第一章勾股定理(1213)随堂练习(含答案)
北师版数学 八年级上册 第1章 勾股定理 1.1.1 勾股定理 同步练习(包含
北师版八年级上册第1章勾股定理1.1.1 勾股定理同步检测一.选择题(共10小题,3*10=30)1.在△ABC 中,∠A =90°,则下列式子不成立的是( )A .BC 2=AB 2+AC 2 B .AB 2=AC 2+BC 2C .AB 2=BC 2-AC 2D .AC 2=BC 2-AB 22. 直角三角形的两直角边长分别为5,12,则斜边上的高为( )A .6B .8C.1813D.60133.若直角三角形的三边长分别为2,4,x ,则x 的可能值有( )A .1个B .2个C .3个D .4个4.如果直角三角形两直角边长分别为4,5,那么以斜边为边长的正方形的面积为( )A .41B .1C .9D .以上答案都不对5. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只鸟从一棵树梢飞到另一棵树的树梢,问小鸟至少要飞行( )A .8米B .10米C .12米D .14米6. 如图,在△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .107.如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是( )A.48 B.60C.76 D.808.如图,阴影部分的面积为()A.3 B.9C.81 D.1009.一直角三角形的三边是三个连续的正整数,则此直角三角形的周长为()A.6 B.8C.10 D.1210.如图,在四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,BC=12,则CD为()A.5 B.13C.17 D.18第Ⅱ卷(非选择题)二.填空题(共6小题,3*8=24)11.在△ABC中,∠C=90°,AC=5,BC=12,AB=13,则勾与股的和是____.12.如图,在△ABC中,∠C=90°,则BC=____.13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.当∠C=90°,b=4 m,c=5 m时,a=_______.14.如图,分别以直角三角形的三边为边向外作正方形,已知其中两个正方形的面积,则正方形A的面积是____,B的面积是________.15. 在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校有一块长方形花圃,如图,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了____步路(假设2步为1米),却踩伤了花草.16.有一根高为16 m的电线杆在点A处断裂,电线杆顶部点C落到离电线杆底部B点8 m的地方,则电线杆的断裂处点A离地面有____________m.17.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________.18. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,最大正方形的边长为2 cm,则正方形A,B,C,D的面积和是____ cm2.三.解答题(共7小题,46分)19. (6分)如图,在△ABD中,∠D=90°,点C是BD上一点,已知CB=9,AB=17,AC=10,求AD的长.20. (6分)如图,在△ABC中,CDLAB于D,AC=20,BC= 15,DB=9,求AB的长.21.(6分)“中华人民共和国道路交通管理条例”规定小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街道上直向行驶,某一时刻刚好行驶到路面车速检测仪A正前方30 m 的B处,过了2 s后,测得小汽车到达点C处与车速检测仪A间距离为50 m,这辆小汽车超速了吗?(参考数据:1 m/s=3.6 km/h)22.(6分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AB=5 cm,BC=3 cm,求BD的长.23. (6分)如图,在四边形ABCD中,AB=3,BC=4,AD=13,BC⊥AB,对角线AC⊥CD,求四边形ABCD的面积.24.(6分)在一棵树的10 m高处有两只猴子,其中一只爬下树走向离树20 m的池塘,而另一只爬向树顶后直扑池塘(运动路线看作直线),如果两只猴子经过的距离相等,问这棵树有多高?25. (8分)如图,折叠长方形ABCD的一边AD,使点D落在边BC上的点F处,折痕为AE.已知AB= 8cm,BC=10cm,求EC的长.参考答案:1-5 BDBAB 6-10 CCCDB11. 1712. 413. 3m14. 20,25615. 416. 617.3 218. 419.解:设CD长为x.在Rt△ACD中,AD2=102-x2. 在Rt△ABD中,AD2=172-(x+9)2.∴102-x2=172-(x+9)2,解得x=6,∴所以AD2=64,AD=820.解:∵CDLAB于D,AC=20,BC=15,DB=9,∴在Rt△BCD中,CD2=BC2-DB2=152-92=144.在Rt△ACD中,AD2=AC2- CD2=202-144=256,∴AD=16,∴AB=AD+DB=16+9 =25.21.解:由题意得AB=30 m,AC=50 m.由勾股定理得BC2=AC2-AB2=502-302=402.于是BC=40 m.此时小汽车的速度为40÷2=20(m/s).∵20 m/s=72 km/h>70 km/h,∴这辆小汽车超速了22.解:由勾股定理可以得到AB2=AC2+BC2,∴AC=4,由S△ABC=12AC·BC=12AB·CD,即12×4×3=12×5×CD , ∴CD =125, ∴BD 2=BC 2-CD 2=8125, ∴BD =95(cm) 23. 解:在Rt △ABC 中,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,在Rt △ACD 中,∵CD 2=AD 2-AC 2=132-52=144,∴CD =12,∵S 四边形ABCD =S △ABC +S △ACD=12AB ·BC +12AC ·CD =12×3×4+12×5×12 =3624. 解:如图,点B 为树顶,D 处有两只猴子,则AD =10 m ,C 为池塘,则AC =20 m . 设BD 的长为x m ,则树的高度为(10+x)m.∵AC +AD =BD +BC ,∴BC =20+10-x =30-x.在△ACB 中,∠A =90°,∴AC 2+AB 2=BC 2,即202+(10+x)2=(30-x)2,解得x =5.即树高为15 m25. 解:∵ABCD 是长方形,∴∠B=∠C=90°.由折叠的性质易得AF= E AD=BC=10cm,DE=EF.设EC=xcm , 则DE=(8-x)cm ,EF=(8-x)cm.在Rt △ABF 中,BF 2=AF 2-AB 2=36,∴BF=6cm, ∴FC=BC-BF=4cm.在Rt △CEF 中,由勾股定理得CE 2+FC 2=EF 2,即x 2+42=(8-x )2,解得x=3.∴EC 的长为3cm.。
勾股定理练习题(含答案)
勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
北师大版八年级数学上册 第一章 勾股定理 单元练习题 含答案
第1章勾股定理一.选择题(共12小题)1.下列为勾股数的是()A.2,3,4 B.,,C.6,7,8 D.5,12,132.已知a,b,c是△ABC的三边,且满足(a﹣b)(a2﹣b2﹣c2)=0,则△ABC是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形3.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或104.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.155.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a (a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组7.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.48.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.109.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm211.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.13cm B.12cm C.10cm D.8cm12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16 二.填空题(共6小题)13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.15.如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.16.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.17.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.三.解答题(共10小题)18.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.19.如图,一根竹子高10米,折断后竹子顶端C落在竹子底端A的4米处,折断处B离地面的高度AB是多少?20.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD 的长.21.已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求四边形ABCD 的面积.22.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.24.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是多少?26.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?参考答案一.选择题(共12小题)1.【解答】解:A、22+32≠42,不能构成勾股数,故错误;B、()2+()2≠()2,不能构成勾股数,故错误;C、62+72≠82,不能构成勾股数,故错误;D、52+122=132,能构成勾股数,故正确.故选:D.2.【解答】解:∵(a﹣b)(a2﹣b2﹣c2)=0,∴a﹣b=0,或a2﹣b2﹣c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选:C.4.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.6.【解答】解:①中有92+122=152;②中有72+242=252;③(32)2+(42)2≠(52)2;④中有(3a)2+(4a)2=(5a)2;⑤中有(m2﹣n2)2+(2mn)2=(m2+n2)2,所以可以构成4组直角三角形.故选:B.7.【解答】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则28x=84,x=3.故选:C.8.【解答】解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.9.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.11.【解答】解:如下图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ==13cm.故选:A.12.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.二.填空题(共6小题)13.【解答】解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.【解答】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.15.【解答】解:连接BC.根据勾股定理可以得到:AB=BC=,AC=2,∵()2+()2=(2)2,即AB2+BC2=AC2,∴△ABC是等腰直角三角形.∴∠BAC=45°.故答案为:45°.16.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.17.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.三.解答题(共10小题)18.【解答】解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为42m,△ABC的面积为84m2.19.【解答】解:设竹子折断处离地面x米,则斜边为(10﹣x)米,根据勾股定理得:x2+42=(10﹣x)2解得:x=4.2.答:折断处离地面的高度是4.2米.20.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.21.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.22.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).23.【解答】解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.24.【解答】解:如图所示,根据勾股定理得,AB==25cm.答:需要爬行的最短距离是25cm.25.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25dm.26.【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:AG=cm>AG=cm >AG=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(Cm).。
第一章 勾股定理(1.2-1.3) 随堂练习(含答案)
- 1 -B643第一章 勾股定理(1.2-1.3)随堂训练一、认真填一填 —— 要相信自己.1. 如果△ABC 的三边分别为a 、b 、c ,满足222a b c +=,则这个三角形是_____三角形,其中斜边为______.2.一个三角形的三边之比为5∶12∶13,且周长为60cm ,则它的面积是__________.3.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,•他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,•小虎应把梯子的底端放在距离墙________米处. 4.如图1,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________BAC图1 图2 图35.如图2,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高的平方是 。
二、细心选一选 —— 要认真考虑.6.以下面每组中的三条线段为边的三角形中,是直角三角形的是( )A .5cm ,12cm ,13cmB .5cm ,8cm ,11cmC .5cm ,13cm ,11cmD .8cm ,13cm ,11cm 7.三角形的三边长a 、b 、c 满足22()2a b c ab +-=,则此三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形8.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ). A.2.5cm B.2m C.2.25m D.3m9.如图3是一块长、宽、高分别是6cm ,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的- 2 -一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长的平方是 ( )A .97B .109C .81D .85 三、精心做一做 —— 要注意审题.10. 如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?11. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.(提示,连结AC) 12.如图,在中,D 是BC 边上的点,已知,,,,求DC 的长.13.如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M,需要爬行的最短距离是多少?BB12 5- 3 -参考答案1.直角,c ; 2.1202cm ;3.0.7;4. 25dm. 提示:把这个台阶问题转化这直角三角形问题,即直角边为20dm 、15dm (为什么是15呢,原来每级台阶宽与高为3dm 、2dm ,于是三级台阶展成平面即为15dm )的直角三角形斜边长为25dm. 5.956.A ; 7.A ; 8.B ; 9.D ;10.解:这三个村庄围成的三角形,根据常见勾股数知道,这是一个直角三角形,于是△ABC 的面积=12×5×12=30,△ABC 的面积=12×13×BD ∴BD =3013,∴修这条公路的最低造价是3013×26000=60000(元)11.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°. 故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36. 12. 解:在中,由可知又由常见的勾股数组知,在中,由勾股定理知DC=9.13.分两种情况比较最短距离:第一种是,先爬到DC 棱的中点,再到M ,此时转换到一个平面内,所走的路程是直角边为10cm 、25cm 的直角三角形的斜边的长;第二种是,先抓到BC 棱的中点,再到M ,此时转换到一个平面人,所走的路程是直角边为15cm ,20cm 的直角三角形的斜边的长;由勾股定理比较这两个斜边的平方知,第二种短些,此时最短距离为25cm .。
北师大版八年级上册数学第一章 勾股定理含答案【参考答案】
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B.3 C.4 D.52、如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q。
若QH=2PE,PQ=15,则CR的长为()A.14B.15C.8D.63、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD 于F,则PE+PF等于()A. B. C. D.4、直角三角形的两条直角边长分别为4和6,那么斜边长是()A.2B.2C.52D.5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,在图中找出若干个图形,使得它们的面积之和恰好等于最大正方形①的面积.下列方案中,错误的是( )A. B. C. D.6、⊙O的弦AB的长为8cm,弦AB的弦心距为3 cm,则⊙O的直径为()A.4 cmB.5 cmC.8 cmD.10 cm7、⊙o的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.48、如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.109、若一直角三角形两边长分别为12和5,则第三边长的平方为()A.169B.169或119C.169或225D.22510、如图所示,在矩形ABCD中,AD=8,DC=4,将△ADC按逆时针方向绕点A旋转到△AEF(点,A,B,E在同一直线上),连接CF,则CF=( )A.10B.12C.D.11、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()A. B. C. D.12、如图,在边长为2的正方形中,点为对角线上一动点,于点,于点,连接,则的最小值为()A.1B.C.D.13、如图,在△ABC中, AB=3,AC=2.当∠B最大时,BC的长是()A.1B.5C.D.14、以下列各数为边长,不能组成直角三角形的是()A.3,4,5B.4,5,6C.5,12,13D.6,8,1015、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3 .其中正确的结论有()形AOBO′A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如果一个直角二角形的两条直角边的长分别是5和12,那么这个直角三角形斜边长是________。
八年级上册数学第一章勾股定理同步练习(含答案)
第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为 .3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为 .4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.参考答案:1.(1)13;(2)8;(3)6,8.2.2.5m.C F60cm.3.134.D.5.25km.6.4.7.3 cm.1.1 探索勾股定理第2课时验证勾股定理1.在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7,BC=4,请你研究这个直角三角形的斜边AB的长的平方是否等于42+72?2.下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗?参考答案1.(1)边长的平方即以此边长为边的正方形的面积,故可通过面积验证.分别以这个直角三角形的三边为边向外做正方形,如右图:AC =4,BC =3,S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×21×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2(2)如图(图见题干中图)S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×21×4×7=121-56=65=42+722.①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形,(2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形.②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2.④图中(1)(2)面积之和等于(3)的面积.因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a +b )2减去四个Rt △ABC 的面积.由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.1.2 一定是直角三角形吗1.如图在∆ABC 中, BAC = 90, AD BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对2.如果直角三角形的两边的长分别为3、4,则斜边长为3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。
北师大版八年级数学上册--第一章1.3勾股定理的应用—同步练习(含答案)
10、195 米 2 【思路分析】 设长方形的长为 xm,则根据勾股定理得 x2=362+152= 1521=392,所以 x=39. 所以这个鱼塘的面积为 39×5=195 米 2.
三、 11. 450 米 12.设 BD =x,则有:( 10+x)2+402=(50-x)2,解得 x=15 米 13、解:在直角三角形 ADE中,由勾股定理,得 DE2=AD2+AE2. 在直角三角形 BEC中,由勾股定理,得 EC2=BE2+BC2. 因为 DE=EC,因此 DE2=EC2,所以 AD2+AE2=BE2+BC2. 所以 152+AE2=( 25-AE)2+102,解得 AE=10(km)
)
A. 正东方向
B. 正南方向
C. 正西方向
D. 正北方向
7.如图,正方形小方格边长为 1,则网格中的△ ABC是 ( )
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 以上答案都不对
二、填空题 8. 一透明的圆柱状玻璃杯, 底面半径为 10cm,高为 15cm,一根吸管斜放于杯中, 吸管露出杯口外 5cm, 则吸管长为 ________cm. 9.轮船在大海中航行,它从 A 点出发,向正北方向航行 20 千米,遇到冰山后,又折向正东方向航行 15 千米,此时轮船与 A 点的距离为 ______. 10、如图,某农户有一块直角三角形地,两直角边长分别为 15 米和 36 米,靠近这块地 的斜边有一个长方形养鱼塘,已知鱼塘宽 5 米,则这个鱼塘的面积是 _____.
北师大版八年级上册数学第一章 勾股定理 含答案
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、已知锐角三角形的两边长分别3、4,则第三边长x的取值范围是()A.1<x<7B.1<x<5C. <x<5D.1<x<2、如图,河堤横断面迎水坡AB的坡比是,堤高BC=10m,则坡面AB的长度是()A.15mB.C.20mD.3、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B'处,则重叠部分的面积为( )A.12B.10C.8D.64、下列各组线段能构成直角三角形的一组是( )A.20 30,40,B.5,12,13C.5,9,12D.3,4,65、如图,矩形ABCD中,AB=5,BC=12,点E在边AD上,点G在边BC上,点F、H在对角线BD上,若四边形EFGH是正方形,则AE的长是()A.5B.C.D.6、如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC= ,若AD=4,CD=2,则BD的长为()A.6B.C.5D.7、如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S 2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86B.64C.54D.488、如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3。
以点A为圆心、AB长为半径画弧交数轴负半轴于点B1,则点B1所表示的数是A.-2B.-2C.1-2D.2 -19、直角三角形两条边长分别是6和8,则连接两条直角边中点的线段长是()A.3B.5C.4或5D.5或310、如图,将边长为4的正△ABC沿EF折叠,使A点落在边BC上G点,且BG=1,CF=( )A. B. C. D.11、如图,在中,,为上一点,连接,将沿翻折,点恰好落在上的点处,连.若,,则的长度为()A. B. C. D.12、如图,在矩形OABC中,0A=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )A.(4,8)B.(5,8)C.( ,)D.( ,)13、直角三角形中,两直角边长分别是9和12,则斜边上的中线是()A.30B.15C.D.14、如图,在中,,,为的平分线,将沿直线翻折得,则的长为()A.4B.5C.6D.715、如图,在矩形ABCD中,AD=5,AB=3,点E是BC上一点,且AE=AD,过点D 作DF⊥AE于F.则tan∠CDF的值为()A. B. C. D.二、填空题(共10题,共计30分)16、的三边分别是6,8,10,则这个三角形的最大内角的度数是________.17、如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是________cm.18、已知直角三角形两直角边长分别是5cm、12cm,其斜边上的高是________.19、将面积为2π的半圆与两个正方形拼接成如图所示的图形,则这两个正方形面积的和为________.20、已知两线段长分别为6cm,10cm,则当第三条线段长为________ cm时,这三条线段能组成直角三角形.21、如图,是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2.6米,斜坡AB的坡比为1:2.4,现把图中的货物继续向前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,则货物的高度BD不能超过________米.22、如图,在5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与BD交于E,则图中阴影部分的面积为________.(结果保留)23、如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB⊥BC,图中阴影是草地,其余是水面。
八年级数学(上)第一章《勾股定理》测试题及答案
八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。
2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。
3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。
4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。
参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。
北师大版八年级上第一章勾股定理(附习题和答案)
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
第一章 勾股定理检测题(含答案)
第一章 勾股定理检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△ABC 中,△C =90°,所以222c b a =+D.在Rt△ABC 中,△B =90°,所以222c b a =+2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的( )A.1倍B.2倍C.3倍D.4倍3.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形4.如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积为( )A.313B.144C.169D.255.如图,在Rt△ABC 中,△ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt△ABC 斜边上的高CD 的长为( )A.6 cmB.8.5 cmC.1360cmD.1330cm 6.分别满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1︰2︰3B.三边长的平方之比为1︰2︰3C.三边长之比为3︰4︰5D.三内角之比为3︰4︰57.如图,在△ABC 中,△ACB =90°,AC =40,BC =9,点M,N 在AB 上,且AM =AC,BN =BC ,则MN 的长为( )A.6B.7C.8D.98.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A.6 cmB.8 cmC.10 cmD.12 cm9.如果一个三角形的三边长a,b,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.在Rt△ABC 中,△C =90°,△A,△B,△C 所对的边分别为a ,b ,c,已知a△b =3△4,c =10,则△ABC 的面积为( )A .24B .12C .28D .30二、填空题(每小题3分,共24分)11.现有两根木棒的长度分别是40 cm和50 cm,若要钉成一个三角形木架,其中有一个角为直角,则所需木棒的最短长度为________.12.在△ABC中,AB=AC=17 cm,BC=16 cm,AD⊥BC于点D,则AD=_______.13.在△ABC中,若三边长分别为9,12,15,则用两个这样的三角形拼成的长方形的面积为________.14.如图,某会展中心在会展期间准备将高5 m,长13 m,宽2 m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.第15题图15.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH 等于.16.(2015·湖北黄冈中考)在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为cm2.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm,则正方形A,B,C,D的面积之和为___________cm2.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.三、解答题(共46分)19.(6分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解..............答过程....20.(6分)如图,为修铁路需凿通隧道AC,现测量出△ACB=90°,AB=5 km,BC=4 km,若每天凿隧道0.2 km,问几天才能把隧道AC凿通?21.(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?23.(7分)张老师在一次“探究性学习”课中,设计了如下数表:n2345…a22-132-142-152-1…b46810…c22+132+142+152+1…(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=__________,b=__________,c=__________.(2)以a,b,c为边长的三角形是不是直角三角形?为什么?24.(7分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10 cm,AB=8 cm.求:(1)FC的长;(2)EF的长.25.(7分)如图,在长方体ABCD A B C D ''''-中,2AB BB '==,AD =3,一只蚂蚁从A 点出发,沿长方体表面爬到C '点,求蚂蚁怎样走路程最短,最短路程是多少?第一章 勾股定理检测题参考答案1.C 解析:A.不确定三角形是不是直角三角形,故A 选项错误;B.不确定第三边是不是斜边,故B 选项错误;C.△C=90°,所以其对边为斜边,故C 选项正确;D.△B=90°时,有b 2=a 2+c 2,所以a 2+b 2=c 2不成立,故D 选项错误.2.B 解析:设原直角三角形的两直角边长分别是a ,b ,斜边长是c ,则a 2+b 2=c 2,则扩大后的直角三角形两直角边长的平方和为()()222224422a b c a b (),+=+=斜边长的平方为()2242c c =,即斜边长扩大到原来的2倍,故选B.3.B 解析:在△ABC 中,由AB =6,AC =8,BC =10,可推出AB 2+AC 2=BC 2.由勾股定理的逆定理知此三角形是直角三角形,故选B .4.D 解析:设三个正方形A ,B ,C 的边长依次为a ,b ,c ,因为三个正方形的边组成一个直角三角形,所以a 2+b 2=c 2,故S A +S B =S C ,即S A =169-144=25.5.C 解析:由勾股定理可知22222512169AB AC BC =+=+=,所以AB=13 cm,再由三角形的面积公式,有1122AC BC AB CD ⋅=⋅,得60cm 13AC BC CD AB ⋅==(). 6.D 解析:在A 选项中,求出三角形的三个内角分别是30°,60°,90°;在B ,C 选项中,都符合勾股定理的条件,所以A ,B ,C 选项中的三角形都是直角三角形.在D 选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D .7.C 解析:在Rt △ABC 中,AC =40,BC =9,由勾股定理得AB =41.因为BN=BC =9,AM =AC =40,所以MN =AM +BN -AB =40+9-41=8.8.C 解析:如图为圆柱的侧面展开图,△ B 为CE 的中点,则AB 就是蚂蚁爬行的最短路径.△ CE =2πr =2×π6×π=12(cm ), △ CB =12÷2=6(cm ).△ AC =8 cm ,△ 22222=68AB CB AC +=+=100(cm ),△ AB= 10 cm,即蚂蚁要爬行的最短路程是10 cm .9.B 解析:由a 2+b 2+c 2+338=10a +24b +26c ,整理,得a 2-10a +25+b 2-24b +144+c 2-26c +169 =0,即(a -5)2+(b -12)2+(c -13)2=0,所以a =5,b =12,c =13,符合a 2+b 2=c 2,所以这个三角形一定是直角三角形.10.A 解析:因为a△b =3△4,所以设a =3k ,b =4k (k >0).在Rt△ABC 中,△C =90°,由勾股定理,得a 2+b 2=c 2.因为c =10,所以9k 2+16k 2=100,解得k =2,所以a =6,b =8,所以S △ABC =12ab =12×6×8=24.故选A.11.30 cm 解析:当50 cm 长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm (x >0),由勾股定理,得2224050x +=,解得x=30.12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,∴ 1.2BD BC = ∵ BC =16,∴ 11168.22BD BC ==⨯= ∵ AD ⊥BC ,∴ ∠ADB=90°.在Rt △ADB 中,∵ AB =AC =17,由勾股定理,得22222178225AD AB BD =-=-=.∴ AD=15 cm . 13.108 解析:因为 92+122=152,所以△ABC 是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为9×12=108. 14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).15.6 解析:△ △ABH△△BCG△△CDF△△DAE ,△ AH =DE.又△ 四边形ABCD 和EFGH 都是正方形,△ AD=AB=10,HE=EF=2,且AE△DE.△ 在Rt△ADE 中,AE 2+DE 2=AD 2,△ (AH +EF)2+AH 2=AD 2,△ (AH +2)2+AH 2=102,△ AH=6或AH= - 8(不合题意,舍去).16.126或66 解析:本题分两种情况.(1)如图(1),在锐角△ABC 中,AB=13,AC=20,BC 边上的高AD=12,第16题答图(1)在Rt△ABD 中,AB=13,AD=12,由勾股定理,得BD 2=AB 2-AD 2=132-122=25,△ BD=5.在Rt△ACD 中,AC=20,AD=12,由勾股定理,得CD 2=AC 2-AD 2=202-122=256,△ CD=16,△ BC 的长为BD+DC=5+16=21,△ABC 的面积=12·BC·AD=12×21×12=126.(2)如图(2),在钝角△ABC 中,AB=13,AC=20,BC 边上的高AD=12,第16题答图(2)在Rt△ABD 中,AB=13,AD=12,由勾股定理,得BD 2=AB 2-AD 2=132-122=25,△ BD=5.在Rt△ACD 中,AC=20,AD=12,由勾股定理,得CD 2=AC 2-AD 2=202-122=256,△ CD=16.△ BC=DC -BD=16-5=11.△ABC 的面积=12·BC·AD=12×11×12=66.综上,△ABC 的面积是126或66.17.49 解析:正方形A ,B ,C ,D 的面积之和是最大的正方形的面积,即49 cm 2.18.4 解析:在Rt△ABC 中,△C=90°,由勾股定理,得AB 2=BC 2+AC 2224325=+=,所以AB=5.他们仅仅少走了2×(3+4-5)=4(步).19.解:如图,在△ABC 中,AB=15,BC=14,AC=13,设,△ .由勾股定理,得,,△ ,解得.△ .△ .20.解:在Rt△ABC 中,由勾股定理,得222AB AC BC =+,即22254AC =+,解得AC=3,或AC=-3(舍去).因为每天凿隧道0.2 km ,所以凿隧道用的时间为3÷0.2=15(天).答:15天才能把隧道AC 凿通.21.解:(1)因为三个内角的比是1︰2︰3,所以设三个内角的度数分别为k ,2k ,3k (k≠0).由k +2k +3k =180°,得k =30°,所以三个内角的度数分别为30°,60°,90°.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2. 设另外一条直角边长为x ,则22212x +=,即2=3x .所以另外一条边长的平方为3.22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为x m ,则折断部分的长为(16-x )m , 根据勾股定理,得x 2+82=(16-x )2,解得x =6,即旗杆在离底部6 m 处断裂.23.分析:从表中的数据找到规律.BD x =14CD x =-2222215AD AB BD x =-=-2222213(14)AD AC CD x =-=--2215x -=2213(14)x --9x =12AD =12ABC S BC AD ∆=11412842=⨯⨯=第19题答图解:(1)n 2-1 2n n 2+1(2)以a ,b ,c 为边长的三角形是直角三角形.理由如下:△ a 2+b 2=(n 2-1)2+4n 2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2=c 2,△ 以a ,b ,c 为边长的三角形是直角三角形.24.分析:(1)因为将△ADE 翻折得到△AFE ,所以AF =AD ,则在Rt △ABF 中,可求得BF 的长,从而FC 的长可求;(2)由于EF =DE ,可设EF 的长为x ,在Rt △EFC 中,利用勾股定理解直角三角形即可.解:(1)由题意,得AF =AD =BC =10 cm ,在Rt △ABF 中,△B =90°,∵ AB =8 cm ,∴ 2222210836BF AF AB =-=-=,BF=6 cm ,∴ FC =BC -BF =10-6=4(cm ).(2)由题意,得EF =DE ,设DE 的长为x ,则EC =8-x .在Rt △EFC 中,△C =90°,由勾股定理,得222+EC FC EF =,即(8-x )2+42=x 2,解得x =5,即EF 的长为5 cm .25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:蚂蚁沿如图(1)所示的路线爬行时,长方形ACC 'A '长为AD +DC =5,宽为AA '=2,连接AC ',则构成直角三角形.由勾股定理,得222225229AC AC CC ''=+=+=.蚂蚁沿如图(2)所示的路线爬行时,长方形ADC 'B '长为DD'+D'C'=4,宽为AD =3,连接AC ',则构成直角三角形.由勾股定理,得22222=+3425AC AD DC ''=+=,AC'=5. 蚂蚁沿如图(3)所示的路线爬行时,长方形ABC D ''长为=5BB B C '''+,宽为AB=2,连接AC ',则构成直角三角形. 由勾股定理,得22222=+=25=29.AC AB BC ''+ △ 蚂蚁从A 点出发穿过A'D'到达C '点时路程最短,最短路程是5.。
勾股定理全章练习题含答案
勾股定理课堂学习检测—、填空题:! •若是直角三角形的两直角边长别离为a、b,斜边长为c,那么 _______ 二3 ;这必然理在我国被称为 ______ ・2・厶中,zC二90°, a、b、c别离是乙B、/U的对边・(1) ____________________________ 假设a=5, b = 12t那么c二;⑵假设c 41, ”40,那么0二____________ ;(3) 假设z»=30\ a",那么c二 _________ . b二____ :(4) 假设z/l二45°,日二丄,那么" ______ , c二____ ・3•如图是由边长为lm的正方形地砖铺设的地面示用意,小明沿图中所示的折线从XB-C所走的路程为4 •等腰直角三角形的斜边为10,那么腰长为_______ ,斜边上的高为______ •5 •在直角三角形中,一条直角边为11cm ,另两边是两个持续自探数,那么此直角三角形的周长为二瞬题6 • R^ABC中#斜边BC二2 .那么+ BO的值为()•(A)8 (B)4 (C)6 (D)无法计算7 •如图,L ABC中f AB二AC^ 10 , BD是边上的高线.DC=2 ,那么SQ等于().(A)4 (B)6 (C)8 (D) 2 価8 •如图,M^ABC中,zC 90°,假设AB二15cm #那么正方形"比和正方形BCFG的面积和为().(A)l 50cm2(B )200cm2(C)225cm2(D)无法计算三、解答题9.在RtZUBC 中,ZC=90° , ZA> ZB. ZC 的对边别离为a、b. c.(1)假设a : b=3 : 4, c=75cm,求a、b;(2)假设a : c = 15 : 17, b=2A,求AABC 的面积;(3)假设c—a=4, b = 16f求a、c;(4)假设ZA=30。
2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版
2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。
2021年 北师大新版 八年级上册 第1章勾股定理 勾股定理的证明练习题 (含答案)
2021年北师大新版八年级上册第1章勾股定理勾股定理的证明练习题(含答案)一.选择题(共4小题)1.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.2.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.3.如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S =21,则图中阴影部分的面积之和为()正方形ABCDA.B.C.D.4.如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成大正方形,若小正方形边长为1,大正方形边长为5,则一个直角三角形的周长是()A.6B.7C.12D.15二.填空题(共2小题)5.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a和b,那么(a+b)2的值为.6.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=9,小正方形ABCD的面积是9,则弦c长为.三.解答题(共2小题)7.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连接BE、DE,DE 的延长线交AB于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.8.知识探究:如图1是两直角边长分别为m,n(m>n)的直角三角形,如果用四个与图1完全一样的直角三角形可以拼成如图2和图3的几何图形.其中图2和图3的四边形ABCD、四边形EFGH都是正方形.请你根据几何图形部分与整体的关系完成第(1)(2)题.请选择(m+n)2,(m﹣n)2,mn中的有关代数式表示:图2中正方形ABCD的面积:.图3中正方形ABCD的面积:.(2)请你根据题(1),写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.知识应用:(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a>0,a﹣=,求:a+的值.2021年北师大新版八年级上册第1章勾股定理勾股定理的证明练习题(含答案)参考答案一.选择题(共4小题)1.D;2.B;3.B;4.C;二.填空题(共2小题)5.29;6.15;三.解答题(共2小题)7.;8.(m﹣n)2+2mn;(m+n)2﹣2mn;(m﹣n)2=(m+n)2﹣4mn 或者(m+n)2=(m﹣n)2+4mn.;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
6
4
3
第一章 勾股定理(1.2-1.3)随堂训练
一、认真填一填 —— 要相信自己.
1. 如果△ABC 的三边分别为a 、b 、c ,满足2
2
2
a b c +=,则这个三角形是_____三角形,其中斜边为______.
2.一个三角形的三边之比为5∶12∶13,且周长为60cm ,则它的面积是__________.
3.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,•他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,•小虎应把梯子的底端放在距离墙________米处. 4.如图1,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________
B
A
C
图1 图2 图3
5.如图2,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高的平方是 。
二、细心选一选 —— 要认真考虑.
6.以下面每组中的三条线段为边的三角形中,是直角三角形的是( )
A .5cm ,12cm ,13cm
B .5cm ,8cm ,11cm
C .5cm ,13cm ,11cm
D .8cm ,13cm ,11cm 7.三角形的三边长a 、b 、c 满足2
2
()2a b c ab +-=,则此三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形
8.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ). A.2.5cm B.2m C.2.25m D.3m
9.如图3是一块长、宽、高分别是6cm ,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长的平方是 ( )
A .97
B .109
C .81
D .85
三、精心做一做 —— 要注意审题.
10. 如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?
11. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD
的面积.(提示,连结AC) 12.如图,在
中,D 是BC 边上的点,已知
,
,
,
,
求DC 的长.
13.如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm,一只蚂蚁
如果要沿着长方体的表面从点A 爬到点M,需要爬行的最短距离是多少?
参考答案
1.直角,c ; 2.1202
cm ;3.0.7;
4. 25dm. 提示:把这个台阶问题转化这直角三角形问题,即直角边为20dm 、15dm (为什么是15呢,原来每级台阶宽与高为3dm 、2dm ,于是三级台阶展成平面即为15dm )的直角三角形斜边长为25dm.
E
B
M
D
C
H
C
F
B
12 5
C 13
D A
5.
95
6.A ; 7.A ; 8.B ; 9.D ;
10.解:这三个村庄围成的三角形,根据常见勾股数知道,这是一个直角三角形,于是△ABC 的面
积=
12×5×12=30,△ABC 的面积=1
2
×13×BD ∴BD =3013,∴修这条公路的最低造价是30
13
×26000=60000(元)
11.解:连接AC ,在Rt △ABC 中,
AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,
∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°. 故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+2
1
×5×12=6+30=36. 12. 解:在
中,由
可知
又由常见的勾股数组知,
在
中,由勾股定理知DC=9.
13.分两种情况比较最短距离:
第一种是,先爬到DC 棱的中点,再到M ,此时转换到一个平面内,所走的路程是直角边为10cm 、25cm 的直角三角形的斜边的长;
第二种是,先抓到BC 棱的中点,再到M ,此时转换到一个平面人,所走的路程是直角边为15cm ,20cm 的直角三角形的斜边的长;
由勾股定理比较这两个斜边的平方知,第二种短些,此时最短距离为25cm .。