小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

合集下载

小升初奥数几何五大模型

小升初奥数几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD 的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

小升初图形专题——五大模型

小升初图形专题——五大模型

一、等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

12::S S a b=(3)夹在一组平行线之间的等积变形,如下图ACD BCDS S=△△;反之,如果ACD BCDS S=△△,则可知直线AB平行于CD。

(4)形的面积=边长×边长=对角线×对角线÷2S形=a×aS形=b×b÷21S2S(5)三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型【共角三角形】定义:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

规律:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型:一方面可以使不规则四边形的面积关系与四边形的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =;③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型沙漏模型①AD AE DE AF AB AC BC AG===;②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方。

小升初数学几何五大几何模型

小升初数学几何五大几何模型

.五大几何模型知识框架一、等积模型A BC D①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图S△ACDS△BCD;反之,如果 S△ACD S△BCD,那么可知直线AB 平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.S△ABC : S△ADE(AB AC) : (AD AE)(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系( “蝴蝶定理〞):① S1 :S2S4:S3或者S1S3S2S4②AO:OC1243 S S : S S蝴蝶定理为我们提供了解决不规那么四边形的面积问题的一个途径.通过构造模型,一方面可以使不规那么四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.DA S 1S 2S 4 OS 3B C梯形中比例关系 ( “梯形蝴蝶定理〞):① S1 : S3 a 2 : b2② S1 :S3 :S2 :S4 a 2 : b 2 : ab : ab ;③S的对应份数为 a b 2 .AaDS 1S 2S 4OS 3BbC④四、相似模型(一)金字塔模型(二) 沙漏模型A E F DAD F EB GC BG C① AD AE DE AF ;AB AC BC AG② S△ADE:S△ABC AF2 :AG2.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不管大小怎样改变它们都相似 ),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理〔燕尾定理〕有一条公共边的三角形叫做共边三角形。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小学升初中复习资料重难点一几何五大模型

小学升初中复习资料重难点一几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

【小升初奥数专题】几何之五大模型(已更新完)

【小升初奥数专题】几何之五大模型(已更新完)

【⼩升初奥数专题】⼏何之五⼤模型(已更新完)在⼩学奥数知识体系中,⼏何五⼤模型是⼏何专题中⾮常重要的⼀块知识点,⽅法性很强,掌握了⼏何的五⼤模型,对于我们解决组合型直图形或者⾮规则图形是⾮常有帮助的,所以⼏何五⼤模型在⼩学⼏何体系中的重中之重!⼏何五⼤模型的难点在于我们要在掌握各个模型适⽤的题型、相应的⽅法、公式的基础上学会灵活运⽤,还有就是有时要根据题意同时运⽤多种模型,从⽽更好的解决问题!接下来e 度徐丽⽼师会针对⼏何五⼤模型进⾏解析,希望能帮助到各位家长,让您的孩⼦在这次⼩升初中⼤战全胜!ps:对于不同题型均会有例题讲解分析以及精选练习题,以供⼤家有针对性学习巩固,相信⼤家对于应⽤题的攻克将不在话下!【⼏何五⼤模型知识点】【⼏何五⼤模型经典例题详解】【⼏何五⼤模型巩固练习】【⼏何五⼤模型巩固练习详解】标签:⼏何 模型 五⼤ ⼩升初 奥数回复 收藏1~3年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】4~5年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】⼩升初奥数天天练汇总,含试题详解【每⽇不断更新中】【徐丽⽼师】⼩升初奥数应⽤题专题汇总【徐丽⽼师】⼩升初奥数⾏程专题汇总【徐丽⽼师】⼩升初奥数⼏何专题汇总【徐丽⽼师】⼩升初奥数数论专题汇总【徐丽⽼师】⼩学数学毕业总复习专题汇总⼏⼏何五⼤模型⼀、五⼤模型简介(1)等积变换模型1、等底等⾼的两个三⾓形⾯积相等;2、两个三⾓形⾼相等,⾯积之⽐等于底之⽐,如图①所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;3、两个三⾓形底相等,⾯积在之⽐等于⾼之⽐,如图②所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;4、在⼀组平⾏线之间的等积变形,如图③所⽰,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB 平⾏于CD 。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。

小学数学几何必考五大模型

小学数学几何必考五大模型
在学习小学数学的时候,几何模型算是比较新颖的一个模块,学生们熟 练掌握五大面积模型,并掌握五大面积模型的各种变形,
今天就为大家推荐一篇小学数学几何五大模型的内容。
一、等积模型
A
B
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;
S1 S2
如右图
a
b
C
D
③夹在一组平行线之间的等积变形,如右图

反之,如果
,则可知直线 平行于 。
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于
解法二:特殊点法.找H的特殊点,把H点与D点重合,那么图形就可变成右图:
这样阴影部分的面积就是△DEF的面积, 根据鸟头定理,则有:
【巩固】
它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
A
D
D E
A E
B
C
图⑴
B
C
图 (2)
如图在 E在AC上),则
中,D、E分别是AB、AC上的点如图 ⑴(或D在BA的延长线上,
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”): ① S1 : S2 = S4 : S3 或者 S1 ×S3 =S2 × S4 ② AO : OC = (S1 + S2 ) : ( S4 +S3 ) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径. 通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形 相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝴蝶定理”):

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)

小升初几何重点考查内容————(五大模型——三角形等积变形、共角模型)-CAL-FENGHAI.-(YICAI)-Company One1小升初几何重点考查内容(★★★)已知三角形DEF 的面积为 18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC 的面积为如图,已知三角形 ABC 面积为 1,延长 AB 至 D ,使 BD =AB ;延长 BC 至 E ,使 CE =2BC ; 延长 CA 至 F ,使 AF =3AC ,求三角形 DEF 的面积。

(★★★★)如图将四边形 ABCD 四条边 AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形ABCD 的面积为 5cm ,则四边形 EFGH 的面积是多少(★★★)图中三角形 ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍。

那么三角形 AEF 的面积是多少平方厘米(★★★★)如图,大长方形由面积是 12 平方厘米、24 平方厘米、36 平方厘米、48 平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★)(2009 年“学而思杯”六年级) 如图 BC =45,AC =21,△ABC 被分成 9 个面积相等的小三角形,那么 DI +FK =。

在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设 AD 1 AB , BE 1 BC , FC 1AC , 如果三角形 DEF 的面积为19 平方厘米,345那么三角形 ABC 的面积是多少平方厘米 A . B . C . D .(★★★★★)FESG2. ★★★如下图,将三角形 ABC 的 BA 边延长 1 倍到 D ,CB 的边延长 2 倍到 E ,AC 边延长 1 倍到 F 。

如果三角形 ABC 的面积等于 1,那么三角形 DEF 的面积是多少 A .10 B .8 C .9 D .113. ★★★★★如图,把四边形 ABCD 的各边都延长 3倍,得到一个新四边形EFGH,如果ABCD 的面积是 6,则 EFGH 的面积是()A .130B .145C .160D .1504. ★★★★如图, D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3倍. 三角形 AEF 的面积是 18 平方厘米,三角形 ABC 的面积是( )平方厘米 A .144 B .168 C .72 D .1005. ★★图中的 E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 ,那么阴影部分的面积是( ) A .50 B .48C .56D .456.★★★如图, S 1 , BC 5BD , AC 4EC , DG GS SE , AFFG 。

小升初图形专题——五大模型

小升初图形专题——五大模型

一、等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

12::S S a b =(3)夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

(4)正方形的面积=边长×边长=对角线×对角线÷2S 正方形=a ×a S 正方形=b×b÷2(5)三角形面积等于与它等底等高的平行四边形面积的一半;1S 2S二、鸟头定理(共角定理)模型【共角三角形】定义:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

规律:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型:一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =;③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型沙漏模型①AD AE DE AFAB AC BC AG===;②22::ADE ABCS S AF AG=△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):① 1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③ S 的对应份数为()2a b +.四、相似模型知识框架五大几何模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(★★★)
已知三角形DEF 的面积为 18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC 的面积为
如图,已知三角形
ABC
面积为
1,延长 AB 至 D ,使 BD =AB ;延长 BC 至 E ,使 CE =2BC ; 延长 CA 至 F ,使 AF =3AC ,求三角形 DEF 的面积。

(★★★★)
如图将四边形 ABCD 四条边 AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形ABCD 的面积为 5cm 2 ,则四边形 EFGH 的面积是多少
(★★★)
图中三角形 ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍。

那么三角形 AEF 的面积是多少平方厘米
(★★★★)
如图,大长方形由面积是 12 平方厘米、24 平方厘米、36 平方厘米、48 平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★)
(2009 年“学而思杯”六年级)
如图 BC =45,AC =21,△ABC 被分成 9 个面积相等的小三角形,那么 DI +FK =。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1. ★★★★设 AD 1 AB , BE 1 BC , FC 1 AC , 如果三角形 DEF 的面积为
19 平方厘米,
3
4
5
那么三角形 ABC 的面积是多少平方厘米
A .
B .
C .
D .
(★★★★★)
F
E
S
G 2. ★★★如下图,将三角形 ABC 的 BA 边延长 1 倍到 D ,CB 的边延长 2 倍到 E ,AC 边延长 1 倍到 F 。

如果三角形 ABC 的面积等于 1,那么三角形 DEF 的面积是多少 A .10 B .8 C .9 D .11 3. ★★★★★如图,把四边形 ABCD 的各边都延长 3 倍,得到一个新四边形
EFGH ,如果
ABCD 的面积是 6,则 EFGH 的面积是( ) A .130 B .145 C .160 D .150 4. ★★★★如图, D 是 BC 的中点,AD 的长是 AE 长的 3 倍,EF 的长是 BF 长的 3 倍. 三角形 AEF 的面积是 18 平方厘米,三角形 ABC 的面积是( )平方厘米 A .144 B .168 C .72 D .100 5. ★★图中的 E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 , 那么阴影部分的面积是( ) A .50 B .48 C .56 D .45 6. ★★★如图, S 1 , BC 5BD , AC 4EC , DG GS SE , AF FG 。

三角形
FGS 的面积是( )。

A. 4 13
B. 2 5
C. 2 3
D. 1
10
A
B C。

相关文档
最新文档