半导体物理名词解释

合集下载

半导体物理名词解释

半导体物理名词解释

半导体物理名词解释1.单电子近似:假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

2.电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。

这种运动称为电子的共有化运动。

3.允带、禁带: N个原子相互靠近组成晶体,每个电子都要受到周围原子势场作用,结果是每一个N度简并的能级都分裂成距离很近能级,N个能级组成一个能带。

分裂的每一个能带都称为允带。

允带之间没有能级称为禁带。

4.准自由电子:内壳层的电子原来处于低能级,共有化运动很弱,其能级分裂得很小,能带很窄,外壳层电子原来处于高能级,特别是价电子,共有化运动很显著,如同自由运动的电子,常称为“准自由电子”,其能级分裂得很厉害,能带很宽。

6.导带、价带:对于被电子部分占满的能带,在外电场的作用下,电子可从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用,常称这种能带为导带。

下面是已被价电子占满的满带,也称价带。

8.(本证激发)本征半导体导电机构:对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。

9.回旋共振实验意义:这通常是指利用电子的回旋共振作用来进行测试的一种技术。

该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。

当交变电磁场角频率W等于回旋频率Wc时,就可以发生共振吸收,Wc=qB/有效质量10.波粒二象性,动量,能量P=m0v E=12P2m0P=hk1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。

2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。

3.施主杂质与施主能级:能够释放电子而产生导电电子并形成正电中心。

它们称为施主杂质或n型杂质。

物理学中的半导体物理

物理学中的半导体物理

物理学中的半导体物理半导体物理是物理学中一个重要的分支领域。

半导体是指导电性介于导体和绝缘体之间的物质,如硅、锗等。

半导体物理主要研究半导体中电子、空穴、晶粒界、杂质等的运动规律,以及半导体器件的物理原理和工艺。

一、半导体的电子结构在半导体中,电子的能级分布呈现出带状结构。

价带是最高的能级,其上的电子分布较密集,其下则空缺较多。

导带是次高的能级,通常情况下是空的,其上可以沿导电路径运动的电子较少,这就是半导体的导电性能比较差的原因。

在晶体中,除了原子核外,每个原子周围都有电子层,这个层次本来就不完整,因此缺少一个或几个外层电子,会在附近的原子间共享电子,形成化学键,从而构成了半导体中的基本单体。

当加热或用其他方法提高温度时,原子处于激发态。

激发态原子会获得足够的能量跃迁到价带或者导带。

二、掺杂对半导体的影响为了改变半导体的导电性能,需要掺杂。

这种掺杂是指半导体中的原子被替换或注入其他原子。

这种替换或注入工艺被称为掺杂工艺。

常见的掺杂工艺有两种:第一种是在生长晶体时就把其他元素加入(挂接)进去,形成所谓的掺杂粒子(常见的有磷、硼、硅等);第二种是用能量较大的加速器轰击半导体,将半导体表面的部分原子轰击掉,然后在其上面注入掺杂粒子,这种工艺被称为离子注入。

掺杂后,半导体的导电性能会有所变化,通常是导电性能增强。

这是因为所掺入的粒子在半导体中形成的杂质电子能够在温度高于绝对零度时,跃迁到导带中从而激发出分子运动。

三、半导体器件的物理原理半导体器件是基于半导体物理原理设计和制造的设备。

半导体器件种类繁多,其中比较常见的有二极管、场效应管、晶体管、太阳能电池等。

二极管是一种基本的电子器件,通常由两个半导体晶体(一个是P型半导体,一个是N型半导体)组成。

二极管的基本原理是,当二极管两端施加正向电压时,P-N结通过夺电子-空穴复合放出能量,所以电流可以通过;当两端施加反向电压时,P-N结处形成一个反向电势,这时电流将不能通过。

半导体物理(名词解释)

半导体物理(名词解释)

共有化运动:在半导体中,由于原子之间的相互作用,电子不再局限于某个原子,而是可以在整个晶体中自由运动的现象能带特点:分裂的每一个能带称为允带。

允带间的能量范围称为禁带内层原子受到的束缚强,共有化运动弱,能级分裂小,能带窄,外层原子受束缚弱,共有化运动强,能级分裂明显,能带宽价带是指晶体中最低能量的,能带其中的电子通常被束缚在原子或分子中,不能自由移动导带是指晶体中能量较高的,能带其中的电子可以自由移动并参与导电禁带是指晶体中价带和导带之间的能量区域,其中不存在允许的电子能量状态允带是指晶体中允许电子存在的能量状态所组成的能带本征激发:价带上的电子被激发成为准自由电子,即价带电子激发成为导带电子的过程有效质量体现了晶格周期性势场的影响能带底部的有效质量大于零,能带顶部的有效质量小于零有效质量具有方向性能带宽,有效质量小,能带窄,有效质量大空穴:半导体中,由于电子的运动而形成的空位满带中的电子不导电施主杂质:为半导体材料提供导电电子的杂质受主杂质:为半导体材料提供导电空穴的杂质杂质电离:价电子脱离杂质原子成为自由电子的过程施主能级:被失主杂质束缚的电子的能量状态(多余电子的杂质能级)受主能级:被受主杂质所束缚的空穴的能量状态(多余空穴的杂质能级)N型半导体:依靠导带电子导电的半导体P型半导体:依靠空穴导电的半导体浅能级杂质:施主或受主能级离导带底或价带顶很近,杂质电离能很小深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。

杂质的补偿作用:半导体中同时存在施主杂质和受主杂质时,施主杂质和受主杂质之间有相互抵消的作用ND>NA,ND-NA为有效施主浓度ND<NA,NA-ND为有效受主浓度弗伦克尔缺陷:间隙,原子和空位是成对出现的肖特基缺陷:只在晶体内形成空穴而无间隙原子空穴和替位原子都是点缺陷位错是线缺陷状态密度:在能带中能量E附近,每单位能量间隔内的量子态数有效质量大的能带状态密度大费米分布函数f(E):描述每个量子态被电子占据的几率随E的变化,f(E)=1/[1+exp((E-EF)/k0T)]费米能级EF是系统的化学势:指温度为绝对零度时固体能带中充满电子的最高能级载流子的复合:电子从高能量的量子态跃迁到低能量的量子态,并向晶格放出一定能量,从而使导带中的电子和价带中的空穴不断减少热平衡状态:在一定的温度下,电子从低能量的量子态跃迁到高能量的量子状态及电子从高能量的量子态跃迁到低能量的量子态这两个相反过程之间建立起动态平衡。

半导体物理中的名词解释

半导体物理中的名词解释

半导体物理中的名词解释引言半导体物理是研究半导体材料与器件特性及其应用的学科领域。

在这个领域中,涉及了许多专有名词和概念。

本文将对部分半导体物理中的名词进行解释,帮助读者更好地理解和掌握半导体物理的基础知识。

1. 半导体半导体是指在温度较低时具有介于导体和绝缘体之间电导率的物质。

其导电性能可以通过外加电场或温度的改变而变化。

在半导体中,电子的能带结构起着关键作用。

常见的半导体材料包括硅和锗。

2. 能带能带是描述电子能量状态的概念,常见的有价带和导带。

价带是较低能量的电子能级,而导带是较高能量的电子能级。

能带间的能隙是指两个能带之间的能量差异。

3. 底带和势垒底带是指位于能量较低的束缚态能级,例如价带。

势垒是指在能带之间建立的电势差。

在半导体中,势垒可以通过外加电场或杂质掺入来调节。

4. 载流子载流子是指在半导体中参与电荷输运的粒子,包括电子和空穴。

电子的运动带负电荷,而空穴则带正电荷。

在半导体中,载流子的浓度和运动性质对于电导率至关重要。

5. 禁带宽度和掺杂禁带宽度是指价带和导带之间的能隙。

掺杂是通过引入杂质来改变半导体的导电性能。

掺杂可以分为n型和p型掺杂,分别引入电子和空穴作为载流子。

6. PN结和二极管PN结是指将n型半导体和p型半导体相接触形成的结构。

PN结具有整流特性,发挥了二极管的作用。

当正向偏置时,电流可以流过结;而反向偏置时,电流则被阻塞。

7. MOS结和场效应晶体管MOS结是指金属氧化物半导体结。

它是指在绝缘体上形成金属-氧化物-半导体结构。

MOS结构被广泛应用于场效应晶体管中。

场效应晶体管是一种控制门电压来调节电流的半导体器件。

8. 肖特基结和肖特基二极管肖特基结是一种由金属和半导体形成的结。

肖特基结具有快速开关特性和低电压降,被用于高频和高速电子器件。

肖特基二极管是利用肖特基结制成的二极管。

9. 光电效应和光电二极管光电效应是指当光照射到半导体材料时,激发电子从价带跃迁到导带的现象。

半导体物理名词解释

半导体物理名词解释

第一章(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。

(2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

(3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

(4)单晶:原子呈周期性排列的晶体。

(5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。

(6)原子价键:主要的原子价键有共价键、离子键、π键和金属键。

(7)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价就是非极性共价键。

共价键的数目遵从8-N原则(8)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉1个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴(9)半导体的载流子:有两种载流子,带负电的电子和带正电的空穴。

(10)基态:在0K下,半导体中的电子空穴对产生之前的固体所处的状态。

(11)激发态:电子空穴对产生之后的固体所处的状态(12)光激发:光照产生电子空穴对的过程。

第二章(1)量子:热辐射的粒子形态。

(2)德布罗意波长:普朗克常量与粒子的动量p的比值。

(3)海森伯堡测不准原理:对于同一粒子,不可能同时确定其坐标和动量。

(4)量子化能级:束缚态粒子的分立的能级。

(5)波粒二象性:微观粒子有时表现为波动形态,而电磁波有时表现为粒子形态。

(6)光生载流子:光照产生的载流子。

(7)热生载流子:热激发产生的载流子(8)半导体能带结构:分为E-k图和E-x图。

(9)导带:价带上能量最低的允带(10)价带:价电子所在的允带。

(11)禁带:导带底与价带顶之间的能量区域(12)禁带宽度:导带底与价带顶之间的能量差。

半导体物理简单名词解释

半导体物理简单名词解释

《半导体物理》基本名词解释极性半导体:含有离子键成分本征半导体:不含杂质的半导体本征激发:电子从价带跃迁到导带禁带宽度:脱离共价键所需要的最低能量缺陷分类:点缺陷(空位、间隙原子)线缺陷(位错)面缺陷(层错、晶粒间界)弗兰克尔缺陷:空位与间隙成对出现肖特基缺陷:只有空位杂质原子分类:替位式、间隙式施主杂质:释放电子而产生导电电子并形成正电中心受主杂质:接受电子而产生导电空穴并形成负电中心施主能级:被施主杂质束缚的电子的能量状态受主能级:被受主杂质束缚的空穴的能量状态施主杂质电离能:被俘获的电子摆脱束缚成为自由电子所需要的能量受主杂质电离能:被俘获的空穴摆脱束缚从而参与导电所需要的能量N型半导体:主要依靠导带电子导电的半导体P 型半导体:主要依靠价带空穴导电的半导体浅能级杂质:在半导体禁带中产生能级距带边较近的杂质,对载流子浓度和导电类型影响大深能级杂质:施主能级距离导带底远,受主能级距离价带顶远,对载流子复合作用大补偿作用:施主杂志和受主杂质同时存在有相互抵消的作用双性行为:杂质既能表现为施主杂质又能表现为受主杂质(Si在GaAs中)等电子陷阱:等电子杂质因电负性的差将俘获某种载流子而成为带点中心能态密度(状态密度):单位能量间隔内的状态数目费米分布函数:能量为E的一个量子态被一个电子占据的概率费米能级(化学势):标志了电子的填充水平简并系统:服从费米统计率的电子系统非简并系统:服从玻尔兹曼统计率的电子系统,重掺杂半导体简并化条件:0-2k0T多数载流子:n型半导体的电子,p型半导体的空穴少数载流子:n型半导体的空穴,p型半导体的电子漂移运动:载流子在外加电场作用下所作的定向运动散射几率:一个电子在单位时间内受到的散射次数平均自由时间:一个电子在连续两次散射之间自由运动的时间平均自由程:一个电子在连续两次散射之间自由运动的路程载流子的主要散射机制:电离杂质散射、晶格振动散射、其他因素(等同能谷间散射、中性杂质、位错)非平衡载流子复合率:单位时间、单位体积内净复合消失的电子-空穴对数准费米能级:非平衡态时,分别就价带和导带中的电子而言,各自处于平衡状态,用来描述对应状态的费米能级。

半导体物理名词解释

半导体物理名词解释

本征激发的概念:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。

格波态密度:确定体积V的晶体,在ω附近单位频率间隔内的格波总数状态密度:状态密度就是在能带中能量E附近每单位能量间隔内的量子态数平均自由时间:载流子在电场中作漂移运动时,只有在连续两次散射之间的时间内才作加速运动,这段时间称为自由时间。

自由时间长短不一,若取极多次而求得其平均值则称为载流子的平均自由时间。

载流子的散射:没有外场的作用,载流子作无规则的热运动。

载流子在半导体中运动时,不断地与热振动的晶格原子或电离的杂质离子发生碰撞,碰撞后载流子的运动速度的大小和方向发生了改变。

用波的概念,就是说电子波在半导体中传播时遭到了散射。

半导体中载流子的散射机制:晶格振动散射和电离杂质散射“准费米能级”概念:存在非平衡载流子时,导带和价带各自适用费米能级和统计分布函数,分别引入导带费米能级和价带费米能级,它们都是局部的费米能级,称为“准费米能级”直接复合:由电子在导带和价带间直接跃迁而引起非平衡载流子的复合过程。

间接复合:非平衡载流子通过复合中心的复合。

非平衡载流子深入样品的平均距离,称为扩散长度。

空穴:空穴是几乎被电子填满的能带中未被电子占据的少数空的量子态,这少量的空穴总是处于能带顶附近,是价电子脱离原子束缚后形成的电子空位,对应于价带顶的电子空位。

由两种不同的半导体材料形成的结,称为异质结直接带隙半导体材料:就是导带最小值(导带底)和价带最大值在k空间中同一位置间接带隙半导体材料:(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置非平衡载流子的平均生存时间称为非平衡载流子的寿命,用表示。

寿命标志着非平衡载流子的浓度减小到原值的1/e所经历的时间。

载流子有效质量的物理意义:直接把外力f和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

半导体物理之名词解释

半导体物理之名词解释

1.迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。

迁移率的表达式为:*q mτμ=可见,有效质量和弛豫时间(散射)是影响迁移率的因素。

影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

n pneu peu σ=+2.过剩载流子 参考答案:在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。

非平衡状态下的载流子称为非平衡载流子。

将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。

非平衡过剩载流子浓度:00,n n n p p p ∆=-∆=-,且满足电中性条件:n p ∆=∆。

可以产生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。

对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:2i np n >,对于抽取情形,通过外加电压使得载流子浓度减小:2i np n <。

3. n 型半导体、p 型半导体N 型半导体:也称为电子型半导体.N 型半导体即自由电子浓度远大于空穴浓度的杂质半导体.在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体.在N 型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电.自由电子主要由杂质原子提供,空穴由热激发形成.掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强.P 型半导体:也称为空穴型半导体.P 型半导体即空穴浓度远大于自由电子浓度的杂质半导体.在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体.在P 型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电.空穴主要由杂质原子提供,自由电子由热激发形成.掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强. 4. 能带当N 个原子处于孤立状态时,相距较远时,它们的能级是简并的,当N 个原子相接近形成晶体时发生原子轨道的交叠并产生能级分裂现象。

半导体物理的概念是什么

半导体物理的概念是什么

半导体物理的概念是什么
半导体物理是研究半导体材料和器件的物理学分支。

半导体材料是指一类在温度低于室温时是绝缘体,在高于室温时是导体的材料。

半导体物理研究包括半导体的材料特性、电子结构、能带理论、载流子运动、电导率、电子输运、PN结等相关理论和实验研究,以及半导体器件如晶体管、二极管、光电器件等的设计、制造和性能优化。

半导体材料的特性主要取决于其电子结构和能带理论,在此理论框架下,可以解释半导体特性中的许多现象和规律。

半导体中的原子价电子填满能量较低的全球化价带,而导电性较高的传导带的能量较高,由于其能隙比绝缘体小,这使得外来的激励如温度、光照等可以激发电子从价带跃迁到传导带中,同时在跃迁后留下空穴。

这些载流子在半导体中运动和输运的特性对半导体电子学和器件设计具有重要影响。

PN结是半导体器件中常用的器件之一,它是由n 型半导体和p 型半导体材料的拼接而成的结构。

在PN 结中,n-type 半导体中的高浓度自由电子和
p-type 半导体中的高浓度空穴的扩散汇聚产生了空间电荷区域,它使得PN 结在外加正向偏压下变成导体,在反向偏压下变成绝缘体,从而形成了PN 结二极管器件。

半导体物理的研究不仅对于半导体电子学理论、器件设计和制造具有重要意义,而且具有广泛的应用前景。

例如,半导体材料是制造电子器件的重要材料,其中
包括计算机、手机、平板电视、LED 灯等常用电子产品。

另外,半导体材料被广泛用于太阳能电池、光电器件、半导体激光器、放大器等领域,这些领域的发展对于节能减排、环保、医学、化学等方面都具有积极意义,同时也推动了半导体物理研究的发展。

(806)半导体物理

(806)半导体物理

(806)半导体物理半导体物理是研究半导体材料的性质和行为的学科。

半导体是指电导率介于导体和绝缘体之间的材料,其独特的电子结构决定了其特殊的电学、光学和热学性质。

半导体物理的研究对于现代电子技术和光电子技术的发展起到了重要的推动作用。

半导体物理的研究主要集中在半导体材料的能带结构、载流子输运和电子-空穴对的生成与复合等方面。

能带结构是指半导体材料中电子能级的分布情况。

晶体中的能带分为价带和导带,其中价带中的电子与导带中的空位置于费米能级以上。

半导体的导电性质取决于能带之间的能隙。

当能带之间的能隙较小时,外界的激励(如热激发或光激发)可以使电子从价带跃迁到导带,从而导致电导率增加。

载流子输运是指半导体中电子和空穴的运动过程。

在半导体中,电子和空穴是载流子,它们的运动是导致电流流动的原因。

载流子的输运过程受到材料的结构和杂质等因素的影响。

电子和空穴在半导体中的运动方式可以用两个基本的输运机制来描述:漂移和扩散。

漂移是指载流子在电场力的作用下沿着电场方向运动,而扩散是指载流子由于浓度梯度而发生的随机运动。

电子-空穴对的生成与复合是半导体物理中的一个重要过程。

在半导体中,光激发或热激发会生成电子-空穴对,这些电子-空穴对可以通过复合过程重新回到基态。

电子-空穴对的生成和复合过程对于半导体中的光电子器件特性具有重要影响。

例如,光电二极管就是利用半导体中电子-空穴对的生成与复合过程实现光电转换。

半导体物理的研究对于半导体器件的设计和制造具有重要意义。

通过对半导体材料的物理性质和行为的深入研究,可以优化半导体器件的性能和可靠性。

在半导体技术的发展过程中,半导体物理的研究成果不断地为新型器件的设计和制造提供了理论依据和技术支持。

半导体物理是研究半导体材料性质和行为的学科,涉及能带结构、载流子输运和电子-空穴对的生成与复合等方面。

半导体物理的研究对于现代电子技术和光电子技术的发展起到了重要的推动作用,为半导体器件的设计和制造提供了理论依据和技术支持。

半导体物理名词解释

半导体物理名词解释

1、离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成的晶体。

共价晶体:由共价键结合形成的晶体。

2、布拉菲点阵:实际晶体可以看作基元在空间的周期性重复排列。

把基元看作是一个几何点,按晶体相同的周期在空间进行排列得到的点阵称为这种晶体的布拉菲点阵。

3、原胞:构成布拉菲点阵的最小平行六面体,格点只能在顶点。

晶胞:布拉菲点阵中能反映其对称性前提下的体积最小的重复单元。

4、施主杂质:能够释放电子而产生导电电子并形成正电中心的杂质。

受主杂质:能够接受电子而产生导电空穴,并形成负电中心的杂质。

施主电离能:多余的一个价电子脱离施主杂质而成为自由电子所需要的能量。

受主电离能:使空穴挣脱受主杂质束缚成为导电空穴所需要的能量。

5、量子态密度:单位K空间中的量子态数目称为量子态密度。

状态密度:单位能量间隔内的量子态数目称为状态密度。

有效状态密度:所有有可能被电子占据的量子态数。

6、深杂质能级:能在半导体中形成深能级的杂质元素。

将其引入半导体中,形成一个或多个能级。

该能级距离导带底、价带顶较远,且多位于禁带的中央区域。

浅杂质能级:能在半导体中形成浅能级的杂质元素。

在半导体禁带中靠近导带边缘的杂质。

7、空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。

8、有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。

有效质量表达式为:9、理想半导体:晶格原子严格按周期性排列并静止在格点位置上,纯净不含杂质的,晶格结构是完整的。

实际半导体:原子不是静止的,而是在其平衡位置附近振动,含有若干杂质,存在点缺陷,线缺陷和面缺陷等。

10、直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。

间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

11、复合率:单位时间单位体积内复合掉的电子-空穴对数。

非平衡载流子的复合率(净复合率):产生率:单位时间单位体积内所产生的电子-空穴对数。

半导体物理-名词解释

半导体物理-名词解释

半导体物理名词解释1. 受主杂质杂质在半导体中成键时,产生一个空穴。

当其他电子来填补这个空穴时,相当于这个空穴电离,同时杂质原子成为负电中心。

2. 施主杂质掺杂离子进入本征半导体晶格后,杂质原子容易失去一个电子成为自由电子,这个杂质原子叫施主。

3. 间接复合电子和空穴通过禁带中的杂质或缺陷能级进行复合。

4. 直接复合电子在导带和价带之间直接跃迁所引起的非平衡载流子的复合过程。

5. 载流子产生率单位时间内载流子的产生数量。

6. 扩散长度非平衡载流子深入样品的平均距离。

7. 非平衡载流子的寿命非平衡载流子的平均生存时间。

8. 费米能级费米能级是绝对零度时电子的最高能级。

9. 迁移率单位电场强度下载流子所获得的漂移速率。

10. 功函数功函数是指真空电子能级E0与半导体的费米能级E F之差。

11. 表面态晶体的自由表面的存在,使得周期性势场在表面处发生中断,引起附加能级,电子被局域在表面附近,这种电子状态称为表面态,所对应的能级为表面能级。

12. 电子亲和能真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。

13. 同质结同质结就是同一种半导体形成的结,包括pn结,pp结,nn结。

14. 异质结异质结就是由不同种半导体材料形成的结,包括pn结,pp结,nn结。

15. 非平衡载流子半导体中比热平衡时所多出的额外载流子。

16. 施主杂质掺杂离子进入本征半导体晶格后,杂质原子容易失去一个电子成为自由电子,这个杂质原子叫施主。

17. 本征激发当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过程称为本征激发。

18. 平均自由程电子在实际器件中的平均自由运动距离称为平均自由程。

19. 有效质量电子受到原子核的周期性势场(这个势场和晶格周期相同)以及其他电子势场综合作用的结果。

20. 浅能级杂质指在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子—电子或空穴的施主、受主杂质;它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

名词解释(半导体物理)

名词解释(半导体物理)

直接带隙半导体:导带边和价带边处于k空间相同点的半导体通常被称为直接带隙半导体。

电子要跃迁的导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。

例子有GaAs,InP,InSb。

间接带隙半导体:导带边和价带边处于k空间不同点的半导体通常被称为间接带隙半导体。

形成半满能带不只需要吸收能量,还要该变动量。

例子有Ge,Si。

准费米能级:非平衡态的电子与空穴各自处于热平衡态--准平衡态,可以定义EFn、EFp分别为电子和空穴的准费米能级。

有效质量:在讨论半导体的载流子在外场力的作用下的运动规律时,由于载流子既受到外场的作用,又受到晶体内部周期性势场的作用,只要将内部势场的复杂作用包含在引入的有效质量中,并用它来代替惯性质量,就可以方便地采用经典力学定律来描写。

由于晶体的各向异性,有效质量和惯性质量不一样,它是各向异性的。

有效质量是半导体内部势场的概括。

纵向有效质量和横向有效质量:由于半导体材料的k空间等能面是椭球面,有效质量是各向异性的。

在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰,在分析时引入纵向有效高质量和横向有效质量表示旋转椭球等能面在长轴方向和短轴方向上的有效质量的差别。

是晶体各向异性的反映。

扩散长度: 指的是非平衡载流子在复合前所能扩散深入样品的平均距离,它由扩散系数和材料的非平衡载流子的寿命决定,即L=√Dt。

牵引长度:是指非平衡载流子在电场E作用下,在寿命t时间内所漂移的的距离, 即L(E)=Eut,有电场,迁移率和寿命决定。

费米能级:表示系统处于热平衡状态时,在不对外做功的情况下,增加一个电子所引起系统能量的变化。

它标志了电子填充能级水平,与温度,材料的导电类型以及掺杂浓度等因素有关。

电子亲和势:表示要使得半导体导带底的电子逃逸出体外(相对于真空能级)所需的最小能量,对半导体材料而言,它与导电类型,掺杂浓度无关。

复合中心:半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大的影响。

【精选】半导体物理学名词解释 2

【精选】半导体物理学名词解释 2

半导体物理学名词解释1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。

2、间接复合:指的是非平衡载流子通过复合中心的复合。

3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

6、多数载流子:半导体材料中有电子和空穴两种载流子。

在N 型半导体中,电子是多数载流子, 空穴是少数载流子。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

7、能谷间散射:8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。

对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。

基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。

10、禁带:能带结构中能态密度为零的能量区间。

11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

半导体物理名词解释

半导体物理名词解释

半导体物理名词解释金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。

每个原子周围都有4个最近邻的原子,组成一个正四面体结构。

闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。

有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。

有效质量表达式为:费米能级: 费米能级是T=0 K时电子系统中电子占据态和未占据态的分界线,是T=0 K时系统中电子所能具有的最高能量。

准费米能级:统一的费米能级是热平衡状态的标志。

当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。

但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。

因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。

称为“准费米能级”费米面:将自由电子的能量E等于费米能级Ef的等能面称为费米面。

费米分布:大量电子在不同能量量子态上的统计分布。

费米分布函数为:施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。

受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受主杂质束缚的空穴的能量状态称为受主能级。

禁带:能带结构中能态密度为零的能量区间。

价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

N型半导体: 在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

P型半导体: 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

简并半导体: 对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理名词解释金刚石型结构:金刚石结构就是一种由相同原子构成的复式晶体,它就是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。

每个原子周围都有4个最近邻的原子,组成一个正四面体结构。

闪锌矿型结构:闪锌矿型结构的晶胞,它就是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。

有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。

有效质量表达式为: 费米能级: 费米能级就是T=0 K 时电子系统中电子占据态与 未占据态的分界线,就是T=0 K 时系统中电子所能具有的最高能量。

准费米能级:统一的费米能级就是热平衡状态的标志。

当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。

但就是可以认为,分别就导带与价带中的电子讲,她们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。

因为费米能级与统计分布函数对导带与价带各自仍就是适用的,可以引入导带费米能级与价带费米能级,它们都就是局部的费米能级。

称为“准费米能级”费米面:将自由电子的能量E 等于费米能级Ef 的等能面称为费米面。

费米分布:大量电子在不同能量量子态上的统计分布。

费米分布函数为:施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。

受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受主杂质束缚的空穴的能量状态称为受主能级。

禁带:能带结构中能态密度为零的能量区间。

价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

导带:导带就是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

N 型半导体: 在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体。

P 型半导体 : 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P 型半导体。

简并半导体: 对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,222*dk E d h m n =T k E E FeE f 011)(-+=泡利不相容原理起作用,电子与空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。

称此类半导体为简并半导体。

非简并半导体: 掺杂浓度较低,其费米能级EF在禁带中的半导体; 半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

间隙式杂质:杂质原子位于晶格原子的间隙位置。

等电子杂质:当杂质的价电子数等于其所替代的主晶格原子的价电子数时,这种杂质称为等电子杂质空穴: 定义价带中空着的状态瞧成就是带正电荷的粒子,称为空穴意义 a 把价带中大量电子对电流的贡献仅用少量的空穴表达出来b金属中仅有电子一种载流子,而半导体中有电子与空穴两种载流子,正就是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件理想半导体(理想与非理想的区别):a 原子并不就是静止在具有严格周期性的晶格的格点位置上,而就是在其平衡位置附近振动 b 半导体材料并不就是纯净的,而就是含有各种杂质即在晶格格点位置上存在着与组成半导体材料的元素不同其她化学元素的原子c 实际的半导体晶格结构并不就是完整无缺的,而存在着各种形式的缺陷杂质补偿:在半导体中,施主与受主杂质之间有相互抵消的作用通常称为杂质的补偿作用深能级杂质:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,她们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,就是半导体物理中重要的概念与参数之一。

迁移率的表达式为:μ=qτ/m* 。

可见,有效质量与弛豫时间(散射)就是影响迁移率的因素。

空穴的牵引长度:表征空穴漂移运动的有效范围的参量就就是空穴的牵引长度点缺陷:就是最简单的晶体缺陷,它就是在 结点上 或 邻近的微观区域内 偏离晶体结构的正常排列 的一种缺陷。

包括:间隙原子与空位就是成对出现的弗仓克耳缺陷 与只在晶体内形成空位而无间隙原子的肖特基缺陷。

弗仑克耳缺陷:间隙原子与空穴成对出现导致的缺陷。

肖特基缺陷:只在晶体内形成空位而无间隙原子时的缺陷。

空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。

空位:在一定条件下,晶格原子不仅在其平衡位置附近振动,而且有一部分原子会获得足够的能量,脱离周围原子对她的束缚,挤入晶格原子间隙间成为间隙原子,原来的位置便成为空位本征载流子:就就是本征半导体中的载流子(电子与空穴),即不就是由掺杂所产生出来的。

非平衡载流子: 半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。

Δp=Δn热载流子:热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。

温度就是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度Te 来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

漂移运动:在外加电压时,导体或半导体内的载流子受电场力的作用,做定向运动。

扩散运动 :当半导体内部的载流子存在浓度梯度时,引起载流子由浓度高的地方向浓度低的地方扩散,扩散运动就是载流子的有规则运动。

电子扩散电流dx dn qD J n diff n =,状态密度:就就是在能带中能量E 附近每单位能量间隔内的量子态数。

直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这就是一种非辐射复合。

dE dZE g =)(陷阱中心:半导体中的杂质与缺陷在禁带中形成一定的能级,这些能级具有收容部分非平衡载流子的作用,杂质能级的这种积累非平衡载流子的作用称为陷阱效应。

把产生显著陷阱效应的杂质与缺陷称为陷阱中心。

复合中心:半导体中的杂质与缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大影响。

杂质与缺陷越多,寿命越短,杂质与缺陷有促进复合的作用,把促进复合的杂质与缺陷称为复合中心。

等电子复合中心:等电子复合中心:在Ⅲ-Ⅴ族化合物半导体中掺入一定量的与主原子等价的某种杂质原子,取代格点上的原子。

由于杂质原子与主原子之间电负性的差别,中性杂质原子可以束缚电子或空穴而成为带电中心,带电中心会吸引与被束缚载流子符号相反的载流子,形成一个激子束缚态。

爱因斯坦关系:对电子Dn/μn =k0T/q 对空穴Dp/μp =k0T/q它表明非简并情况下载流子的迁移率与扩散系数之间的关系。

陷阱效应:杂质能级积累非平衡载流子的作用就称为陷阱效应。

回旋共振:一些物质如半导体中的载流子在一定的恒定磁场与高频磁场同时作用下会发生抗磁共振。

砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。

但就是,这两个能谷不就是完全相同的,进入能谷2的电子,有效质量大为增加,迁移率大大降低,平均漂移速度减小,电导率下降,产生负阻效应耿氏效应:在半导体本体内产生高频电流的现象称为耿氏效应扩散长度:扩散长度就是表征载流子扩散有效范围的一个物理量,它等于扩散系数乘以寿命的平方根。

势垒电容:在外加正向偏压增加时,将有一部分电子与空穴“存入”势垒区,反之,当正向偏压减小时,势垒区的电场增强,势垒区宽度增加,空间电荷数量增多,这就就是有一部分电子与空穴从势垒区“取出”。

对于加反向偏压的情况类似。

总之,pn结上外加电压的变化,引起了电子与空穴在势垒区的“存入”与“取出”作用,导致势垒区的空间电荷数量随外加电压而变化,这与一个电容器的充放电作用相似,这种pn结的电容效应称为势垒电容扩散电容:正向偏压时,有空穴从p区注入n区,于就是在势垒区与n区边界n区一侧一个扩散长度内,便形成了非平衡空穴与电子的积累,同样在p区也有非平衡电子与空穴的积累。

当正向偏压增加时,由p区注入到n区的空穴增加,注入的空穴一部分扩散走了。

所以外加电压变化时,n区扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。

同样,p区扩散区内积累的非平衡电子与与它保持电中性的空穴也要增加。

这种由于扩散区的电荷数量随外加电压的变化所产生的电容效应,称为pn结的扩散电容pn结隧道效应:在简并化的重掺杂半导体中,n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带。

在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带到p区价带,p区价带电子也可能穿过禁带到n区导带,从而有可能产生隧道电流。

耗尽层近似:当势垒高度远大于koT时,势垒区可近似为一个耗尽层。

在耗尽层中,载流子极为稀少,她们对空间电荷的贡献可以忽略;杂质全部电离,空间电荷完全由电离杂质的电荷形成。

肖特基势垒二极管:利用金属-半导体整流接触效应特性制成的二极管称为肖特基势垒二极管,它与pn结二极管具有类似的电流-电压关系,即它们都有单向导电性,但前者又又区别于后者的以下显著特点 a 就载流子的运动形式而言,pn结正向导通时,由p区注入n区的空穴或由n区注入p区的电子,都就是少数载流子,她们先形成一定的积累,然后靠扩散运动形成电流。

这种注入的非平衡载流子的积累称为电荷贮存效应,它严重地影响了pn结的高频性能。

而肖特基势垒二极管的正向电流,主要就是由半导体的多数载流子进入金属形成的。

它就是多数载流子器件。

因此,肖特基势垒二极管比pn结二极管有更好的高频特性 b 对于相同的高度,肖特基势垒二极管的Jsd或Jst要比pn 结的反向饱与电流Js大得多。

相关文档
最新文档