九年级数学上册作业设计

合集下载

人教版九年级上册数学《图形的旋转》教案及作业设计(含答案)

人教版九年级上册数学《图形的旋转》教案及作业设计(含答案)

23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形? 分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴AE=2211()4 =17 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF 是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材P66 复习巩固4 综合运用5、6.2.作业设计.作业设计一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD 绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB 的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 CE 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=12 .3.重合:证明:∵EG⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB∴△OBE绕O点旋转90°便可和△OAF重合.。

第二十四章 圆——圆的定义与性质 作业设计 2023—2024学年人教版数学九年级上册

 第二十四章 圆——圆的定义与性质 作业设计   2023—2024学年人教版数学九年级上册

作业设计作业设计团队所在学校(签章):24.4弧长和扇形面积2课时使用时段作业内容圆的有关性质作业设计设计意图使用者预计时长预估难度系数课前基础性作业1.说一说你在生活中哪些地方见过圆?认识圆2min1发展性作业2.你知道车轮为什么要做成圆形的吗?做成三角形、正方形可以吗?理解圆的本质属性3min2课中基础性作业例1 矩形ABCD的对角线AC、BD相交于O.求证:A、B、C、D在以O为圆心的同一个圆上圆的集合定义——圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.5min2基础性作业如图.(1)请写出以点A为端点的劣弧及优弧;(2)请写出以点A为端点的弦及直径;(3)请任选一条弦,写出这条弦所对的弧.圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.小于半圆的弧叫做劣弧.如图中的AC;大于半圆的弧叫做优弧.如图中的ABC.5min3发展性作业如图,在△ABC中,△ACB=90°,△A=40°,以C为圆心,CB为半径的圆交于点D,连接CD,AB求△ACD的度数.理解能够重合的两个圆叫做等圆.容易看出等圆是两个半径相等的圆.在同圆或等圆中,能够互相重合3min2的弧叫做等弧.课后基础性作业1.填空.(1) 是圆中最长的弦,它是的2倍.(2) 图中有条直径,条非直径的弦,圆中以A为一个端点的圆弧中,优弧有条,劣弧有条.2.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.3.如图,AB是△O的直径,点C、D在△O上,且点C、D在AB的异侧,连接AD、OD、OC.若△AOC=70°,且AD△OC,求△AOD的度数.加深对定义性质的理解。

九年级数学上册 第二章 一元二次方程 2.2 用配方法求解一元二次方程作业设计 (新版)北师大版-(

九年级数学上册 第二章 一元二次方程 2.2 用配方法求解一元二次方程作业设计 (新版)北师大版-(

2.2 用配方法求解一元二次方程一、选择题(本题包括6个小题.每小题只有1个选项符合题意)1. 用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A. (x﹣2)2=11B. (x+2)2=11C. (x﹣4)2=23D. (x+4)2=232. 将代数式x2+6x﹣3化为(x+p)2+q的形式,正确的是()A. (x+3)2+6B. (x﹣3)2+6C. (x+3)2﹣12D. (x﹣3)2﹣123. 用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()A. (x﹣2)2=3B. 2(x﹣2)2=3C. 2(x﹣1)2=1D. 2(x﹣1)2=4. 已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A. M<NB. M=NC. M>ND. 不能确定5. 将代数式x2﹣10x+5配方后,发现它的最小值为()A. ﹣30B. ﹣20C. ﹣5D. 06. 对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是()A. 非正数B. 非负数C. 正数D. 负数二、填空题(本题包括8个小题)7. 若x2﹣4x+5=(x﹣2)2+m,则m=________.8. 若a为实数,则代数式的最小值为________.9. 用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣______)2=________.10. 已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m﹣n)2016=________.11. 设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为________.12. 若实数a,b满足a+b2=1,则a2+b2的最小值是________.13. 将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab=________.14. 若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a=________.三、解答题(本题包括4个小题)15. 解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.16. “a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x)2+;所以当x=时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2﹣1与2x﹣3的大小.17. 阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.18. 先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?答案一、选择题1. 【答案】A【解析】方程x2−4x−7=0,变形得:x2−4x=7,配方得:x2−4x+4=11,即(x−2)2=11,故选:A.2. 【答案】C【解析】x2+6x−3=x2+6x+9−9−3=(x+3)2−12.故选:C.3. 【答案】C【解析】2x2-4x=-1,x2-2x=12-, x2-2x+1=12-+1,∴(x-1)2=12,即2(x-1)2=1.故选C.4. 【答案】A【解析】∵M=a﹣1,N=a2﹣a (a为任意实数),∴N−M=a2−a+1=(a−)2+,∴N>M,即M<N.故选:A5. 【答案】A【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数4的一半的平方,即x2+4x-5=0,x2+4x=5,x2+4x+4=9,(x+2)2=9,故答案选A.考点:配方法解一元二次方程.6. 【答案】D【解析】−x2+4x−5=−(x2−4x)−5=−(x−2)2−1,∵−(x−2)2<0,∴−(x−2)2−1<0,故选:D.点睛:此题主要考查了配方法的应用,正确应用配方法是解题的关键.二、填空题7.【答案】1【解析】已知等式变形得:x2−4x+5=x2−4x+4+1=(x−2)2+1=(x−2)2+m,则m=1,故答案为:18. 【答案】3【解析】因,根据非负数的性质可得当a=3时,有最小值为9,所以当a=3时,有最小值为3.考点:配方法的应用;非负数的性质:偶次方;二次根式的性质与化简.9. 【答案】 (1). 1 (2).【解析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,即x2−2x+1=−+1,所以(x−1)2= .故答案为:1,.10. 【答案】1【解析】由(x+m)2=3,得:x2+2mx+m2−3=0,∴2m=4,m2−3=n,∴m=2,n=1,∴(m−n)2016=1,故答案为:1. 11.【答案】3【解析】原式=(x2+2x+1)+(4x2−8xy+4y2)=4(x−y)2+(x+1)2+3,∵4(x−y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2−8xy+2x+4的最小值为3.故答案为:3.12. 【答案】【解析】∵a+b2=1,∴b2=1−a,∴a2+b2=a2+1−a=(a−)2+,∵(a−1)2⩾0,∴(a−1)2+⩾,故答案为:.13. 【答案】12【解析】x2−6x+5=0,x2−6x=−5,x2−6x+9=−5+9,(x−3)2=4,所以a=3,b=4,ab=12,故答案为:12.14. 【答案】3【解析】根据题意,得x2-6x+b=(x2-6x+9)+b-9=(x-3)2+b-9=(x-a)2-3,可得a=3,b−9=−3,解得:a=3,b=6,则b−a=3.故答案为:3.点睛:此题考查了配方法的应用,熟练掌握完全平方公式是解题的关键.三、解答题15. 【答案】(1)x1=﹣2+,x2=﹣2﹣;(2)x1=1+,x2=1﹣【解析】(1)利用配方法即可解决;(2)利用配方法即可解决.解:(1)∵x2+4x﹣1=0,∴x2+4x=1∴x2+4x+4=1+4,∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.(2)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.点睛:本题考查一元二次方程的解法,记住配方法的解题步骤是解题的关键,属于中考常考题型.16. 【答案】(1)﹣2;2;2;小;2;(2)x2﹣1>2x﹣3.【解析】(1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答;(2)利用求差法和配方法解答即可.解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.17.【答案】(1)4;(2)7;(3)2【解析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(3)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xyz=2.点睛:本题主要考查的是配方法的应用和三角形三边的关系,灵活运用完全平方公式、掌握三角形三边的关系是解题的关键.18. 【答案】(1);(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2.【解析】 (1)将原式进行配方,然后根据非负数的性质得出最小值;(2)将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.解:(1) m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)、由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.考点:一元二次方程的应用.。

人教版九年级数学上册全册教案及作业题(带答案)

人教版九年级数学上册全册教案及作业题(带答案)

三一文库()/初中三年级〔人教版九年级数学上册全册教案及作业题(带答案)〕《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0), =a (a≥0).(3)掌握 # =(a≥0,b≥0), = # ;= (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a ≥0)及 =a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、、、- 、、(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x2.下列式子中,不是二次根式的是()A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新课标第一网1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1(4)∵4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(- )2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6=(4)(-3 )2=9× =6 (5)-62.(1)5=()2 (2)3.4=()2(3) =()2 (4)x=()2(x≥0)3. xy=34=814.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )(3)略1111。

九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定作业设计 (新版)北师大版-(新版

九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定作业设计 (新版)北师大版-(新版

一、选择题(本题包括11个小题.每小题只有1个选项符合题意)(2)如果a≥0,那么=a;(1)若直角三角形的两条边长为5和12,则第三边长是13;1. 下列五个命题:(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A. 2个B. 3个C. 4个D. 5个2. 下列命题,真命题是()A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平分的四边边是菱形D. 两条对角线平分且相等的四边形是正方形3. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A. ①②③B. ①④⑤C.①③④D. ③④⑤4. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形5. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. ∠D=90°B. AB=CDC. AD=BCD. BC=CD6. 如图,将一X长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A. 22.5°角B. 30°角C. 45°角D. 60°角7. 在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A. AC=BD,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO,AC⊥BDD. AO=CO,BO=DO,AB=BC8. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A. (1)(2)(5)B. (2)(3)(5)C. (1)(4)(5)D. (1)(2)(3)9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A. ①④⇒⑥B. ①③⇒⑤C. ①②⇒⑥D. ②③⇒④10. 下列说法中错误的是()A. 四个角相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 四条边相等的四边形是正方形11. 矩形的四个内角平分线围成的四边形()A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形二、填空题(本题包括2个小题)12. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是.13. 把“直角三角形,等腰三角形,等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.三、解答题(本题包括6个小题)14. 如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.15. 已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.16. 如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△AB C满足什么条件时,四边形ADCE是一个正方形?并给出证明.18. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.19. 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)答案一、选择题1. 【答案】B【解析】(1)由于直角三角形的两条边长为5和12,这两条边没有确定是否是直角边,所以第三边长不唯一,故命题错误;(2)符合二次根式的意义,命题正确;(3)∵点P(a,b)在第三象限,∴a<0、b<0,∴﹣a>0,﹣b+1>0,∴点P(﹣a,﹣b+1).在第一象限,故命题正确;(4)正方形是对角线互相垂直平分且相等的四边形,故命题错误;(5)两边及第三边上的中线对应相等的两个三角形全等是正确的.故选A.考点:直角三角形,二次根式,平面直角坐标系,正方形,三角形全等2. 【答案】C【解析】A、两条对角线互相平分的四边形是平行四边形,故A错误;B、两条对角线平分且相等的四边形是矩形,故B错误;C、两条对角线互相垂直平分的四边边是菱形,故C正确;D、两条对角线平分、垂直且相等的四边形是正方形,故D错误;故选C.3. 【答案】B【解析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE 和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.四边形CEFD考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形.4. 【答案】D【解析】A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点睛】本题主要考查特殊平行四边形的判定,解答本题的关键是:根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.5.【答案】D【解析】由∠A=∠B=∠C=90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D.6. 【答案】C【解析】一X长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故选C.7. 【答案】C【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选C.8. 【答案】A【解析】拿两个“90°、60°、30°的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故选A.9. 【答案】C【解析】A.符合邻边相等的矩形是正方形;B.可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D.可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选C.考点:1.正方形的判定;2.菱形的判定;3.矩形的判定.10. 【答案】D【解析】A正确,符合矩形的定义;B正确,符合正方形的判定;C正确,符合正方形的判定;D不正确,也可能是菱形;故选D.11. 【答案】A【解析】矩形的四个角平分线将举行的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选A.点睛:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.二、填空题12. 【答案】AC=BD或AB⊥BC.【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.13.【答案】等腰直角三角形,等腰三角形,直角三角形【解析】∵正方形的四边相等,四角为直角,∴正方形可以由两个能够完全重合的等腰直角三角形拼合而成.∵菱形的四边相等,∴菱形可以由两个能够完全重合的等腰三角形拼合而成,∵矩形的四角为直角,∴矩形可以由两个能够完全重合的直角三角形拼合而成.三、解答题14.【答案】(1)详见解析;(2)详见解析.【解析】(1)由CD垂直平分线AB,可得AC=CB,∴∠ACD=∠BCD,再加∠EDC=∠FDC=90°,可证得△ACD≌△BCD (ASA),∴CE=CF;(2)因为有三个角是直角,且邻边相等的四边形是正方形.所以当CD=AB时,四边形CEDF为正方形.(1)证明:∵CD垂直平分线AB,∴AC=CB.∴△ABC是等腰三角形,∵CD⊥AB,∴∠ACD=∠BCD.∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°∴∠EDC=∠FDC,在△DEC与△DFC中,,∴△DEC≌△DFC(ASA),∴CE=CF.(2)解:当CD=AB时,四边形CEDF为正方形.理由如下:∵CD⊥AB,∴∠CDB=∠CDA=90°,∵CD=AB,∴CD=BD=AD,∴∠B=∠DCB=∠ACD=45°,∴∠ACB=90°,∴四边形ECFD是矩形,∵CE=CF,∴四边形ECFD是正方形.考点: 1.线段垂直平分线的性质;2.正方形的判定.15. 【答案】(1)详见解析;(2)详见解析.【解析】(1)先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;(2)由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵BD=CD,BF=CE,∴Rt△BDF≌Rt△CDE,∴∠B=∠C.故△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.16. 【答案】(1)详见解析;(2)详见解析.【解析】解:(1)∵四边形ABCD是平行四边形, AO="CO "又∵△ACE是等边三角形,∴EO⊥AC,即DB⊥AC∴平行四边形ABCD是菱形.(2)∵△ACE是等边三角形,∴∠AEC=60°∵EO⊥AC ∴∠AEO=∠AEC=30°∵∠AED=2∠EAD∴∠EAD=15°∴∠ADO=∠EAD+∠AED=45°∵四边形ABCD是菱形∴∠ADC=2∠ADO=90°∴四边形ABCD是正方形17. 【答案】(1)详见解析;(2)详见解析.【解析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点睛:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.18. 【答案】(1)详见解析;(2)详见解析.【解析】 (1)、根据AB=AC可得∠B=∠C,根据DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,根据D为中点可得BD=CD,根据AAS可以判定三角形全等;(2)、根据三个角为直角的四边形是矩形,首先得出矩形,然后根据(1)的结论说明有一组邻边相等.解:(1)、∵AB=AC ,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵D为BC的中点,∴BD=CD,∴△BED≌△CFD(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.又∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF ,∴四边形DFAE为正方形.考点:(1)、三角形全等的证明;(2)、正方形的判定19.【答案】(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG 的两邻边相等,从而得到平行四边形AHBG是菱形.(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)需要添加的条件是AB=BC.点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.。

九年级上册数学作业设计

九年级上册数学作业设计

九年级上册数学作业设计九年级上册数学作业设计一、整数与有理数在数学的世界中,整数和有理数是我们学习的起点。

通过这一单元的学习,我们将了解整数的基本性质和有理数的概念,并能够熟练进行加减乘除运算。

1. 整数的基本性质任务1:请列举整数的分类,并简要解释各类整数的定义。

任务2:按照既定规则,在数轴上标出以下整数:-5,0,2/3,7/2。

2. 有理数的概念任务1:请简要解释有理数的定义,并阐述有理数的分类。

任务2:完成以下有理数大小比较:① -3/4 ___ 2/3② -1/2 ___ -1/3③ 0 ___ 1/43. 整数和有理数的运算任务1:按照规定的步骤完成以下整数和有理数的加减运算:① 3 + (-5)② 1/2 + (-3/4)任务2:计算下列表达式的值,并写出解题过程:① 4 × (-3)② (-2/3) × 2/5二、代数理论与应用代数是数学的重要分支之一,它不仅具有理论性,还有广泛的应用价值。

本单元我们将学习一次代数方程的解法,并通过实际问题的应用,深入理解代数的本质。

1. 一次代数方程的解法任务1:什么是一次代数方程?其解法有哪些步骤?任务2:解决下列方程,并给出解的含义:① 2x + 3 = 7② 4(x - 1) = 2x + 62. 实际问题的应用任务1:请设计一个实际问题,并用一次代数方程来解决。

任务2:通过解决实际问题,讨论代数的实际应用场景,并分享你的观点。

三、图形的性质与变换图形是几何学的基本研究对象之一,通过学习图形的性质与变换,我们将能够描述和分析图形,丰富我们的空间想象力。

1. 图形的性质任务1:请简要介绍下列图形的性质:正方形,长方形,菱形,圆形。

任务2:通过实际测量,总结正方形和长方形的周长和面积的计算公式。

2. 图形的变换任务1:使用传统工具(如:直尺、圆规等)进行下列图形的变换:平移,旋转,翻转,对称。

任务2:以上述变换为基础,设计一道图形变换的题目,并提供解答过程。

九年级数学上册 第二章 一元二次方程 用配方法求解一元二次方程作业设计 北师大版

九年级数学上册 第二章 一元二次方程 用配方法求解一元二次方程作业设计 北师大版

2.2 用配方法求解一元二次方程一、选择题(本题包括6个小题.每小题只有1个选项符合题意)1. 用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A. (x﹣2)2=11B. (x+2)2=11C. (x﹣4)2=23D. (x+4)2=232. 将代数式x2+6x﹣3化为(x+p)2+q的形式,正确的是()A. (x+3)2+6B. (x﹣3)2+6C. (x+3)2﹣12D. (x﹣3)2﹣123. 用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()A. (x﹣2)2=3B. 2(x﹣2)2=3C. 2(x﹣1)2=1D. 2(x﹣1)2=4. 已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A. M<NB. M=NC. M>ND. 不能确定5. 将代数式x2﹣10x+5配方后,发现它的最小值为()A. ﹣30B. ﹣20C. ﹣5D. 06. 对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是()A. 非正数B. 非负数C. 正数D. 负数二、填空题(本题包括8个小题)7. 若x2﹣4x+5=(x﹣2)2+m,则m=________.8. 若a为实数,则代数式的最小值为________.9. 用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣______)2=________.10. 已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m﹣n)2016=________.11. 设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为________.12. 若实数a,b满足a+b2=1,则a2+b2的最小值是________.13. 将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab=________.14. 若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a=________.三、解答题(本题包括4个小题)15. 解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.16. “a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x)2+ ;所以当x= 时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2﹣1与2x﹣3的大小.17. 阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.18. 先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?答案一、选择题1. 【答案】A【解析】方程x2−4x−7=0,变形得:x2−4x=7,配方得:x2−4x+4=11,即(x−2)2=11,故选:A.2. 【答案】C【解析】x2+6x−3=x2+6x+9−9−3=(x+3)2−12.故选:C.3. 【答案】C【解析】2x2-4x=-1,x2-2x=12-, x2-2x+1=12-+1,∴(x-1)2=12,即2(x-1)2=1.故选C.4. 【答案】A【解析】∵M=a﹣1,N=a2﹣a (a为任意实数),∴N−M=a2−a+1=(a−)2+,∴N>M,即M<N.故选:A5. 【答案】A【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数4的一半的平方,即x2+4x-5=0,x2+4x=5,x2+4x+4=9,(x+2)2=9,故答案选A.考点:配方法解一元二次方程.6. 【答案】D【解析】−x2+4x−5=−(x2−4x)−5=−(x−2)2−1,∵−(x−2)2<0,∴−(x−2)2−1<0,故选:D.点睛:此题主要考查了配方法的应用,正确应用配方法是解题的关键.二、填空题7.【答案】1【解析】已知等式变形得:x2−4x+5=x2−4x+4+1=(x−2)2+1=(x−2)2+m,则m=1,故答案为:18. 【答案】3【解析】因,根据非负数的性质可得当a=3时,有最小值为9,所以当a=3时,有最小值为3.考点:配方法的应用;非负数的性质:偶次方;二次根式的性质与化简.9. 【答案】 (1). 1 (2).【解析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,即x2−2x+1=−+1,所以(x−1)2= .故答案为:1,.10. 【答案】1【解析】由(x+m)2=3,得:x2+2mx+m2−3=0,∴2m=4,m2−3=n,∴m=2,n=1,∴(m−n)2016=1,故答案为:1. 11.【答案】3【解析】原式=(x2+2x+1)+(4x2−8xy+4y2)=4(x−y)2+(x+1)2+3,∵4(x−y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2−8xy+2x+4的最小值为3.故答案为:3.12. 【答案】【解析】∵a+b2=1,∴b2=1−a,∴a2+b2=a2+1−a=(a−)2+,∵(a−1)2⩾0,∴(a−1)2+⩾,故答案为:.13. 【答案】12【解析】x2−6x+5=0,x2−6x=−5,x2−6x+9=−5+9,(x−3)2=4,所以a=3,b=4,ab=12,故答案为:12.14. 【答案】3【解析】根据题意,得x2-6x+b=(x2-6x+9)+b-9=(x-3)2+b-9=(x-a)2-3,可得a=3,b−9=−3,解得:a=3,b=6,则b−a=3.故答案为:3.点睛:此题考查了配方法的应用,熟练掌握完全平方公式是解题的关键.三、解答题15. 【答案】(1)x1=﹣2+,x2=﹣2﹣;(2)x1=1+,x2=1﹣【解析】(1)利用配方法即可解决;(2)利用配方法即可解决.解:(1)∵x2+4x﹣1=0,∴x2+4x=1∴x2+4x+4=1+4,∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.(2)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.点睛:本题考查一元二次方程的解法,记住配方法的解题步骤是解题的关键,属于中考常考题型.16. 【答案】(1)﹣2;2;2;小;2;(2)x2﹣1>2x﹣3.【解析】(1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答;(2)利用求差法和配方法解答即可.解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.17.【答案】(1)4;(2)7;(3)2【解析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(3)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xyz=2.点睛:本题主要考查的是配方法的应用和三角形三边的关系,灵活运用完全平方公式、掌握三角形三边的关系是解题的关键.18. 【答案】(1);(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2.【解析】 (1)将原式进行配方,然后根据非负数的性质得出最小值;(2)将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.解:(1) m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)、由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.考点:一元二次方程的应用.。

人教版九年级数学上册第二十四章《直线和圆的位置关系》第1-4课时学习任务单(公开课导学案)及作业设计

人教版九年级数学上册第二十四章《直线和圆的位置关系》第1-4课时学习任务单(公开课导学案)及作业设计

人教版九年级数学上册第二十四章《直线和圆的位置关系》学习任务单及作业设计第一课时【学习目标】了解直线和圆相交、相切、相离等概念;会判断直线和圆的位置关系;通过对直线和圆的位置关系的探究,体会分类讨论、数形结合的思想。

【课前学习任务】复习之前学过的点和圆的位置关系、直线外一点到这条直线的距离。

【课上学习任务】学习任务一:已知圆的直径是 13cm,如果圆心与直线的距离分别是:(1)4.5cm;(2)6.5cm;(3)8cm,那么直线和圆分别是怎样的位置关系?有几个公共点?答案:(1)相交,两个公共点;(2)相切,一个公共点;(3)相离,无公共点.学习任务二:Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,以 C 为圆心,r 为半径的圆与直线 AB 有怎样的位置关系?为什么?(1)r=2 cm;(2)r=2.4 cm;(3)r=3 cm.答案:(1)相离,无公共点;(2)相切,一个公共点;(3)相交,两个公共点.学习任务三:Rt△ABC,∠C=90°,AC=3 cm,BC=4cm,以 C 为圆心,(1)当 r 满足时,⊙C 与直线 AB 相离;(2)当 r 满足时,⊙C 与直线 AB 相切;(3)当 r 满足时,⊙C 与直线 AB 相交.学习任务四:Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,以 C 为圆心,若要使⊙C 与线段 AB 只有一个公共点,这时⊙C 的半径 r 要满足什么条件?答案:r=2.4 或.【作业设计】请同学们在作业本上完成下面两道课后作业:1.⊙O 的半径为 5cm,已知⊙O 与直线AB的距离为d, 根据条件填写d的范围:(1)若 AB 和⊙O 相离, 则;(2)若 AB 和⊙O 相切, 则;(3)若 AB 和⊙O 相交, 则 .答案:第二课时【学习目标】运用圆的切线的判定方法判定直线是否为圆的切线.【课前学习任务】回顾直线和圆有哪些位置关系?判定圆的切线的条件?【课上学习任务】学习任务一:作图并探究圆的切线的位置关系1.作图:已知,点 A 为⊙O 上的一点,过点 A 作⊙O 的切线.经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l 和⊙O有什么位置关系?经过半径 OA 的外端点 A 作直线l⊥OA,圆心 O 到直线 l的距离就是⊙O 的半径,即d =r,所以直线l就是⊙O 的切线.学习任务二:典型例题,掌握圆的切线的判定方法例 1 如图,AB是⊙O直径,∠ABT=45°, 且 AT=AB. 求证:AT 与⊙O 相切.证明:∵ AT=AB,∴∠ABT = ∠ATB.∵∠ABT= 45°,∴∠ATB= 45°.∴∠BAT=90°.∵ AB 是⊙O 的直径,∴ AT 与⊙O 相切.例 2 如图,直线 AB 经过⊙O 上的点 C,并且 OA=OB,CA=CB.求证:直线 AB 是⊙O 的切线.证明:连结 OC.∵ OA=OB, CA=CB,∴ OC⊥AB 于 C.∵ OC 是⊙O 的半径,∴直线 AB 是⊙O 的切线.例 3 如图,△ABC 内接于大圆 O,D 是 AB 中点,∠B=∠C,以 O 为圆心 OD 为半径作小圆 O. 求证:AB、AC 分别是小圆切线.证明:连结 OD,作OE⊥AC于E.∵ D 是 AB 的中点,∴ OD⊥AB于D ,∵ OD 为小圆 O 的半径,∴ AB 与小圆 O 相切.∵△ABC 内接于大圆 O,∴ AE = CE.∵∠B = ∠C,∴ AB = AC,∴ AD = AE.连接 OA,可得 OD = OE,∴ AC 与小圆 O 相切.【作业设计】1.如图, A 是⊙O 外一点, AO 的延长线交⊙O 于点 C, 点 B 在圆上, 且AB=BC, ∠A=30°. 求证:直线 AB 是⊙O 的切线.2.如图,点 D 是∠AOB 的平分线 OC 上任意一点,过 D 作 DE⊥OB于E,以DE 为半径作⊙D. 补全图形,判断 OA 与⊙D 的位置关系,并证明你的结论.解题思路:1.连接OB,证明 OB⊥AB 可得直线AB是⊙O的切线.2.OA 与⊙D 相切作DF⊥OA于F,因为 DE⊥OB于E,OC是∠AOB 的平分线,所以DE=DF=⊙D的半径,可得直线OA与⊙D相切.第三课时【学习目标】理解切线的性质定理;会运用切线的性质定理进行计算与证明.【课前学习任务】复习圆的切线的定义,以及判断一条直线是圆的切线的方法.【课上学习任务】学习任务一:复习1.圆的切线是如何定义的?2.判断一条直线是圆的切线有哪些方法?学习任务二:探究:问 1:如图,已知直线 l 是⊙O的切线,切点为A,连接OA,直线l⊥OA吗?由探究总结出切线的性质定理:圆的切线垂直于过切点的半径.问 2:如图,已知⊙O的切线l,但切点未知,你能作出切点A吗?由探究总结出结论 1:经过圆心且垂直于切线的直线一定经过切点.(学生课后探究)结论 2:经过圆心且垂直于切线的直线一定经过切点.学习任务三:例 1. 如图,△ABC 为等腰三角形,O 是底边 BC 的中点,腰 AB 与⊙ O 相切于点 D.求证:AC 是⊙ O 的切线.分析:根据切线的判定定理,要证明 AC 是⊙ O 的切线,只要证明由点 O 向 AC 所作的垂线段 OE 是⊙ O 的半径就可以了,而由切线的性质,OD 是⊙ O 的半径,因此只需证明OD = OE.证明:如图,过点 O 作 OE⊥AC,垂足为 E,连接 OD,OA.∵⊙ O 与 AB 相切于点 D,∴OD⊥AB.又△ABC 为等腰三角形,O 是底边 BC 的中点,∴AO 是∠BAC 的平分线.又∵OE⊥AC,OD⊥AB,∴OE=OD,即 OE 是⊙O 的半径.∵OE 为⊙O 的半径,OE⊥AC 于 E,∴AC 与⊙ O 相切.学习任务四:例 2. 如图,AB 为⊙O的直径,AC是弦,D是的中点,过点D作⊙O的切线,交 BA 的延长线于点E.(1)求证:AC∥ED ;(2)若 OA=AE =4,求弦AC的长.分析:这里有三个条件:(1)AB 为⊙O 直径;(2)D 是的中点;(3)ED 切⊙O于D.特别要关注 D 的作用:它即是弧的中点,又是切点.【作业设计】1.如图, 已知⊙O的直径AB与弦AC的夹角为35°,过点C的切线PC与AB的延长线相交于点P, 则∠P=_______°.答案: 20°2.如图,已知⊙O的半径为3,直线AB是⊙O 的切线,OC交AB于点C,且∠OCA = 30°,则 OC 的长为_________.答案: 63.如图,在 Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB = 2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.答案: BE=2 (连接 OD,作 OF⊥BE 于 F)第四课时【学习目标】1.了解切线长的概念.2.会证明切线长定理.3.了解三角形的内切圆的概念及三角形的内心的概念.4.了解多边形与圆的“切”和“接”的含义.【课前学习任务】熟练掌握圆的切线的性质与判定,了解三角形的外接圆的相关知识. 【课上学习任务】学习任务一:若点 P 在圆上,作已知⊙O 的切线的作法及作图依据.作法:①连接 OP,②过 P 点作线段 OP 的垂线 l,直线 l 即⊙O 的切线.作图依据:经过半径的外端并且垂直于这条半径的直线是圆的切线.若点 P 在⊙O 外作法:连接 OP,①作线段 OP 的中点 M.②作以 M 为圆心,OM 长为半径的⊙M,与⊙O 交于 A,B 两点.③作直线 PA,PB,则直线 PA,PB 即为⊙O 的两条切线.学习任务二:完成圆的切线与切线长的比较,体会圆的切线与切线长的区别.学习任务三:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.切线切线长切线是直线切线长是切线上一条线段的长,即圆外一点与切点之间的距离。

九年级数学作业设计案例(1)北师大版数学九年级第一学期 第六章

九年级数学作业设计案例(1)北师大版数学九年级第一学期 第六章

初中数学作业设计案例一、单元作业概况二、课时作业设计表以北师大版初中九年级数学上册第六章《反比例函数》为例:三、课时作业、单元测试卷题目属性分析1、课时作业题目属性汇总表2、单元试卷题目属性汇总表s0104Csx09010602选择题中等理解1引用s0104Csx09010603选择题中等理解1引用s0105Csx09010605选择题中等理解2引用s0105Csx09010605选择题较高理解2引用s0106Csx09010603填空题较低知道1引用s0105Csx09010604填空题较低知道1引用s0106Csx09010604填空题中等理解1引用s0107Csx09010606填空题中等理解2引用s0106Csx09010606填空题中等理解3引用s0107Csx09010607解答题中等理解 5 引用s0107Csx09010607解答题较高应用 6 引用s0107Csx09010607 解答题较高应用 6 引用四、课时作业Z0101、设计意图:本题主要考查反比例函数的概念,对反比例函数表达式中0≠k 这一条件的强化.Z0102、设计意图:本题主要考查反比例函数的概念,根据反比例函数概念中x 的次数为-1,且系数不能为0进行作答.Z0103、设计意图:本题主要体现了数学建模素养,借助日常生活中经常遇到的经营问题,通过把售价x 与销量y 之间的变化关系用函数表示出来,建立反比例函数模型,从而达到解决问题的目的.第二节:反比例函数的图象与性质 Z0104、分别画出函数x y 6=和xy 6-=的图象. 设计意图:本题能规范学生画反比例函数图象,使学生进一步体会函数图象与函数表达式之间的关系,感受数形结合的思想.Z0105、设计意图:本题考查了学生对k的几何意义的理解,提高识图能力,进一步体会数形结合的思想.第三节:反比例函数的应用Z0106、设计意图:本题考查学生根据函数图象明确各变量之间的关系,列出函数表达式的能力,并根据实际情况标明自变量的取值范围.体会数学与生活的联系紧密性.Z0107.设计意图:本题考查学生利用待定系数法求函数表达式,利用割补法求图形面积,第(3)考查函数与不等式之间的关系,体会转化思想,数形结合思想.五、单元试卷一、选择题(本大题共10小题,每小题3分,共30分)1.给出下列函数关系式:①12y x =-;②52y x =;③123y x -=;④12y x=+;⑤2xy=1;⑥-xy=2.其中,表示y 是x 的反比例函数的个数为( ) A.3 B.4 C.5 D.62.若反比例函数0k ky x=≠()的图象经过点P (-2,3),则该函数的图象不经过的点是( )A.(3,-2)B.(1,-6)C.(-1,6)D.(-1,-6)3.(2018四川凉山州中考)若ab <0,则正比例函数y =ax 与反比例函数by x=在同一坐标系中的大致图象可能是( )4.(2019甘肃兰州期末)一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v (千米/时)与时间t (小时)的函数关系式为( )A. 480v t =B. =480v t +C. 80v t =D. 6t v t-= 5.(2019湖南娄底中考)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如下图所示,则所得图象的解析式为( )A. 111y x =++ B. 111y x =-+ C. 111y x =+- D. 111y x =-- 6.(2020湖北荆州松滋一模)如下图所示,在平面直角坐标系中,正方形ABCD四个顶点的坐标分别为A (-1,2),B (-1,-1),C (2,-1),D (2,2),当双曲线0k ky x=>()与正方形有四个交点时,k 的取值范围是( )A.0<k <1B.1<k <4C.k >1D.0<k <27.(2020独家原创试题)如下图所示,点A 在反比例函数0ky x x=>()的图象上,过点A 作AB ⊥x 轴,垂足为点B ,点C 在y 轴上,若△ABC 的面积为3,则k 的值为( )A.4B.5C.6D.128.(2017浙江衢州中考)如下图所示,在平面直角坐标系中,点A 在函数04y x x =>()的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数04y x x=>()的图象交于点D .连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A.2B.C.4D.9.(2020湖南长沙天心期末)如下图所示,平行于x 轴的直线与函数1100,k y k x x =>>(),2200,ky k x x=>>()的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则12k k -的值为( )A. 12B.-12C.6D.-610.(2015湖北鄂州中考)如下图所示,直线y=x-2与y轴交于点C,与x轴交于点B,与反比例函数kyx=的图象在第一象限内交于点A,连接OA,若:1:2AOB BDCS S∆∆=,则k的值为( )A.2B.3C.4D.6二、填空题(本大題共8小题,每小题3分,共24分)11.(2017江苏淮安中考)若反比例函数6yx=-的图象经过点A(m,3),则m的值是_____.12.(2017黑龙江缓化中考)已知反比例函数6yx=,当x>3时,y的取值范围是_____.13.(2018湖南娄底中考)如下图所示,在平面直角坐标系中,O为坐标原点,点P是反比例函数2yx=图象上的点,PA⊥x轴于点A,则△POA的面积为_____.14.(2018湖南张家界中考)如下图所示,矩形ABCD 的边AB 与x 轴平行,顶点A的坐标为(2,1),点B 与点D 都在反比例函数06y x x=>()的图象上,则矩形ABCD的周长为_____.15.(2019贵州毕节中考)如下图所示,在平面直角坐标系中,一次函数y =-4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数0ky k x=≠()的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是_____.三、解答题(共46分)16.(2018湖南常德中考)(8分)如下图所示,已知一次函数111(0)y k x b k =+≠与反比例函数2220k y k x=≠()的图象交于A (4,1),B (n ,-2)两点. (1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出12y y <时x 的取值范围.17.(8分)在压力不变的情况下,某物体承受的压强P (Pa )是它的受力面积S (2m )的反比例函数,其图象如下图所示. (1)求p 与S 之间的函数关系式; (2)求当S =0.5时物体承受的压强p ;(3)若要获得2500Pa 的压强,受力面积应为多少?18.(2019四川雅安中考)(10分)如下图所示,在平面直角坐标系中,一次函数y =-x +m 的图象与反比例函数0ky x x=>()的图象交于A 、B 两点,已知A (2,4).(1)求一次函数和反比例函数的解析式; (2)求B 点的坐标;(3)连接AO 、BO ,求△AOB 的面积.六、答案一、选择题1.答案:B解析:②③⑤⑥均为反比例函数,故选B.2.答案:D解析:由题意得k=-2×3=-6,则6yx=-,因此该函数图象上点的横坐标与纵坐标之积为-6.故选D.3.答案:B解析:因为ab<0,所以正比例函数图象与反比例函数图象不在同一象限内,其中一个在一、三象限时,另一个就在二、四象限.同时,正比例函数的图象是过原点的直线.故选B.4.答案:A解析:由于以80千米/时的平均速度用了6小时到达目的地,因此路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系式为480vt=.故选A.5.答案:C解析:由“左加右减”的原则可知,1yx=的图象向右平移1个单位所得函数图象的关系式是11 yx=-.由“上加下减”的原则可知,函数11yx=-的图象向上平移1个单位长度所得函数图象的关系式是111y x =+-.故选C. 6.答案:A解析: 把点B (-1,-1)代人0ky x x=>(),得k =-1×(-1)=1,由图象可知:当双曲线0ky x x=>()与正方形有四个交点时,k 的取值范围为0<k <1,故选A.7.答案:C解析: 连接OA ,如图∵AB ⊥x 轴,∴OC ∥AB ,∴OAB CAB S S ∆∆=,∴132OAB S k ∆==,∴6k =,∵反比例函数0ky x x=>()的图象在第一象限,∴k >0,∴k =6.故选C.8.答案:C解析:设4,A a a ⎛⎫ ⎪⎝⎭,可求出22,D a a ⎛⎫ ⎪⎝⎭,∵AB ⊥CD ,∴1142422S AB CD a a=⋅=⨯⨯=四边形ACBD .故选C. 9.答案:A解析:设12,,,k k A m B m m m ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则△ABC 的面积1211622A k k AB y m m m ⎛⎫=⋅⋅=⋅-⋅= ⎪⎝⎭,则1212k k -=.故选A. 10.答案:B解析:易求得点C (0,-2),点B (2,0),所以OC =OB =2,所以2BOC S ∆=.因为:1:2AOB BOC S S ∆∆=,所以1AOB S ∆=.因为OB =2,所以OB 边上的高是1,即点A 的纵坐标是1.把1A y =代入y=x-2中,得3A x =,所以A 点坐标是(3,1).所以k =3.故选B. 二、填空题 11.答案:-2解析:把A (m ,3)代入6y x =-,得63m=-,解得m =-2.12.答案:0<y <2 解析:∵6y x=,6>0, ∴当x >0时,y 随x 的增大而减小,当x =3时,y =2, ∴当x >3时,y 的取值范围是0<y <2. 13.答案:1解析:设点P 的坐标为(x ,y ). ∵P (x ,y )在反比例函数2y x=的图象上,∴xy =2,∴112POA S xy ∆==. 14.答案:12解析:由矩形ABCD 的边AB 与x 轴平行,顶点A 的坐标为(2,1),可知点B 的纵坐标为1,点D 的横坐标为2,因为点B 与点D 都在反比例函数06x y x=>()的图象上,所以点D ,点B 的坐标分别是(2,3),(6,1).所以AB =4,AD =2,所以矩形ABCD 的周长为12. 15.答案:3解析:如图,过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,易证△ABO ≌△DAE ,∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数ky x=的图象上,∴k =5,∴5y x=.易证△CBF ≌△BAO ,∴CF =4,BF =1,∴C (4,5),∵点C 向左平移n 个单位后为(4-n ,5),∴5(4-n )=5,∴n =3.三、解答题111(0)y k x b k =+≠与反比例函数2220ky k x=≠()16.解析:(1)将A (4,1)代入2220ky k x=≠(),得24k =,所以反比例函数的解析式为24y x =.将B (n ,-2)代入24y x=,得2n =-,所以点B 的坐标为(-2,-2).将A (4,1),B (-2,-2)代入111(0)y k x b k =+≠,得1141,22,k b k b +=⎧⎨-+=-⎩解得11,21,k b ⎧=⎪⎨⎪=-⎩所以一次函数的解析式为1112y x =-.(2)根据两函数图象可以看出:1y <2y 时,x 的取值范围为2x <-或0<x<4.17.解析:(1)设0kp k S=≠(),∵点(0.25,1000)在这个函数的图象上, ∴10000.25k=,∴k =250, ∴P 与S 之间的函数关系式为0025p S S=>(). (2)当S =0.5时,2505000.5p ==. (3)令P =2500,则2500.12500p ==.故要获得2500Pa 的压强,受力面积应为20.1m .18.解析:(1)将A (2,4)代入y =-x +m 与0k y x x =>()中,得4,22,4km ==-+⎧⎪⎨⎪⎩∴m =6,k =8,∴一次函数的解析式为6y x =-+,反比例函数的解析式为8y x=. (2)解方程组86y x y x ==-+⎧⎪⎨⎪⎩,,得24y x ==⎧⎨⎩,,或42y x ==⎧⎨⎩,, ∴B (4,2).(3)如图,设直线6y x =-+与y 轴交于点D ,易得D (0,6),∴OD =6,∴116462622AOB DOB AOD S S S ∆∆∆=-=⨯⨯-⨯⨯=。

XXX版数学九年级上册 用公式法求解一元二次方程 双减分层作业设计案例 样例

XXX版数学九年级上册 用公式法求解一元二次方程 双减分层作业设计案例 样例

XXX版数学九年级上册用公式法求解一元二次方程双减分层作业设计案例样例初中数学九年级书面作业设计样例单元名称:一元二次方程作业类型:基础性作业(必做)作业内容:1.用公式法解一元二次方程2x^2+3x=1时,化方程为一般式中的a、b、c依次为()意图:通过将方程化为一元二次方程的一般形式,巩固一元二次方程二次项系数、一次项系数、常数项的概念。

答案:B2.关于x的一元二次方程mx^2+6x=9有两个实数根,则m的取值范围为()意图:通过简单的含参一元二次方程根的情况,巩固一元二次方程根的判别式。

答案:m<-1且m≠03.对于任意实数k,关于x的方程2x-(k+5)x+k^2+2k+25=0的根的情况为()意图:通过简单的含参一元二次方程根的情况,巩固一元二次方程根的判别式。

答案:有两个不相等的实数根4.解方程:1)2x+3x-1=2意图:通过解一元二次方程,巩固公式法解一元二次方程的基本技能。

答案:x1=(-3+√17)/4,x2=(-3-√17)/42)x^2-1=4x3)x^2+5=4x4)(x-2)(x+5)=18意图:通过解一元二次方程,巩固公式法解一元二次方程的基本技能。

答案:(2)x1=2+√5,x2=2-√5;(3)无实数解;(4)x1=-7,x2=45.已知关于x的一元二次方程x^2-2x+k+2=0.1)若k=-6,求此方程的解;2)若该方程无实数根,求k的取值范围。

答案:(1)x1=1+√5,x2=1-√5;(2)k>-1.6.关于x的一元二次方程为(m-1)x^2-2mx+m+1=0.1)求出方程的根;2)m为何整数时,此方程的两个根都为正整数?意图:通过求含参一元二次方程根,巩固一元二次方程根的判别式,培养学生分析问题,综合运用知识解决问题的能力。

答案:(1)x1=(2m+√(4m^2-4m+1))/(2(m-1)),x2=(2m-√(4m^2-4m+1))/(2(m-1));(2)m=2或3.1.已知三角形的三边长为a,b,c,则直系一元二次方程(a+b)x^2+2cx+(a+b)=0的根情况是什么?意图:通过三角形三边关系的情景中的含参一元二次方程求根公式,巩固一元二次方程根的判别式。

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题一、教学目标1.知识与技能:掌握九年级上册数学教材中的各个知识点。

能够运用所学知识解决实际问题。

2.过程与方法:培养学生的逻辑思维能力、空间想象能力和问题解决能力。

通过小组合作,培养学生的团队协作能力。

3.情感态度与价值观:培养学生对数学的兴趣和热爱,树立正确的数学观念。

二、教学内容1.第一单元:二次函数(1)知识点二次函数的定义与性质二次函数的图像与几何意义二次函数的应用(2)教案设计导入:通过生活中的实例引入二次函数的概念。

讲解:详细讲解二次函数的定义、性质、图像及几何意义。

练习:布置一些有关二次函数的练习题,让学生巩固所学知识。

2.第二单元:二次方程(1)知识点一元二次方程的解法一元二次方程的根与系数的关系一元二次方程的应用(2)教案设计导入:通过复习一元一次方程,引入一元二次方程的概念。

讲解:详细讲解一元二次方程的解法、根与系数的关系。

练习:布置一些有关一元二次方程的练习题,让学生巩固所学知识。

3.第三单元:不等式(1)知识点一元一次不等式的解法一元一次不等式的应用二元一次不等式组的解法(2)教案设计导入:通过复习一元一次方程,引入一元一次不等式的概念。

讲解:详细讲解一元一次不等式的解法及其应用。

练习:布置一些有关一元一次不等式的练习题,让学生巩固所学知识。

4.第四单元:概率初步(1)知识点随机事件的独立性概率的计算概率的应用(2)教案设计导入:通过生活中的实例引入随机事件的概念。

讲解:详细讲解随机事件的独立性、概率的计算及应用。

练习:布置一些有关概率的练习题,让学生巩固所学知识。

三、教学手段1.采用多媒体教学,展示二次函数的图像、不等式的解法等,增强学生的直观感受。

2.采用小组合作学习,培养学生的团队协作能力。

3.采用启发式教学,引导学生主动思考、积极探索。

四、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言次数、合作效果等。

2.作业完成情况:检查学生作业的完成质量,了解学生对所学知识的掌握程度。

九年级数学分层作业设计

九年级数学分层作业设计

九年级数学分层作业设计第二十四章圆 24.3正多边形和圆教材:人教版九年级上册学科:数学学段:初中作业类型:知识技能类作业、数学思考类作业、问题解决类作业分层作业设计学习目标:知识与技能1、了解正多边形和圆的关系,了解正多边形半径和边长、边心距、中心、中心角等概念.2、会应用正多边形的有关知识解决圆的有关计算问题.3、会应用正多边形和圆的有关知识画正多边形.过程与方法结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.情感态度与价值观学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体现了事物之间是相互联系,相互作用的.关于“24.3正多边形和圆”的内容知识技能类作业:1、矩形是正多边形吗?菱形呢?正方形呢?为什么?(必做)2、完成下表中有关正多边形的计算:(必做)3、各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是举出反例.(必做)4、分别求半径为4的圆内接正三角形、正方形的边长、边心距和面积.(选做)(来源:依据人教版教材九年级上册 106页练习、108习题改编设计意图:通过这些习题了解正多边形和圆的关系,了解正多边形半径和边长、边心距、中心、中心角等概念,会利用圆的有关知识解决正多边形的计算问题,改编部分题目的目的是利于学生更易计算,减少作业时间,另外防止学生上网搜题一抄了之.)数学思考类作业:1、要用圆形铁片裁出边长为2的正方形铁片,选用的圆形铁片的半径至少是多少?(必做)2、如图,正方形的边长为2厘米,减去四个角后成为一个正八边形.求这个正八边形的边长和面积.(选做)(来源:依据人教版教材九年级上册 107页练习、109习题改编设计意图:将多边形的有关数量,在一个直角三角形中联系起来,将多边形的问题转化为三角形,体现了化归的思想,从而培养学生分析问题、解决问题的能力和应用意识.改编部分题目的目的同上)问题解决类作业:1、用圆规和直尺作正三角形,正六边形,正方形.(必做)2、画一个半径为2cm的,正五边形再作出这个正五边形的各条对角线,画出一个五角星.(选做)3、用等分圆周的方法画出下列图案:(选做)4、认真阅读人教版109页“圆周率π”.(必做)5、根据自己的喜好利用圆和正多边形设计美丽的图案.(选做)6、用圆规和直尺作正五边形.(选做)(来源:依据北师大版教材九年级下册99页改编)(设计意图:结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识解决正多边形的问题.感受数学的美,感受数学来源于生活,又服务于生活,体现了事物之间是相互联系,相互作用的.通过画正多边形,培养学生画图能力. 通过阅读感受我们古代人民的智慧.)。

初中数学作业设计案例

初中数学作业设计案例

诊断性作业(必做)1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.如图(1),在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC =( ) A .40° B .45° C .50° D .60° 3.如图(2)所示,已知AB 和CD 为⊙O 的两条直径,弦CE ∥AB ,弧CE 所对的圆心角的度数为40°,则∠BOC =________.4.已知是同圆的两段弧,且,则弦AB 与2CD 之间的关系为( )A .AB = 2CDB .AB < 2CDC .AB > 2CD D .不能确定5.如图(3),AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠BOC=70°,AD ∥OC ,求∠AOD 的度数.布置意图:及时练习巩固所学知识,判断学生对知识的掌握情况,让学生能够灵活掌握知识点,加强学生运用新知的意识,体现学以致用的观点。

(2) (3)(1)提升性作业(1、2题必做,3、4题选做) 1、已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.2、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE,则弧AC与弧BC的大小关系?试证明。

2、已知:⊙O中,OB、OC是半径,DF⊥OC于F,AE⊥OB于E,若AB=CD,求证:AE=DF.4、已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.布置意图:进一步巩固所学知识,通过解题将之前所学知识与本节知识进行整合,提升综合运用知识的能力,同时规范解题格式,让学生养成良好的解题习惯。

九年级数学上册优秀作业设计案例

九年级数学上册优秀作业设计案例

九年级数学上册优秀作业设计案例作业设计理念及类型在当前的“双减”政策下,提高课堂教学和课后作业质量,做到提质减负增效,学生的负担才会真正减轻。

有效作业是提升学生核心素养、减轻学生作业负担的重要方式。

为使“双减”政策和教育部作业“五项管理”真正落地,切实改变目前中学生作业机械、重复的现状。

为了让学生理解和掌握基本的数学基础知识和基本技能,形成数学基本思想,积累数学基本活动经验,发展核心素养,我选择了人教版数学九年级上第22章《二次函数图象、性质、几何综合》为例,进行了作业的优化设计。

为摒弃以往重复低效的练习,突出作业设计的有效性,注重单元整体教学与整合,作业设计内容从课本母题出发,行内容的整合与变式,注重问题设计,从学生已有的数学经验入手,使知识形成过程循序渐进,问题的提出引发学生的认知冲突,激发学生学习动机,促进学生积极探究,形成数学思想,感知数学建模的基本过程。

二、作业设计内容及完成作业预计时间本作业设计是人教版九年级上册数学第22章《二次函数图象、性质、解析式及周长、面积最值问题》的课时作业,基础薄弱的同学完成母题训练及问题1、2,中等学生完成母题训练及问题1、2和3中的(1),(2)小题,思维好的同学全部完成,共用时40分钟。

利用课余时间以思维导图形式呈现二次函数知识结构图,目的在于加深学生对二次函数知识的在认识,学会运用所学知识解决数学问题,感悟数学应用的普遍性。

三、作业设计目标1.通过复习形成二次函数知识结构图,并能够从二次函数具体问题解决中概括出一般结论,形成解决二次函数图象题、周长、面积最值问题的数学方法和策略。

2.通过问题设计,探索从不同的角度发现问题、提出问题、分析问题和解决问题的方法,抽象出数学模型,形成模型观念。

四、作业设计方案(问题1):已知二次函数ax2+bx+c中的y与x的部分对应值如下表所示.x …-1 0 1 2 3 …y …0 3 4 3 …(1)拋物线的对称轴是,顶点坐标是(2)当x=3时,y的值是(3)若M(-1,y1),N(-2,y2)两点都在该函数图像上,则y1 y2(问题2):已知二次函数ax2+bx+c(a≠0)的图像如图所示,直线l是拋物线的对称轴,下列结论中正确的是(填写序号).abc>0; ②b2-4ac>0③a+b+c=4④当x<1时,y随x的增大而增大⑤b+2a=0 ⑥4a-2b+c>0(问题3):如图,抛物线ax2+bx+c(a≠0)与x轴的公共点是A(-1,0),B(3,0),与y轴的公共点C,P是对称轴l上的一个动点(1)当PA+PC的值最小时,点P的坐标为(2)当PA-PC的值最大时,点P的坐标为(3)当△PAC周长最小时,点P的坐标为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 二次根式21.1 二次根式第一课时作业设计一、选择题1.下列式子中,是二次根式的是( ) A .- BCD .x2.下列式子中,不是二次根式的是( )A. BC D.3.已知一个正方形的面积是5,那么它的边长是( )A .5B . C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x 是多少时,+x 2在实数范围内有意义? 3.若.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且=b+4,求a 、b 的值.第二课时作业设计一、选择题1、是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1x151.(-2=________.2.已知_______数.三、综合提高题 1.计算(1)2(2)-2(3)()2(4)(- 2(5)2.把下列非负数写成一个数的平方的形式:(1)5(2)3.4(3)(4)x (x ≥0) 3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2(2)x4-9 3x 2-5第三课时作业设计一、选择题1.的值是( ).A .0 B .C .4 D .以上都不对 2.a ≥0比较它们的结果,下面四个选项中正确的是( ).A .C ..二、填空题1.-=________.2.若是一个正整数,则正整数m的最小值是________. 三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下: 甲的解答为:原式=a+(1-a )=1;12162323乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________. 2.若│1995-a │,求a -19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3.若-3≤x ≤2时,试化简│x-2│。

21.2 二次根式的乘除第一课时作业设计一、选择题1.若直角三角形两条直角边的边长分别为cm ,•那么此直角三角形斜边长是( ).A .3cm B . C .9cm D .27cm 2.化简 ). A . B. D .3.等式)A.x ≥1 B .x ≥-1 C .-1≤x≤1 D .x ≥1或x ≤-1 4.下列各等式成立的是().A ..C..二、填空题1..2.自由落体的公式为S=gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为720m ,则下落的时间是_________. 三、综合提高题1.一个底面为30cm ³30cm 长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程. (1)211x -=12验证:2(2)3验证:3同理可得:45通过上述探究你能猜测出:=_______(a>0),并验证你的结论.第二课时作业设计一、选择题1.计算的结果是( ).A .B .CD . 2.阅读下列运算过程:数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,的结果是( ).A .2 B .6 C . D二、填空题=====272773==5==131.分母有理化:(1)=_________;(2)=________;(3) =______. 2.已知x=3,y=4,z=5的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,1,•现用直径为cm 的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)²(m>0,n>0) (2)-3(a>0)第三课时作业设计一、选择题 1(y>0)是二次根式,那么,化为最简二次根式是( ). A(y>0) By>0) C(y>0) D .以上都不对2.把(a-1)中根号外的(a-1)移入根号内得( ).A ...3.在下列各式中,化简正确的是( )A .B ±C2D .4.化简的结果是( )A .-B .C.D .二、填空题1231.化简.(x ≥0)2.a 化简二次根式号后的结果是_________. 三、综合提高题1.已知a正确,•请写出正确的解答过程:-a ²=(a-12.若x 、y 为实数,且的值.21.3 二次根式的加减(1)第一课时作业设计一、选择题1.以下二次根式:;中,( ). A .①和② B .②和③ C.①和④ D .③和④ 2.下列各式:①=1,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题 1.在3、-2是同类二次根式的有________.2.计算二次根式-7的最后结果是________.三、综合提高题1.已知2.236)-(结果精确到0.01)2.先化简,再求值.1a x y -17(-(+,其中x=,y=27.第二课时作业设计一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.5 B..以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13C. D.二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1.若最简二次根式m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=(2,5=2,你知道是谁的二次根式呢?下面我们观察:(-1)2=)2-2²1+12反之,3-2+1=-1)2∴3-2=-1)2∴-1求:(1;(2;(3吗?32n(4)若,则m 、n与a 、b 的关系是什么?并说明理由.第三课时作业设计一、选择题 1.(的值是( ).A ..C .2.2.计算(). A .2 B .3 C.4 D .1 二、填空题 1.(-+)2的计算结果(用最简根式表示)是________. 2.((-()2的计算结果(用最简二次根式表示)是_______. 3.若-1,则x 2+2x+1=________.4.已知,a 2b-ab 2=_________. 三、综合提高题 1.化简2.当x=时,求+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是().ABC.20323232031222.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b )(a-b )=a 2-b 2,同时它们的积是有理数,不含有二次根式:如与就是互为有理化因式;练习________;x-的有理化因式是_________. -_______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化 (1); (2; (3(44.其它材料:如果n理由:练习:填空.第二十三章 旋转23.1 图形的旋转(1)第一课时作业设计一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有( ). A .6个 B .7个 C .8个 D .9个 2.从5点15分到5点20分,分针旋转的度数为( ). A .20° B .26° C .30° D .36°3.如图1,在Rt △ABC 中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,•将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,则旋转角等于( ). A .70° B .80° C .60° D .50°(1) (2) (3) 二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,•点E•在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC 为等边三角形,D 为△ABC•内一点,•△ABD•经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题. 1.阅读下面材料:如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置.(4) (5) (6) (7)如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换. 回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?第二课时作业设计一、选择题1.△ABC 绕着A 点旋转后得到△AB ′C ′,若∠BAC ′=130°,∠BAC=80°,•则旋转角等于( )12A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB 的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?第三课时作业设计一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( •) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图23-•33是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以A 为中心( ) A .顺时针旋转60°得到的 B .顺时针旋转120°得到的 C .逆时针旋转60°得到的 D .逆时针旋转120°得到的3.下面的图形23-34,绕着一个点旋转120°后,能与原来的位置重合的是( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、综合提高题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,•将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,•你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.23.2 中心对称(1)第一课时作业设计一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()个.A.1 B.2 C.3 D.42.下面的图案中,是中心对称图形的个数有()个A.1 B.2 C.3 D.43.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,•点D、C 分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55° B.125° C.70° D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,•那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(•填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)•梯形.三、综合提高题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.23.如图,是由两个半圆组成的图形,已知点B是AC的中点,•画出此图形关于点B成中心对称的图形.第二课时作业设计一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°21085二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,•它的对称中心是__________. 三、综合提高题1.分别画出与已知四边形ABCD 成中心对称的四边形,使它们满足以下条件:(1)•以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D•的位置.第三课时作业设计一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( ).A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085•”在镜子中的像是( )A .21085B .28015C .58012D .51082 二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,•那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:•正方形绕着它的对角线的交点旋转90°后能与自身重合,•所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(•写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O•顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.D 1C 1B 1A 1BA EDG F。

相关文档
最新文档