压力与岩层控制
绿色开采的提出
提出并尽快形成煤矿的“绿色开采技术” 已迫在眉睫。 中国矿业大学教授钱鸣高院士及其领导 的课题组,从20世纪九十年代初已开始 了有关“绿色开采技术”的研究和实践。 在长期研究和实践的基础上,钱鸣高院 士正式提出了煤矿绿色开采的理念及其 技术体系。
矿山压力与岩层控制
采场矿山压力显现基本规律
生产技术科
唐 猛
采场矿山压力显现基本规律
第一节
第二节
概
述
老顶的初次来压
第三节
第四节
老顶的周期来压
顶板压力的估算
第五节
第六节
回采工作面前后支承压力分布
影响采场矿山压力显现的主要因素
第一节
概
述
回采工作面常见的矿山压力现象:
一、顶板下沉
一般指顶底板相对移近量。 常以每米采高、每米推进度下沉量(S/L· M) 作为衡量顶板状态的一个指标。
图4-11 回采工作面的顶板压力
(1)直接顶载荷Q1
Q1=∑h· L1· γ
∑h-直接顶厚度; L1-悬顶距; γ-容重。 单位面积上载荷(支护强度):
q1=Q1/L
当L1=L,q= ∑h·γ
(2)老顶载荷Q2 采用直接顶载荷的倍数估算老顶的载荷。
p q1 q2 n h
但采深增大对采场矿压显现影响并不显著,只是煤 壁片帮现象将加剧。这是由于老顶岩层形成的“ 砌体梁 ” 大结构对采场支护“小结构”起到了保护作用。采深对 “砌体梁”结构的稳定性影响不大。
四、煤层倾角的影响
图4-23 采空区冒落矸石滑移及其造成的后果
四、煤层倾角的影响
①工作面沿倾斜方向向下推进时(俯采工作面)
Q A+B-T · tg(ψ-θ)
对于冒落带岩层,T=0,P=QA+B,即支柱阻力能 承受控顶区全部岩层重量。
二、老顶的周期来压
老顶岩层的周期性破断而引起“砌体梁”结构 的周期性失稳而引起的顶板来压现象称为采场周期 来压。 周期来压的主要表现形式是:顶板下沉速度急剧 增加,顶板的下沉量变大;支柱载荷普遍增加;有 时还可能引起煤壁片帮、顶板台阶下沉、支柱折损, 甚至工作面冒顶事故。
矿山压力及岩层控制
第一讲:绪论
矿山压力的基本概念
矿山压力: 采动 采场、巷、硐支护物 力
矿压显现: 力学现象
矿山压力限制: 减轻、调整、利用、变更的方法
矿山压力对煤矿开采的意义
• 生态环境爱护 • 保证平安和正常生产 • 削减资源损失 • 改善开采技术 • 提高经济效益
矿压的探讨方法
• 现场实测 • 理论分析 • 物理模拟 • 数值模拟 • 工程类比
总结
原岩应力分布规律
• 三个规律 顶板活动规律
矿压显现规律 回采工作面支架与围岩的作用原理
• 两个原理
巷道支护与围岩的作用原理
• 一个方法 岩层限制方法
矿山压力及岩层限制
其次讲:原岩应力分布规律
本章介绍
• 原岩应力 • “孔”四周的应力分布 • 围岩极限平衡 • 支撑压力及其分布
原岩应力
原岩体:地壳中没有受到人类工程活动影响的岩体。 原岩应力:存在于地层中未受工程扰动的自然应力。
几层围岩性质相近的岩层。 老 顶----位于煤层或干脆顶之上厚
而坚硬的岩层(基本顶)。 2.顶板
干脆底----位于煤层之下的岩层(古土 壤)。
回采工作空间类型(依据采空区处理方法不同划分)
(a)完整空间---刀柱法或留煤柱开采; (b)自由弯曲空间---顶板缓慢下沉法(顶板塑性大); (c)充填空间---充填法; (d)垮落空间---完全垮落法;
2.板式结构——将顶板视为一个板或经断层裂隙切割后多块板相互咬合组 成的板,按板式结构承载变形及强度理论分析顶板破坏现象。
3.顶板结构端部支撑条件: 固定支座——顶板被岩层夹持,为断裂,无自由端。 简支梁支座——顶板端部断裂或埋深较浅。(可转动)
矿山压力及岩层控制知识点
矿山压力与岩层控制知识点老顶初次来压:当老顶悬露达到极限跨距时,老顶断裂形成三铰拱式的平衡,同时发生已破断的岩块回转失稳(变形失稳),有时可能伴随滑落失稳(顶板的台阶下沉),从而导致工作面顶板的急剧下沉。
此时,工作面支架呈现受力普遍加大现象,即称为老顶的初次来压。
(101)老顶周期来压:随着回采工作面的推进,在老顶初次来压以后,裂隙带岩层形成的结构将始终经历“稳定一失稳一再稳定”的变化,这种变化将呈现周而复始的过程。
由于结构的失稳导致了工作面顶板的来压,这种来压也将随着工作面的推进而呈周期性出现。
因此,由于裂隙带岩层周期性失稳而引起的顶板来压现象称之为工作面顶板的周期来压。
(104)关键层:将对采场上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层称为关键层。
(177)原岩应力:存在于地层中未受到工程扰动的天然应力称为原岩应力,也称为岩体初始应力、绝对应力或地应力。
(41)矿山压力:地下岩体在受到开挖以前,原岩应力处于平衡状态。
开掘巷道或进行回采工作时,破坏了原始的应力平衡状态,引起岩体内部的应力重新分布,直至形成新的平衡状态。
这种由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力,在相关学科中也称为二次应力或工程扰动力。
(1)矿山压力显现:在矿山压力作用下,会引起各种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。
这些由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。
(1)充填开采:用充填材料来充填已采空间,相当于减小了煤层开采厚度,从而减少采空区上覆岩层的变形与破坏。
沿空留巷:如果通过加强支护或采用其他有效方法,将相邻区段巷道保留下来,供本区段工作面回采时使用的巷道,称为沿空保留(煤体—无煤柱)巷道。
沿空掘巷:巷道一侧为煤体,另一侧为采空区,如果采空区一侧采动影响已经稳定后,沿采空区边缘掘进的巷道称为沿空掘进(煤体—无煤柱)巷道。
矿山压力与岩层控制(第6章 采场岩层移动与控制关键层)
煤矿绿色开采的内涵
• 煤矿绿色开采及绿色开采技术,在基本概念 上是从广义资源的角度上来认识和对待煤、 瓦斯、水、土地等一切可以利用的各种资 源。
基本出发点:从开采的角度防止或尽可能减 轻开采煤炭对环境和其他资源的不良影响; 目标:取得最佳的经济效益、环境效益和社 会效益。
煤矿绿色开采的特点之一
• 从广义资源的角度论,在矿区范围内的煤 炭、地下水、煤层内所涵的瓦斯、土地、 煤矸石以及在煤层附近的其他矿床都应该 是经营这个矿区的开发对象,都应该被加 以利用。
从而形成采场覆岩移动的“横三区”与“竖三 带”。
沿走向剖面,测点先向采空区方向移动,然后 又转向工作面推进方向移动,最后基本恢复到 原来位置。
图6-9
开采后上覆岩层沿走向方向 水平与垂直移动轨迹图
沿倾向剖面,测点基本上沿着与层面成垂 直的方向向下移动。
图6-10 观测点在沿煤层倾斜剖面上的移动
1.采动覆岩移动破坏的分带
大量的观测表明,采用全部垮落法管理采空 区情况下,根据采空区覆岩破坏程度,可以分为 “三带”,即: 冒落带 “两带”或“导水裂隙 裂隙带 带” 弯曲下沉带(整体移动带)
2.覆岩内部岩体移动特征
图6-8
上覆岩层移动实测曲线
根据岩层移动特点,将上覆岩层沿工作面推进方向划 分三个区:即 A-煤壁支撑影响区;B-离层区;C- 重新压实区。
第二节
岩层控制的关键层理论
一、关键层的概念
• 采场老顶岩层“砌体梁”结构模型是针对
开采过程中的矿山压力控制而提出来的。 • 1996年,在采场老顶岩层“砌体梁”理论 基础上,钱鸣高院士提出了岩层控制的关 键层理论。 • 关键层理论提出目的:研究开采层状矿体 中厚硬岩层对岩层中节理裂隙的分布、对 瓦斯抽放、对突水防治以及对开采沉陷控 制等的影响。因此它是绿色采矿的基础理 论之一。
矿山压力及其控制采场岩层移动与控制
锚杆加固
利用锚杆对采场岩层进行 锚固,增强岩层的抗剪切 和抗拉能力,防止岩层发 生位移或崩落。
充填加固
利用充填材料对采场岩层 进行填充,增加岩层的支 撑力和承载能力,提高岩 层的稳定性。
采场岩层移动预测技术
1 2 3
数值模拟
利用数值计算方法对采场岩层移动进行模拟,预 测岩层移动的范围、速度和方向,为采场设计和 安全防护提供依据。
采用控制开采深度、调整采空区处理方式、加强采空区监测等措施 ,有效控制岩层移动。
实施效果
经过调整,采空区岩层塌陷得到有效控制,周边环境得到保护,安全 生产得到保障。
矿山压力与采场岩层移动联合控制案例
案例概述
某大型矿山的采场在开采过程中,面临矿山压力和采场岩 层移动的双重挑战,给安全生产带来极大威胁。
01
02
03
04
弯曲下沉
岩层在采空区上方发生弯曲, 向下移动。
破裂与断裂
岩层在采空区边缘发生破裂或 断裂。
离层
岩层之间出现分离,形成空隙 。
隆起
岩层在采空区下方局部隆起。
采场岩层移动过程
初采阶段
01
岩层开始移动,但移动范围较小。
中期阶段
02
岩层移动范围扩大,达到最大值。
末期阶段
03
岩层移动逐渐减小,趋于稳定。
支架选型与支护
根据采场条件选择合适的支架类型和 参数,确保支架具有足够的承载能力 和稳定性。
充填采空区
利用充填材料充填采空区,支撑上覆 岩层,减小顶板压力。
矿山压力控制效果评估
顶板下沉量与下沉速度
通过监测顶板的下沉量和下沉速度,评估矿 山压力控制效果。
岩层移动范围
通过分析岩层移动的监测数据,评估采场岩 层的稳定性。
矿山压力与岩层控制课件
RT RB
2 -- 恒阻支柱
1 -- 增阻支柱
R0
εΔh
0
2021/7/21
➢矿压与矿压显现的辩证关系
矿压的存在是绝对的,而显现是相对的,有条件的。 压力显现强烈的部位不一定是压力高峰的位置。
图中所示,在A处顶板下沉量比B处大,但支承压力高峰却是在B处。
2021/7/21
Kmaγ x H
B
A
(a)
(3)采空区处理方法
采用强制放顶减小岩梁厚度,可减小运动步距(c值、 b 值)。采空区充 填减小岩梁运动空间,可使其运动不明显。
2021/7/21
2.3上覆岩层在推进方向上的运动规律
初次运动阶段
从岩层由开切眼开始悬落,到对工作面有明显影响的一、二 个传递岩梁第一次断裂运动结束为止。
2021/7/21
C
B
1 2
A (b)
D
C
BA
(c)
2 采场上覆岩层运动和发展的基本规律 2.1上覆岩层运动和破坏的基本形式
(1)弯拉破坏的运动形式
mi
h
li
lo
2021/7/21
(2)剪(切)断破坏的运动形式
岩层悬露后产生很小的弯曲变形,
悬露岩层端部开裂→在岩层中部未开
lo
裂(或开裂很少)的情况下,突发性
整体切断跨落。
c—岩梁的周期来压步距,m; a—岩梁的显著运动步距,m; b—岩梁的相对稳定步距,m。
一般情况下,周期来压步距为初次来压步距的0.5-0.25倍。
2021/7/21
各次周期来压步距并非都完全相等,而是呈一大一小的周期性变化。这个 变化将随来压次数的增加,差值愈来愈小。
采动后,在矿山压力作用下通过围岩运动与支架受力等形式所表现 出来的矿山压力现象,称为“矿山压力显现”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿山压力与岩层控制——采场岩层移动与控制主讲:李成伟采场岩层移动与控制C ONTENTS 第七章岩层移动引起的采动损害概述1岩层控制的关键层理论2上覆岩层移动规律3工作面底板破坏与突水4岩层移动控制技术5一、岩层移动引起的采动损害概述我国煤矿90%以上是井工垮落法开采。
垮落法采煤,开采以后必然引起岩体向采空区移动,将造成采动损害及相关问题,主要表现为:(1)形成矿山压力显现,引起采场和巷道围岩变形、垮落和来压,需对采取支护措施维护采场与巷道的生产安全。
(2)形成采动裂隙,引起周围煤岩体中的水和瓦斯的流动,导致井下瓦斯与突水事故,需要对此进行控制和利用。
1.煤层开采产生的相关问题一、岩层移动引起的采动损害概述(3)岩层移动发展到地表引起地表沉陷,导致农田、建筑设施的毁坏,当地面潜水位较高时,地表沉陷盆地内大量积水,农田无法耕种村庄被迫搬迁,引发一系列环境、经济和社会问题。
(4)由于开采对围岩的破坏,为了保护矿井生产安全,需要留设大量的煤柱,我国煤炭采出率低。
一、岩层移动引起的采动损害概述2.煤矿绿色开采理念2016年3月,国家发改委、国家能源局联合印发2016-2030能源技术革命创新行动计划;在煤炭无害化开采技术创新方面提出绿色开发与生态矿山建设,重点在绿色高效充填开采、绿色高效分选、采动损伤监测与控制、采动塌陷区治理与利用、保水开采、矿井水综合利用及深度净化处理、生态环境治理等方面开展研发与攻关。
煤炭开采岩层移动排 放 水地表塌陷土地与建筑物损害瓦斯事故排放瓦斯污染环境地下水资源流失与突水事故煤与瓦斯共 采保水开采充填开采排放矸石煤巷支护矸石井下处 理煤炭地下气 化占用农田污染环境绿色开采●“高效安全、高采出率、环境协调”绿色开采技术体系膏体材料充填超高水材料充填矸石干式充填一、岩层移动引起的采动损害概述●瓦斯抽采与利用被保护层组保护层地面钻井071421283504080120160200时间/d 抽采量/m 3/m i n20406080100抽采浓度/%抽采瓦斯量抽采瓦斯浓度远距离保护层开采(100~110m )地面钻井抽采法一、岩层移动引起的采动损害概述一、岩层移动引起的采动损害概述●瓦斯抽采与利用压缩转运✓瓦斯发电✓瓦斯罐装利用一、岩层移动引起的采动损害概述●煤炭地下气化煤炭地下气化是指其不将煤炭采出地面,而将其在地下直接气化,即将地下煤炭通过热化学反应在原地转化为可燃气体的技术。
它1912年开始于英国,美国始于1946,苏联始于1932年。
其它如德国、法国、荷兰、西班牙都进行过试验,但由于热值低,成本高而末得到发展。
我国于1958~1960年曾在16个矿区进行试验,于1962年停止,1984年又开始了新的试验,1994年达到连续生产295d,产气量为200m3/h,热值13816~17584kJ/m3,采用的是有井式、长通道、大断面的煤炭地下气化方法。
二、岩层控制的关键层理论概念位置判断复合破断1. 关键层的概念关键层指对岩体活动局部或直至地表的全部起控制作用的岩层。
前者称为亚关键层,后者称为主关键层。
关键层特征如下:(1)几何特征:单层厚度较厚;(2)岩性特征:相对较坚硬,弹性模量较大,强度较高;(3)变形特征:关键下沉变形时,其上覆全部或局部岩层的下沉量同步协调。
(4)破断特征:关键层破断将导致全部或局部上覆岩层的同步破断,引起较大范围岩层移动。
(5)承载特征:关键层破断前以板/梁结构为上覆全部或部分岩层的承载体,破断后则为砌体梁结构,继续成为承载主体。
二、岩层控制的关键层理论概念位置判断复合破断二、岩层控制的关键层理论概念位置判断复合破断二、岩层控制的关键层理论概念位置判断复合破断(1)计算各硬岩层所受载荷:所谓坚硬岩层是指那些在变形中挠度小于其下部岩层,与其下部岩层离层的岩层。
(2)计算各硬岩层的破断步距:2.覆岩关键层位置的判断nn q q <+11+<j j l l 二、岩层控制的关键层理论概念位置判断复合破断 关键层计算举例:岩层岩性γ/kN/m 3h/m E/MPa R t /MPa 1中砂岩23 4.0250007.02泥岩25 2.711000 2.03砂质泥岩25 2.015000 2.54中砂岩25 5.5230007.0()332231122113111)(n n n n n h E h E h E h h h h E q +⋅⋅⋅+++⋅⋅⋅++=γγγ()()()kPaq kPa q kPaq kPaq7.1637.1745.140921413121====二、岩层控制的关键层理论概念位置判断复合破断●关键层计算举例:岩层岩性γ/kN/m 3h/m E/MPa R t /MPa 1中砂岩23 4.0250007.02泥岩25 2.711000 2.03砂质泥岩25 2.015000 2.54中砂岩25 5.5230007.0()()()kPaq kPa q kPa q kPaq 7.1637.1745.140921413121====())(第一层破断距:m 8.35213111==q R h l T 二、岩层控制的关键层理论概念位置判断复合破断●关键层计算举例:岩层岩性γ/kN/m 3h/m E/MPa R t /MPa 1中砂岩23 4.0250007.02泥岩25 2.711000 2.03砂质泥岩25 2.015000 2.54中砂岩25 5.5230007.0)(,)取()(,)取(第四层破断距:m 462002m 1.29250014444444=====l kPa q q R h l kPa q T 所以,对于第一种情况,仅第一层岩层为关键层。
对于第二种情况,第一、第四层皆为关键层。
二、岩层控制的关键层理论概念位置判断复合破断3.关键层复合破断规律所谓关键层复合破断是指相邻两层硬岩层出现同步破断的现象。
在薄基岩厚表土层条件下,两层硬岩层同步破断的判别条件:11212003,2,2,1,10,10,1200,2,23,1,10.20.21≥⋅⋅⎪⎪⎭⎫ ⎝⎛+⋅⋅∑∑∑∑====m j m j jj j j mj mj j j j j h E h h E H h h E h E γσγγσ1+≥j j l l 二、岩层控制的关键层理论概念位置判断复合破断1.岩层移动的有关概念(1)岩层移动:(应力重新分布的过程)煤层采出后,引起岩层的变形、破坏与移动,并由下向上发展至地表引起地表的移动,这一过程和现象称为岩层移动,又称为开采沉陷。
三、采场上覆岩层移动规律概念规律三、采场上覆岩层移动规律概念规律岩层移动概貌(椭圆形为主)1—滑移面;2—断裂面;3—拉伸变形;4—压缩变形;α—断裂角;β—滑移角三、采场上覆岩层移动规律概念规律(2)充分采动与非充分采动:当采空区尺寸(长度和宽度)相当大时,地表最大下沉值达到该地质条件下应有的最大值,此时的采动称为充分采动。
(盘)将刚达到充分采动状态的采空区尺寸称为临界开采尺寸。
如果采空区尺寸小于临界开采尺寸,称为非充分采动。
非充分采动条件,下沉盆地呈尖底“碗状”,随着开采尺寸增加,地表下沉值还将继续增大。
三、采场上覆岩层移动规律概念规律三、采场上覆岩层移动规律概念规律(3)移动与变形:岩层移动会导致沿竖直方向和水平方向的位移,前者称下沉,后者称为水平移动。
由于地表相邻点的下沉和水平移动量是不相等的,这表明点与点之间有相对移动,从而引起地表变形。
地表变形分为倾斜、曲率、水平变形。
分别由下沉和水平移动导出。
(3)移动与变形:①倾斜变形(i ):指相邻点在竖直方向的相对移动与两相邻点间水平距离的比值。
反映盆地沿某一方向的坡度。
会使地表建筑歪斜。
地表相邻两点的移动和变形mmm l wl w w i /,433443∆=-=--三、采场上覆岩层移动规律概念规律(3)移动与变形:②曲率变形(K ):指相邻线段的倾斜差与两线段中点间的水平距离的比值。
曲率变形反映观测线断面上的弯曲程度。
曲率有正、负之分,下沉曲线上凸为正,下凹为负。
下沉曲线的凸凹分界点称为拐点。
2/,m mm l i K ∆=三、采场上覆岩层移动规律概念规律(3)移动与变形:③水平变形(ε):指两相邻点的水平移动差值与两点间水平距离的比值。
它反映相邻两点间单位长度的拉伸(正)或压缩(负)值。
(建筑物破坏的主因)地表相邻两点的移动和变形mmm lu l u u /,433443∆=-=--ε三、采场上覆岩层移动规律概念规律三、采场上覆岩层移动规律概念规律(4)岩层移动角:地表下沉边界(常以10mm 点划定)和采空区边界的连线与水平线在煤柱一侧的夹角,称为岩层移动角。
(预测影响范围,煤柱留设)三、采场上覆岩层移动规律概念规律(1)采动覆岩移动破坏的分带:垮落带裂缝带弯曲带导水裂隙带软弱:9-12中硬:12-18坚硬:18-282.岩层移动的基本规律:三、采场上覆岩层移动规律概念规律(1)采动覆岩移动破坏的分带:“两带”高H li =(9~12)M H li =(12~18)MH li =(18~28)M 三、采场上覆岩层移动规律概念规律(2)覆岩内部岩层移动特征:图6-8 上覆岩层移动实测曲线三、采场上覆岩层移动规律概念规律图6-8 上覆岩层移动实测曲线①岩层移动曲线符合负指数函数关系:()b aZ m x e s s --=1下沉:baZ b m x e Z s b a L dx ds i --⋅⋅⋅⋅⋅==)1(1斜率:[]baZ b b m x eabZ Z s b a L dx s d --⋅-⋅⋅⋅⋅⋅==)1-b 1)2(222(曲率:εbx ab b dx s d 1221Z 0⎪⎭⎫ ⎝⎛-==,即:最大斜率位置:bx ab b b b dx s d 1332)1)(15()1(3Z 0⎥⎥⎦⎤⎢⎢⎣⎡--±-==,即:最大曲率位置:三、采场上覆岩层移动规律概念规律图6-8 上覆岩层移动实测曲线②采场覆岩移动的水平分区:A:微小B:下急上缓C:上急下缓三、采场上覆岩层移动规律概念规律三、采场上覆岩层移动规律概念规律③覆岩移动轨迹:先向采空区方向移动,后转向工作面推进方向移动。
三、采场上覆岩层移动规律概念规律④覆岩移动轨迹与煤层倾角关系:沿倾向剖面,测点基本上沿着与层面成垂直的方向向下移动。
三、采场上覆岩层移动规律概念规律(3)关键层运动对岩层移动的影响:关键层对岩层移动控制作用的实验结果1—关键层;2—关键层上82 m处三、采场上覆岩层移动规律概念规律(4)岩层移动中的离层与裂隙分布:①关键层运动对离层及裂隙的产生、发展与时空分布起控制作用。
覆岩离层主要出现在关键层下。