等腰三角形难题.

合集下载

八年级数学经典压轴题:等腰三角形综合

八年级数学经典压轴题:等腰三角形综合

八年级数学经典压轴题:等腰三角形综合一、等腰三角形的概念等腰三角形是一种特殊的三角形,其中两边的边长相等。

它具有一些独特的性质和特点,我们将在接下来的题目中综合运用这些知识。

二、题目一:等腰三角形的边长计算已知一个等腰三角形的底边为10cm,腰边为12cm,请计算其顶角所对的边长。

解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等。

2.因此,顶角所对的边长也为10cm。

三、题目二:等腰三角形的面积计算已知一个等腰三角形的底边为6cm,腰边为8cm,请计算其面积。

解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等,设顶角所对的边长为x。

2.使用海伦公式计算三角形的面积:\[面积 = \sqrt{s(s-a)(s-b)(s-c)}\],其中s为半周长,\[s = \frac{a+b+c}{2}\]。

3.因此,半周长s为 \[s = \frac{6+8+x}{2}\]。

4.将已知条件代入海伦公式,得到 \[面积 =\sqrt{\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\ frac{6+8+x}{2}}\]。

5.根据题目已知条件,求解方程得到x的值,然后代入公式计算面积。

请根据具体题目所给条件,进行类似的求解步骤。

四、题目三:等腰三角形的性质综合已知一个等腰三角形ABC,底边AB为8cm,腰边AC为10cm。

设D为AB边的中点,请计算以下问题:1.证明三角形ACD为等腰三角形;2.计算三角形ACD的顶角所对的边长;3.计算三角形ACD的面积。

解答步骤:1.由条件可知,AC=10cm,AD=4cm(由D为AB边中点可得)。

2.对比可知,AD=DC,所以三角形ACD为等腰三角形。

3.顶角所对的边为AC,所以顶角所对的边长为10cm。

4.根据等腰三角形的面积公式计算面积:\[面积 = \frac{1}{2}\times AC \times AD\]。

等腰三角形及三线合一经典试题-难题

等腰三角形及三线合一经典试题-难题

等腰三角形及三线合一经典试题 难题1.等腰三角形的对称轴是( )2. 1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) 2.2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 3.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40°C .40°D .80°4.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108°5.等腰三角形的一个内角为80,则另两个内角的度数为6.等腰三角形底边长为10,则腰长的取值范围为7.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.8. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数9.如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AECC B ADEP ECAH FGEDCABHF10. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )11. 已知:如图:CA=CB, DA=DB 求证:(1)∠1=∠2.(2)CD ⊥AB .12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH 的形状并说明理由.13.如图,中, ,试说明:.14.如图3,在∆ABC 中,∠=A 90ο,AB AC =,D 是BC 的中点,P 为BC 上任一点,作PE AB ⊥,PF AC ⊥,垂足分别为E 、F求证:(1)DE =DF ;(2)DE DF ⊥C图315.已知,如图1,AD是∆ABC的角平分线,DE、DF分别是∆ABD和∆ACD的高。

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。

1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。

你需要判断这个三角形是否为等腰三角形。

解答:如果角B等于角C,则该三角形为等腰三角形。

2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。

你需要求解这个等腰三角形的周长。

解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。

3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。

你需要求解这个等腰三角形的面积。

解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。

设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。

等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。

4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。

你需要求解这个等腰三角形的顶角。

解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。

设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。

解得x=arccos(19/25)≈31.8度。

因此,等腰三角形的顶角大约为31.8度。

以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。

如果你还有其他问题,请随时向我提问。

专题01 等腰三角形三种压轴题型全攻略(解析版)

专题01 等腰三角形三种压轴题型全攻略(解析版)

专题01 等腰三角形三种压轴题型全攻略(解析版)等腰三角形三种压轴题型全攻略(解析版)在数学中,等腰三角形是一种特殊的三角形,它具有两条边相等的性质。

在考试中,等腰三角形常常出现在各类题目中,而三种压轴题型更是考察学生对等腰三角形的理解和运用能力。

本文将为大家介绍三种常见的等腰三角形压轴题型,并给出详细的解析,帮助大家更好地掌握解题技巧。

一、等腰三角形的性质首先,我们回顾一下等腰三角形的性质。

等腰三角形有两条边相等,可以分为底边和两条等腰边。

其性质如下:1. 等腰三角形的底边上的两个底角相等。

2. 等腰三角形的两条等腰边上的两个顶角相等。

利用这些性质,我们可以解决以下三种常见的等腰三角形压轴题型。

二、题型一:等腰三角形边长第一种题型是给定一个等腰三角形,要求计算其边长。

这种题型通常会给出等腰三角形的底边长度或两条等腰边的长度,并要求计算等腰三角形的其他边长。

解题步骤如下:Step 1:根据已知条件,将等腰三角形的底边或两条等腰边的长度表示出来。

Step 2:利用等腰三角形的性质,根据已知条件得到其他边长的表达式。

Step 3:根据所得到的表达式,计算出未知边长的具体数值。

三、题型二:等腰三角形的面积第二种题型是给定一个等腰三角形,要求计算其面积。

这种题型通常会给出等腰三角形的底边长度和高,并要求计算面积。

解题步骤如下:Step 1:根据已知条件,将等腰三角形的底边长度和高表示出来。

Step 2:根据面积公式 S = (1/2) ×底边 ×高,计算出面积。

Step 3:得到等腰三角形的面积。

四、题型三:等腰三角形的角度第三种题型是给定一个等腰三角形,要求计算其顶角的度数。

这种题型通常会给出等腰三角形的顶角的度数,并要求计算其他角的度数。

解题步骤如下:Step 1:根据已知条件,将等腰三角形的某个顶角的度数表示出来。

Step 2:利用等腰三角形的性质,根据已知条件得到其他角度的表达式。

初二数学-等腰三角形10道典型题剖析

初二数学-等腰三角形10道典型题剖析

思路分析:由BD平分∠ABC,
A
易知∠1=∠2, 则设∠1=∠2
=x,由AB=AC可得
1
∠C=∠1+∠2=2x,在△DBC中
2
由三角形内角和定理可列出x B
D C
的方程,求出x.
解:设1 x,
BD平分ABC,
A
1 2 x, AB AC,
1 2
B
D C
C ABC 1 2 2x.
在DBC中,
提示: 本题为文字命题,解题时应分为以下 三个步骤: (1)根据题意作图; (2)写出已知, (3)进行求证.
已知:在ABC中,AB AC, D为底边BC
的中点,DE AB于点E, DF AC于点F.
求证:DE DF.
A
思路分析:由等腰三角形的性质易得
E
F
B C,又BD DC,DE AB, DF AC,
∴∠FBC+∠C+∠FBC=3∠C,
∴∠FBC=∠C, ∴BF=FC, ∴AC-AB=2BE.
例8.如图,△ABD、 △AEC都是等边三角 形,求证: △AFG是等边三角形.
思路分析:利用等边三角 形的性质可推出,边、角 的等量关系,从而易证三 角形全等,进而说明
△AFG是等边三角形.
证明:∵△ABD 和△AED是正三角形, ∴AB=AD,AC=AE,∠BAD=∠CAE=60°, ∴ ∠CAD=∠BAD+∠CAB=60°+∠CAB, ∠BAE=∠CAE+∠CAB=60°+∠CAB, ∴ ∠CAD=∠BAE, △ADC≌△BAE, ∴ ∠ADF=∠GBA.
70°、40°或55°、55°
引申: 已知等腰三角形的一个角是110°, 求其余两角.

等腰直角三角形难题

等腰直角三角形难题

等腰直角三角形难题一、选择题(共8小题)1如图,在等腰直角△ ABC中AC=AB , BD丄AH于D, CH丄AH于H , HE、DF分别平分 / AHC和/ADB,则下列结论中①△ AHC BDA ;②DF丄HE ;③DF=HE ;④AE=BF其中,正确的结论有()(只需填写序号)A .① ③④B .①C .①②③D .① ②③④2. (2012?黄埔区一模)将一个斜边长为妊的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图3 .如图:△ ABC 中,/ ACB=90 ° ° / CAD=30 ° ° AC=BC=AD , CE 丄CD,且CE=CD,连接BD , DE , BE ,则下列结论:①/ ECA=165 ° °②BE=BC ;③AD丄BE;④4•如图,在2 X3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为5.如图,△ ABC 中,AC=BC , / ACB=90 ° AE 平分/ BAC 交BC 于E, BD 丄AE 于D , DM 丄AC 于M,连CD .下列结论:①AC+CE=AB ;②CD^AE;③/ CDA=45 °④丫严=定值.其中正确的有(n+1)的斜边长为()启"其中正确的是(B .①②④C •①③④D .①②③④I* (k 1\ ----------------- JB . 38 C. 46 D . 50C.A . 246.如图,在等腰Rt △ ABC的斜边AB上取两点M , N,使/ MCN=45 °记AM=m , MN=n , BN=x,则以线段x、m、n为边长的三角形的形状是()考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为()二、填空题(共12小题)(除非特别说明,请填准确值)9.下列说法:①如图1, △ ABC中,AB=AC , /A=45 °则厶ABC能被一条直线分成两个小等腰三角形.②如图2, △ ABC中,AB=AC , / A=36 ° BD , CE分别为/ ABC , / ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3, △ ABC是等边三角形,CD丄AD,且AD // BC,贝U AD=^AB .④如图4, △ ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC , / DAC= / CAB,则/ DBC=g/ DAB其中,正确的有___________________ (请写序号,错选少选均不得分)A .锐角三角形C.钝角三角形B .直角三角形D .随x、m、n的变化而改变7. (2006?防城港)如图,在五边形ABCDE 中,/ A= / B, / C= / D= / E=90 ° DE=DC=4 , AB^2,则五边形B. II.:8 (2010?鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不D. 10+10 :■:A/DA . 1个A . 4010.已知△ ABC中,AB=AC , / BAC=90 °直角/ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△ EFP的面积为__________________ 平方厘米.11.一个三角形三个内角之比为1: 1 : 2,则这个三角形的三边比为_______________12.一个三角形不同顶点的三个外角的度数比是3: 3: 2,则这个三角形是_________________ 三角形.13.(2003?黄浦区一模)已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是 ______________ .14. (2007?天水)如图,AD是厶ABC的一条中线,/ ADC=45度.沿AD所在直线把△ ADC翻折,使点C落在15.如图,在等腰Rt△ ABC中,/ C=90 ° AC=8 , F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE .连接DE、DF、EF.在此运动变化过程中,有下列五个结论:①△ DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4; ④四边形CDFE的面积保持不变;⑤△ CDE面积的最大值为 &其中正确结论是_ 一.16.(2011?贵阳)如图,已知等腰Rt△ ABC的直角边长为I,以Rt△ ABC的斜边AC为直角边,画第二个等腰Rt△ ACD , 再以Rt△ ACD的斜边AD为直角边,画第三个等腰Rt△ ADE ,…,依此类推到第五个等腰Rt△ AFG,则由这五个等腰直角三角形所构成的图形的面积为_________________ .D17.已知△ ABC 的三边长a、b 、c 满足J 己-]+ b - 1 +亠二。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

各种等腰三角形难题

各种等腰三角形难题

各类等腰三角形难题例1. 在⊿ABC中,AB=AC,且∠A=20°,在为AB上一点,AD=BC,连接CD.试求:∠BDC的度数.分析:题中出现相等的线段,以此为突破口,构造全等三角形.解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧)连接DE,CE.∵AE=BA;AD=BC;∠DAE=∠B.∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°.∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC.∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA=40°. 则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°.例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°.点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°.试求∠DEB的度数.本题貌似简单,其实不然.解:过点E作BC的平行线,交AB于F,连接CF交BE于点G,连接DG.易知⊿GEF,⊿GBC均为等边三角形.∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°;∵∠BCG=50°;∠CBD=60°.∴∠BDC=50°=∠BCD,则BD=BC=BG;又∠ABE=20°.故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°.即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE.∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°.所以,∠DEB=30°.例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分别为AB和AC上的点,且∠ABE=10°,∠ACD=20°.试求:∠DEB的度数.本题相对于上面两道来说,难度又增加了许多.且看我下面的解答.解:在CA上截取CM=CB,连接BM,DM,则∠CMB=∠CBM=50°.作DG∥BC,交AC于G,连接BG,交CD于F,连接FM.易知⊿BCF和⊿DGF为等边三角形,CM=CB=CF.∴∠CMF=∠CFM=80°,∠GMF=100°.∠GFM=∠GFC-∠CFM=40°;∠FGM=∠A+∠ABG=40°.即∠GFM=∠FGM;FM=GM;又∠DF=DG,DM=DM.则⊿DMF≌⊿DMG,∠DMG=∠DMF=50°.故∠DMC=130°=∠EMB;又∠DCM=∠EBM=20°.∴⊿DMC∽⊿EMB,DM/MC=EM/MB;又∠DME=∠BMC=50°.∴⊿DME∽⊿CMB,∠DEM=∠CBM=50°.又∠BEC=∠ABE+∠A=30°.所以,∠DEB=∠DEG-∠BEC=50°-30°=20°.例4.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。

各种等腰三角形难题(汇编)

各种等腰三角形难题(汇编)

各类等腰三角形难题例1. 在⊿ABC中,AB=AC,且∠A=20°,在为AB上一点,AD=BC,连接CD.试求:∠BDC的度数.分析:题中出现相等的线段,以此为突破口,构造全等三角形.解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧)连接DE,CE.∵AE=BA;AD=BC;∠DAE=∠B.∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°.∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC.∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA=40°. 则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°.例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°.点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°.试求∠DEB的度数.本题貌似简单,其实不然.解:过点E作BC的平行线,交AB于F,连接CF交BE于点G,连接DG.易知⊿GEF,⊿GBC均为等边三角形.∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°;∵∠BCG=50°;∠CBD=60°.∴∠BDC=50°=∠BCD,则BD=BC=BG;又∠ABE=20°.故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°.即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE.∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°.所以,∠DEB=30°.例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分别为AB和AC上的点,且∠ABE=10°,∠ACD=20°.试求:∠DEB的度数.本题相对于上面两道来说,难度又增加了许多.且看我下面的解答.解:在CA上截取CM=CB,连接BM,DM,则∠CMB=∠CBM=50°.作DG∥BC,交AC于G,连接BG,交CD于F,连接FM.易知⊿BCF和⊿DGF为等边三角形,CM=CB=CF.∴∠CMF=∠CFM=80°,∠GMF=100°.∠GFM=∠GFC-∠CFM=40°;∠FGM=∠A+∠ABG=40°.即∠GFM=∠FGM;FM=GM;又∠DF=DG,DM=DM.则⊿DMF≌⊿DMG,∠DMG=∠DMF=50°.故∠DMC=130°=∠EMB;又∠DCM=∠EBM=20°.∴⊿DMC∽⊿EMB,DM/MC=EM/MB;又∠DME=∠BMC=50°.∴⊿DME∽⊿CMB,∠DEM=∠CBM=50°.又∠BEC=∠ABE+∠A=30°.所以,∠DEB=∠DEG-∠BEC=50°-30°=20°.例4.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。

等腰三角形存在性问题(带标准答案)

等腰三角形存在性问题(带标准答案)

等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( )个.3、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画个(在图中作出点P)(2)若△DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果)(3)若改变(2)中△DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后△DOB=.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.8、线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l 上恰好只有个6点P ,使△ABP 为等腰三角形.9、如图AOB ∠,当ο30为AOB ∠,ο60,ο120时,请在射线OA 上找点P ,使POB ∆为等腰三角形,并分析出当AOB ∠发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD 中,AB=4,AD=10,点Q 是BC 的中点,点P 在AD 边上运动,若△BPQ 是腰长为5的等腰三角形,则满足题意的点P 有( )个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( )个12、如图,边长为6的正方形ABCD内部有一点P,BP=4,△PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有____个.13、在等边△ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是(4)2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( B )个.A.8B.9C.10D.113、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于15.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画4个(在图中作出点P)(2)若△DOB=60°,其它条件不变,则这样的等腰三角形能画2个,(只写出结果)(3)若改变(2)中△DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后△DOB= 90°.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.8、线段AB和直线l在同一平面上.则下列判断可能成立的有5个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l 上恰好只有个6点P ,使△ABP 为等腰三角形.9、如图AOB ∠,当ο30为AOB ∠,ο60,ο120时,请在射线OA 上找点P ,使POB ∆为等腰三角形,并分析出当AOB ∠发生变化时,点P 个数的情况;【结论】当AOB ∠为锐角,AOB ∠ο60≠,有三个点,当AOB ∠=ο60,只有一个点;当AOB ∠为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运动,若△BPQ是腰长为5的等腰三角形,则满足题意的点P有( B )A.2个B.3个C.4个D.5个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( C )A.1个B.3个C.5个D.无数多个12、如图,边长为6的正方形ABCD内部有一点P,BP=4,△PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有____个.13、在等边△ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;。

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)题一:求等腰三角形的面积
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该等腰三角形的面积。

解题思路
由于等腰三角形的底和高两边相等,可以利用三角形的面积公式求解。

面积公式为:$S = \frac{1}{2} \times x \times y$。

题二:求等腰三角形的周长
题目描述
给定一个等腰三角形,已知底的长度为x,求该等腰三角形的周长。

解题思路
由于等腰三角形的底和两边相等,可以利用周长公式求解。


长公式为:$P = 2 \times x + 2 \times \sqrt{\frac{x^2}{4} + y^2}$。

题三:求等腰三角形的顶角
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该
等腰三角形的顶角。

解题思路
等腰三角形的顶角可以通过三角函数求得。

顶角的弧度可以表
示为:$r = \arctan(\frac{y}{\frac{x}{2}})$,然后将弧度转换为角度:$a = \frac{180 \times r}{\pi}$。

总结
通过以上题,我们可以掌握等腰三角形的面积、周长和顶角的
求解方法,这些基础知识对于进一步研究和应用等腰三角形有重要
意义。

以上为等腰三角形经典习题,希望对您的学习有所帮助。

等腰三角形难题

等腰三角形难题

等腰三角形补充练习一.选择题(共3小题)1.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°2.如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个3.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α二.填空题(共14小题)5.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为.6.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为.7.有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是度.8.如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是.9.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为个.10.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.11.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.12.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.13.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.14.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=.15.线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.16.如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=.17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.18.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.2017年08月23日139****2832的初中数学组卷参考答案与试题解析一.选择题(共4小题)1.(2016秋•资中县期末)在△ABC中,∠B=30°,点D在BC边上,点E在AC 边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故选:D.2.(2016春•乳山市期中)如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个【解答】解:如图所示,以A为圆心,AB长为半径画弧,则圆弧经过的格点C3、C8、C7即为点C的位置;以B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C6、C4、C5即为点C 的位置;作线段AB的垂直平分线,垂直平分线没有经过格点.故以A、B、C为等腰三角形顶点的所有格点C的个数为8个.故选(B)3.(2015•天心区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC 内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4 B.8 C.9 D.12【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,==12,∴S△CAB故选(D).4.(1998•杭州)如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α【解答】解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选A.二.填空题(共14小题)5.(2016•江西模拟)在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为15°或30°或60°或75°或150°.【解答】解:根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,作出如下图形:由图可得:∠AP1C=15°,∠AP2C=30°,∠AP3C=60°,∠AP4C=75°,∠AP5C=150°.故答案为:15°或30°或60°或75°或150°6.(2016秋•东阿县期中)等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为67.5°或22.5°.【解答】解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故答案为:67.5°或22.5°.7.(2013•香坊区三模)有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是36°或60°度.【解答】解:假设等腰三角形甲为ABC,等腰三角形乙为DEF(如图所示).①顶角为D根据题中的条件,甲的底长等于乙的腰长,甲的底角等于乙的顶角,我们可以将D挪到B点,使BC与DE重合,DF与AB重合,如果A为锐角,则F点在AB边上,由于CF=AC,由图知是不可能的.如果A为钝角,则F点在AB延长线上,由于CF=AC,得知乙的底角=2倍的顶角=2倍甲的底角,故可以解得甲的底角是36度;②当等腰三角形甲和乙都是等边三角形时,∠1=∠2=∠3=60°,即甲的底角是60°.故答案是:36°或60°.8.(2013•泰州一模)如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是18≤θ<22.5.【解答】解:∵A1A2=AA1∴θ1=∠A2A1A3=2θ,∴θ2=∠A2A4A3=θ+2θ=3θ,∴θ3=∠A2A4A3+θ=4θ,由题意得:,∴18°≤θ<22.5°.9.(2013•宜兴市一模)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为6个.【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.10.(2013•安徽模拟)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.【解答】解:∵PR=PS,PR⊥AB,PS⊥AC,∴P在∠A的平分线上,在Rt△ARP和Rt△ASP中,∵,∴Rt△ARP≌Rt△ASP(HL),∴AS=AR,∠QAP=∠PAR,∵AQ=PQ,∴∠PAR=∠QPA,∴∠QPA=∠QAR∴QP∥AR,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∴∠PAR=∠QPA=30°,∴∠PQS=60°,在△BRP和△QSP中,∵,∴△BRP≌△QSP(AAS),∴①②③④项四个结论都正确,故答案为①②③④.11.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.12.(2012•枣阳市校级模拟)已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为8或6,底边长为5或9.【解答】解:根据题意画出图形,如图所示,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,①若AB+AD的长为12,则2x+x=12,解得x=4,则x+y=9,即4+y=9,解得y=5;②若AB+AD的长为9,则2x+x=9,解得x=3,则x+y=12,即3+y=12,解得y=9;所以等腰三角形的底边为5时,腰长为8;等腰三角形的底边为9时,腰长为6;故答案为:8或6;5或913.(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.14.(2011•鄂州校级模拟)如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=70°.【解答】解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∠DAC=∠BAC﹣∠BAD=20°,∴∠ACD=∠ADC=80°,∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,∴∠CDB=140°=∠BPC,又∠DCB=30°=∠PCB,BC=CB,∴△BDC≌△BPC,∴PC=DC,又∠PCD=60°,∴△DPC是等边三角形,∴△APD≌△APC,∴∠DAP=∠CAP=∠DAC=20=10°,∴∠PAB=∠DAP+∠DAB=10°+60°=70°.或由△BDC≌△BPC,∴BP=BD=BA∴∠BAP=∠BPA又∵∠ABP=∠ABC﹣∠PBC=40°∴∠BAP=(180﹣40)/2=70°故答案为:70°.15.(2011•海曙区模拟)线段AB和直线l在同一平面上.则下列判断可能成立的有5个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.【解答】解:要使△APB是等腰三角形,分为三种情况:①AP=BP(即作AB的垂直平分线于直线的交点,即有一个点)∴直线l上恰好只有个1点P,使△ABP为等腰三角形正确;②AB=AP(以A为圆心,以AB为半径画弧,交直线于两点),即直线l上恰好只有个2点P,使△ABP为等腰三角形正确;直线l上恰好只有个3点P,使△ABP为等腰三角形正确;③AB=BP(以B为圆心,以AB为半径画弧,交直线于两点)即直线l上恰好只有个4点P,使△ABP为等腰三角形正确;直线l上恰好只有个5点P,使△ABP为等腰三角形正确;∵1+2+2=5,∴直线l上恰好只有个6点P,使△ABP为等腰三角形错误;故答案为:5.16.(2011•拱墅区校级模拟)如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=S;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=S;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=S.【解答】解:∵△ABC为正三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AD1=BE1=CF1=AB,∴BD1=CE1=AF1=AB,∴△AD1F1≌△BD1E1≌△CE1F1,设等边△ABC的边长为a,则S=a2sin60°,△AD1F1的面积=×a•a•sin60°=S,∴△D1E1F1的面积S1=S﹣3×S=S;同理,AD2=BE2=CF2=AB时,BD2=CE2=AF2=AB,△AD2F2的面积S2=×a•a•sin60°=S,△D2E2F2的面积S2=S﹣3×S=S;AD n=BE n=CF n=AB时,BD n=CE n=AF n=AB,△AD n F n的面积=×a•a•sin60°=S,△D n E n F n的面积S n=S﹣3×S=S.故答案为:S,S,S.17.(2009•滨州)已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是<x<5.【解答】解:依题意得:10﹣2x﹣x<x<10﹣2x+x,解得<x<5.故填<x<5.18.(2005•江西)如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=220度.【解答】解:如图,△ABC中,∠A+∠B=180°﹣∠C=180°﹣40°=140°;四边形中,∠1+∠2=360°﹣(∠A+∠B)=360°﹣140°=220°.故填220.。

“等腰三角形问题”的前世今生——“和倍问题”在等腰三角形中的变化解析

“等腰三角形问题”的前世今生——“和倍问题”在等腰三角形中的变化解析

“等腰三角形问题”的前世今生——“和倍问题”在等腰三角形中的变化解析(小学数学四下内容)等腰三角形是一种特殊的三角形,就像正方形是特殊的平行四边形一样,它在三角形的世界中也有自己不可替代的地位,关于她的谜题也特别引人入胜——“等腰三角形问题”。

一、缘起——等腰三角形的产生与性质“等腰三角形问题”说来话长,首先要从等腰三角形的性质说起。

(一)三角形的共性作为一种特殊的三角形,等腰三角形自然也具备三角形的一般特性:1、由三条线段首尾相连围成(三角形的定义);2、有3个顶点,3条边,3个角(三角形的特征);3、任意两边的和大于第三边(三角形的三边关系)——因为要能“围成”,就必须两边和大于第三边;4、三个内角的和是180°(三角形内角和)——三角形可以由平行四边形分割而来,而平行四边形可以转化成长方形,内角和是360°。

(二)等腰三角形的产生在三角形产生之后,人们自然而然地按它的特征将它分类,按角的大小可分成“锐角三角形”(三个角都是锐角的三角形)、“直角三角形”(有一个角是直角的三角形)、“钝角三角形”(有一个角是钝角的三角形),按边的长短可分成“不等边三角形”(三条边互不相等的三角形)、“等腰三角形”(有两条边相等的三角形)、“等边三角形”(三条边都相等的三角形),等腰三角形应运而生。

从概念可以看出,等边三角形是特殊的等腰三角形,而正是等腰三角形这种介乎于一般与特殊之间的“特殊三角形”,才不会像等边三角形那么循规蹈矩(三条边相等,三个角都是60°,一定是锐角三角形),而有最复杂也最迷人的别样风采。

(三)等腰三角形的特性等腰三角形既可以是锐角三角形,也可以是直角三角形、钝角三角形。

由于两边相等,它具有以下特性:1、两腰相等。

相等的两条边由于形象特殊,被命名为“腰”,而第三条边则叫做“底”,与和高垂直的那个底意义是不同的。

2、两底角相等。

“底角”指的是与“底”相邻的两个内角,而两“腰”所夹的角叫做“顶角”。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( ) A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C =60°AQ CPB∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=BD AB =21(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

北师大版七年级下等腰三角形难题

北师大版七年级下等腰三角形难题

北师大版七年级下等腰三角形难题
本文档将介绍一些关于北师大版七年级下册的等腰三角形的难题。

以下是一些典型的等腰三角形难题及其解法。

难题1: 确定等腰三角形的高
问题描述:已知等腰三角形的底边长为8cm,顶角的度数为45°,求这个等腰三角形的高。

解法:根据等腰三角形的性质,等腰三角形的底边上的高和顶角的度数有关。

我们可以利用三角函数来求解此问题。

设等腰三角形的高为h,则有正弦关系式:sin(45°) = h/8。

通过计算得到:
h = 8 * sin(45°)
计算结果为:
h = 8 * 0.7071 ≈ 5.657cm
所以,该等腰三角形的高约为5.657cm。

难题2: 计算等腰三角形的面积
问题描述:已知等腰三角形的底边长为12cm,高为10cm,求
该等腰三角形的面积。

解法:等腰三角形的面积可以通过以下公式计算:面积 = 底边
长 * 高 / 2。

将已知条件代入公式,得到:
面积 = 12 * 10 / 2
计算结果为:
面积 = 60
所以,该等腰三角形的面积为60平方厘米。

以上是两个关于等腰三角形的典型难题及解法。

通过这些例题,我们可以更好地理解和应用等腰三角形的性质和计算方法。

希望对
你的学习有所帮助!。

等腰直角三角形难题汇总

等腰直角三角形难题汇总

等腰直角三角形难题一、选择题(共8小题)1.如图,在等腰直角△ABC中AC=AB,BD⊥AH于D,CH⊥AH于H,HE、DF分别平分∠AHC和∠ADB,则下列结论中①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF其中,正确的结论有()(只需填写序号)2.(2012•黄埔区一模)将一个斜边长为的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的斜边长为().C D.3.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()4.如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为()5.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()6.如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()7.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是().C D.8.(2010•鼓楼区二模)小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为()二、填空题(共12小题)(除非特别说明,请填准确值)9.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有_________(请写序号,错选少选均不得分)10.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△EFP的面积为_________平方厘米.11.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_________.12.一个三角形不同顶点的三个外角的度数比是3:3:2,则这个三角形是_________三角形.13.(2003•黄浦区一模)已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是_________.14.(2007•天水)如图,AD是△ABC的一条中线,∠ADC=45度.沿AD所在直线把△ADC翻折,使点C落在点C´的位置.则=_________.15.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确结论是_________.16.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为_________.17.已知△ABC的三边长a、b、c满足,则△ABC一定是_________三角形.18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为_________厘米.19.(2010•丹东)已知△ABC是直角边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是_________.20.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是_________.三、解答题(共6小题)(选答题,不自动判卷)21.(2010•唐山一模)(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为_________;(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为_________;(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.22.(2010•平房区一模)如图1,在△ABC中,AC=BC,∠ACB=90°,点D为AB边中点,以点D为顶点作∠PDQ=90°,DP、DQ分别交直线AC、BC于E、F,分别过E、F作AB的垂线,垂足分别为M、N.(1)求证:EM+FN=AC;(2)把∠PDQ绕点D旋转,当点E在线段AC的延长线上时(如图2),则线段EM、FN、AC之间满足的关系式是_________;(3)在∠PDQ绕点D由图1到图2的旋转的过程中,设DP交直线BC于点G,连接BE,若FG=10,AE=3CE,求BE的长.23.(2009•莆田二模)已知在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB,AC上的动点,且BE=AF,求证:△DEF为等腰直角三角形;(2)在(1)的条件下,四边形AEDF的面积是否变化,证明你的结论;(3)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.24.(2007•大连)两个全等的Rt△ABC和Rt△EDA如图放置,点B、A、D在同一条直线上.操作:在图中,作∠ABC的平分线BF,过点D作DF⊥BF,垂足为F,连接CE.证明BF⊥CE.探究:线段BF、CE的关系,并证明你的结论.说明:如果你无法证明探究所得的结论,可以将“两个全等的Rt△ABC和Rt△EDA”改为“两个全等的等腰直角△ABC 和等腰直角△EDA(点C、A、E在同一条直线上)”,其他条件不变,完成你的证明,此证明过程最多得2分.25.(2009•德城区)一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M 放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为_________,周长为_________;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________,周长为_________;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.26.(2007•自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.等腰直角三角形难题参考答案与试题解析一、选择题(共8小题)1.如图,在等腰直角△ABC中AC=AB,BD⊥AH于D,CH⊥AH于H,HE、DF分别平分∠AHC和∠ADB,则下列结论中①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF其中,正确的结论有()(只需填写序号)EHA=∠2.(2012•黄埔区一模)将一个斜边长为的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的斜边长为().C D.次的等腰三角形的腰长等于的倍,即可表示出图,腰长为,腰长为)次后所得到的等腰直角三角形的斜边长为(•(3.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()AC CN=DM=AC=BCADC=(DM=ACCN=DM=AC=4.如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为(),2;然后按斜边长分四类来进行计数即可.)当斜边长为2)当斜边长为5.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()CAD=∠CD=AN=EN====26.如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()7.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是().C D.,×4+4+6+=14+此题主要是作辅助线,发现等腰直角三角形.注意:等腰直角三角形的斜边是直角边的8.(2010•鼓楼区二模)小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为();;;故选二、填空题(共12小题)(除非特别说明,请填准确值)9.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有③④(请写序号,错选少选均不得分)ACAC=AB=∠DBC=∠10.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△EFP的面积为平方厘米.=平方厘米.故答案为:11.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为1:1:.×=45××12.一个三角形不同顶点的三个外角的度数比是3:3:2,则这个三角形是等腰直角三角形.13.(2003•黄浦区一模)已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是4096.14.(2007•天水)如图,AD是△ABC的一条中线,∠ADC=45度.沿AD所在直线把△ADC翻折,使点C落在点C´的位置.则=.BD=×BD=×BC=15.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确结论是①④⑤.DE=,BC=4DF=416.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为15.5.=1==2=××=1=2×由这五个等腰直角三角形所构成的图形的面积为17.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.满足18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为厘米.个的等腰直角三角形的斜边是),根据题意可得(x=16,(x=1616x=1619.(2010•丹东)已知△ABC是直角边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.个等腰直角三角形的斜边长是)=))20.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是等腰直角三角形.三、解答题(共6小题)(选答题,不自动判卷)21.(2010•唐山一模)(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为DE=2AM;(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为DE=2AM;(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.22.(2010•平房区一模)如图1,在△ABC中,AC=BC,∠ACB=90°,点D为AB边中点,以点D为顶点作∠PDQ=90°,DP、DQ分别交直线AC、BC于E、F,分别过E、F作AB的垂线,垂足分别为M、N.(1)求证:EM+FN=AC;(2)把∠PDQ绕点D旋转,当点E在线段AC的延长线上时(如图2),则线段EM、FN、AC之间满足的关系式是EM﹣FN=AC;(3)在∠PDQ绕点D由图1到图2的旋转的过程中,设DP交直线BC于点G,连接BE,若FG=10,AE=3CE,求BE的长.ACFN=AM=EM=HD=xDCB=∠AB=,即AD= ACAB=,即AD= FN=BC=ACAE=HD=xx=x FN=DN=x+x=10x=6x x=2EB==4AC23.(2009•莆田二模)已知在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB,AC上的动点,且BE=AF,求证:△DEF为等腰直角三角形;(2)在(1)的条件下,四边形AEDF的面积是否变化,证明你的结论;(3)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.=BD=CD24.(2007•大连)两个全等的Rt△ABC和Rt△EDA如图放置,点B、A、D在同一条直线上.操作:在图中,作∠ABC的平分线BF,过点D作DF⊥BF,垂足为F,连接CE.证明BF⊥CE.探究:线段BF、CE的关系,并证明你的结论.说明:如果你无法证明探究所得的结论,可以将“两个全等的Rt△ABC和Rt△EDA”改为“两个全等的等腰直角△ABC 和等腰直角△EDA(点C、A、E在同一条直线上)”,其他条件不变,完成你的证明,此证明过程最多得2分.CE=25.(2009•德城区)一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M 放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为(1+)a;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为a2,周长为2a;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.AC=的面积的一半,为1+)易得重叠部分是正方形,边长为,面积为AC=的面积的一半为a1+∴边长为,面积为a)猜想:重叠部分的面积为MH=×∴阴影部分的面积是26.(2007•自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.。

数学等腰三角形难题

数学等腰三角形难题

1.等腰三角行的腰长是底边的 34,底边等于12cm ,则三角形的周长是______cm. 2.等腰三角形的顶角为80度,则一腰上的高与底边的夹角为______度。

3.等腰三角形的一个内角为65度,那其他的角分别为______度。

4.点P 为等边三角形ABC ∆所在平面的一点,且PAB ∆,PBC ∆,PCA ∆都是等腰三角形,这样5.的点p 有______个。

6.等腰三角行的顶角等于一个底角的4倍,则底角为______度。

7题图 8题图 9题图 10题图7.已知如图,A,D,C 在一条直线上AB=BD=CD,∠C 等于40度,则∠ABD=______度。

8.在等腰三角形中ABC ∆,AB=AC,AD 垂直与BC 与D ,且AB+AC+BC=50cm ,AB+BD+AD=40cm ,则AD=_____cm 。

9.如图∠p=25度,又PA=AB=BC=CD,且∠DCM=_____度。

10.如图已知∠ACB=90°,BD=BC,AE=AC,则∠DCE=_____度。

11.如图,ABC ∆中,∠C=2∠B ,∠1=∠2,使说明AB=AC+CD.12.已知,如图,AD 是ABC ∆的角平分线,DE,DF 是ABC ∆和△ACD 的高,求证:AD 垂直平分EF 。

(要用到角平分线的定理)13.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE垂直与AB于E,F在AC上,BD=DF求证(1)CF =EB (2)AB=AF+2EB1在三角形ABC中,角C=90度,角A=30度,则三边的比是a;b;c=2.如果三角形中有一条边是另一条边是2倍,并且有一个角是30°,那么这个三角形是()(A)直角三角形 (B)锐角三角形 (C)钝角三角形 (D) 图形不能确定3.如图,RtΔABC中,∠BCA=90°, ∠A=30°CD⊥AB于D,DE⊥BC于E,则AB:BE的值为( )(A) 8 (B) 4 (C) 52(D)4.等腰三角形一腰上的高与底边所成的角等于( )(A) 顶角的2倍 (B) 顶角的一半 (C) 顶角 (D) 底角的一半5.在直角三角形中,两锐角的平分线相交成钝角的度数是 .6.有一个角为30°的等腰三角形,若腰长为4,则腰上的高是 , 面积是 .7.等腰直角三角形中,若斜边和斜边上的高的和是6cm,则斜边长是 cm 8.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是 cmA9.如图,△ABC中,AB=AC,∠BAC=120度,AD⊥AC,DC=5,则BD=是Rt△ABC斜边上的高,已知AB=5cm,BD=3cm , B D C那么BC= cm11.如图,在ΔABC中, ∠BCA=90°,且AC=BC,直线L过C点,AE⊥L于E, BF⊥L于 F. 求证:EF=AE+BF如图,在ΔABC中, ∠ABC=2∠C,AD⊥BC于D,E是AC中点,ED的延长线与AB的延长线交于点F,求证:BF=BD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形补充练习一.选择题(共3小题)1.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°2.如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个3.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α二.填空题(共14小题)5.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为.6.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为.7.有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是度.8.如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是.9.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为个.10.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.11.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.12.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.13.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.14.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=.15.线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.16.如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=.17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.18.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.2017年08月23日139****2832的初中数学组卷参考答案与试题解析一.选择题(共4小题)1.(2016秋•资中县期末)在△ABC中,∠B=30°,点D在BC边上,点E在AC 边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故选:D.2.(2016春•乳山市期中)如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个【解答】解:如图所示,以A为圆心,AB长为半径画弧,则圆弧经过的格点C3、C8、C7即为点C的位置;以B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C6、C4、C5即为点C 的位置;作线段AB的垂直平分线,垂直平分线没有经过格点.故以A、B、C为等腰三角形顶点的所有格点C的个数为8个.故选(B)3.(2015•天心区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC 内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4 B.8 C.9 D.12【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,==12,∴S△CAB故选(D).4.(1998•杭州)如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α【解答】解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选A.二.填空题(共14小题)5.(2016•江西模拟)在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为15°或30°或60°或75°或150°.【解答】解:根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,作出如下图形:由图可得:∠AP1C=15°,∠AP2C=30°,∠AP3C=60°,∠AP4C=75°,∠AP5C=150°.故答案为:15°或30°或60°或75°或150°6.(2016秋•东阿县期中)等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为67.5°或22.5°.【解答】解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故答案为:67.5°或22.5°.7.(2013•香坊区三模)有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是36°或60°度.【解答】解:假设等腰三角形甲为ABC,等腰三角形乙为DEF(如图所示).①顶角为D根据题中的条件,甲的底长等于乙的腰长,甲的底角等于乙的顶角,我们可以将D挪到B点,使BC与DE重合,DF与AB重合,如果A为锐角,则F点在AB边上,由于CF=AC,由图知是不可能的.如果A为钝角,则F点在AB延长线上,由于CF=AC,得知乙的底角=2倍的顶角=2倍甲的底角,故可以解得甲的底角是36度;②当等腰三角形甲和乙都是等边三角形时,∠1=∠2=∠3=60°,即甲的底角是60°.故答案是:36°或60°.8.(2013•泰州一模)如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是18≤θ<22.5.【解答】解:∵A1A2=AA1∴θ1=∠A2A1A3=2θ,∴θ2=∠A2A4A3=θ+2θ=3θ,∴θ3=∠A2A4A3+θ=4θ,由题意得:,∴18°≤θ<22.5°.9.(2013•宜兴市一模)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为6个.【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.10.(2013•安徽模拟)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.【解答】解:∵PR=PS,PR⊥AB,PS⊥AC,∴P在∠A的平分线上,在Rt△ARP和Rt△ASP中,∵,∴Rt△ARP≌Rt△ASP(HL),∴AS=AR,∠QAP=∠PAR,∵AQ=PQ,∴∠PAR=∠QPA,∴∠QPA=∠QAR∴QP∥AR,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∴∠PAR=∠QPA=30°,∴∠PQS=60°,在△BRP和△QSP中,∵,∴△BRP≌△QSP(AAS),∴①②③④项四个结论都正确,故答案为①②③④.11.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.12.(2012•枣阳市校级模拟)已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为8或6,底边长为5或9.【解答】解:根据题意画出图形,如图所示,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,①若AB+AD的长为12,则2x+x=12,解得x=4,则x+y=9,即4+y=9,解得y=5;②若AB+AD的长为9,则2x+x=9,解得x=3,则x+y=12,即3+y=12,解得y=9;所以等腰三角形的底边为5时,腰长为8;等腰三角形的底边为9时,腰长为6;故答案为:8或6;5或913.(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.14.(2011•鄂州校级模拟)如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=70°.【解答】解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∠DAC=∠BAC﹣∠BAD=20°,∴∠ACD=∠ADC=80°,∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,∴∠CDB=140°=∠BPC,又∠DCB=30°=∠PCB,BC=CB,∴△BDC≌△BPC,∴PC=DC,又∠PCD=60°,∴△DPC是等边三角形,∴△APD≌△APC,∴∠DAP=∠CAP=∠DAC=20=10°,∴∠PAB=∠DAP+∠DAB=10°+60°=70°.或由△BDC≌△BPC,∴BP=BD=BA∴∠BAP=∠BPA又∵∠ABP=∠ABC﹣∠PBC=40°∴∠BAP=(180﹣40)/2=70°故答案为:70°.15.(2011•海曙区模拟)线段AB和直线l在同一平面上.则下列判断可能成立的有5个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.【解答】解:要使△APB是等腰三角形,分为三种情况:①AP=BP(即作AB的垂直平分线于直线的交点,即有一个点)∴直线l上恰好只有个1点P,使△ABP为等腰三角形正确;②AB=AP(以A为圆心,以AB为半径画弧,交直线于两点),即直线l上恰好只有个2点P,使△ABP为等腰三角形正确;直线l上恰好只有个3点P,使△ABP为等腰三角形正确;③AB=BP(以B为圆心,以AB为半径画弧,交直线于两点)即直线l上恰好只有个4点P,使△ABP为等腰三角形正确;直线l上恰好只有个5点P,使△ABP为等腰三角形正确;∵1+2+2=5,∴直线l上恰好只有个6点P,使△ABP为等腰三角形错误;故答案为:5.16.(2011•拱墅区校级模拟)如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=S;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=S;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=S.【解答】解:∵△ABC为正三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AD1=BE1=CF1=AB,∴BD1=CE1=AF1=AB,∴△AD1F1≌△BD1E1≌△CE1F1,设等边△ABC的边长为a,则S=a2sin60°,△AD1F1的面积=×a•a•sin60°=S,∴△D1E1F1的面积S1=S﹣3×S=S;同理,AD2=BE2=CF2=AB时,BD2=CE2=AF2=AB,△AD2F2的面积S2=×a•a•sin60°=S,△D2E2F2的面积S2=S﹣3×S=S;AD n=BE n=CF n=AB时,BD n=CE n=AF n=AB,△AD n F n的面积=×a•a•sin60°=S,△D n E n F n的面积S n=S﹣3×S=S.故答案为:S,S,S.17.(2009•滨州)已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是<x<5.【解答】解:依题意得:10﹣2x﹣x<x<10﹣2x+x,解得<x<5.故填<x<5.18.(2005•江西)如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=220度.【解答】解:如图,△ABC中,∠A+∠B=180°﹣∠C=180°﹣40°=140°;四边形中,∠1+∠2=360°﹣(∠A+∠B)=360°﹣140°=220°.故填220.。

相关文档
最新文档