《数据的离散程度第1课时》示范公开课教学设计【北师大版八年级数学上册】
新北师大版初中八年级数学上册6.4数据的离散程度1公开课优质课教学设计
6.4 数据的离散程度1.了解极差的意义,掌握极差的计算方法;2.理解方差、标准差的意义,会用样本方差、标准差估计总体的方差、标准差.(重点、难点)一、情境导入从图中我们可以算出甲、乙两人射中的环数都是70环,但教练还是选择乙运动员参赛.问题1:从数学角度,你知道为什么教练员选乙运动员参赛吗?问题2:你在现实生活中遇到过类似情况吗?二、合作探究探究点一:极差欢欢写了一组数据:9.5,9,8.5,8,7.5,这组数据的极差是( )A.0.5 B.8.5 C.2.5 D.2解析:这组数据的最大值是9.5,最小值是7.5,因此这组数据的极差是:9.5-7.5=2.故选D.方法总结:要计算一组数据的极差,找出最大值与最小值是关键.探究点二:方差、标准差【类型一】方差和标准差的计算求数据7,6,8,8,5,9,7,7,6,7的方差和标准差.解析:一组数据的方差计算有两个常用的简化公式:(1)s2=1n[(x21+x22+…+x2 n )-nx2];(2)s2=1n[(x1′2+x2′2+…+xn′2)-nx′2],其中x1′=x1-a,x2′=x2-a,…,xn ′=xn-a,a是接近原数据平均数的一个常数,x′是x1′,x2′,…,xn′的平均数.解:方法一:因为x=110(7×4+6×2+8×2+5+9)=7,所以s2=110[(7-7)2+(6-7)2+(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+(6-7)2+(7-7)2]=1.2.所以标准差s=30 5 .方法二:同方法一,所以s2=110[(72+62+82+82+52+92+72+72+62+72)-10×72]=1.2,标准差s=30 5 .方法三:将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0.而x ′=0,所以s 2=110[02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2.所以标准差s =305. 方法总结:计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差(或标准差)的计算公式计算.【类型二】 方差和标准差的应用在一次女子排球比赛中,甲、乙两队参赛选手的年龄(单位:岁)如下:甲队:26,25,28,28,24,28,26,28,27,29;乙队:28,27,25,28,27,26,28,27,27,26.(1)两队参赛选手的平均年龄分别是多少?(2)利用标准差比较说明两队参赛选手年龄波动的情况.解析:先求出两队参赛选手年龄的平均值,再由标准差的定义求出s 甲与s 乙,最后比较大小并作出判断.解:(1)x 甲=110×(26+25+28+28+24+28+26+28+27+29)=26.9(岁), x 乙=110×(28+27+25+28+27+26+28+27+27+26)=26.9(岁). (2)s 2甲=110×[(26-26.9)2+(25-26.9)2+…+(29-26.9)2]=2.29, s 2乙=110×[(28-26.9)2+(27-26.9)2+…+(26-26.9)2]=0.89. 所以s 甲= 2.29≈1.51,s 乙=0.89≈0.94,因为s甲>s乙,所以甲队参赛选手年龄波动比乙队大.方法总结:求标准差时,应先求出方差,然后取其算术平方根.标准差越大(小)其数据波动越大(小).【类型三】统计量的综合应用甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图(a)、(b)所示的统计图.(1)在图(b)中画出折线表示乙队在集训期内这五场比赛成绩的变化情况.(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙.(3)就这五场比赛,分别计算两队成绩的方差.(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,你认为选派哪支球队参赛更能取得好成绩?解析:第(4)题可根据第(1)(2)(3)题的结果,从平均分、折线的走势、获胜场数和方差四个方面分别进行简要分析.解:(1)如图所示.(2)x 乙=15(110+90+83+87+80)=90(分). (3)甲队成绩的方差s 2甲=15[(80-90)2+(86-90)2+(95-90)2+(91-90)2+(98-90)2]=41.2;乙队成绩的方差s 2乙=15[(110-90)2+(90-90)2+(83-90)2+(87-90)2+(80-90)2]=111.6.(4)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.综上所述,选派甲队参赛更能取得好成绩.方法总结:本题是反映数据集中程度与离散程度的综合题.从图形中得到两队的成绩,然后从平均数、方差的角度来考虑,在平均数相同的情况下,方差越小的越稳定.三、板书设计数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:各个数据与平均数差的平方的平均数 s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]标准差:方差的算术平方根公式:s =s 2经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.。
北师大版-数学-八年级上册-6.4 数据的离散程度(第1课时) 学案
数学北师大版八年级上册6.4 数据的离散程度(第1课时) 学案【学习目标】1.经历表示数据离散程度的几个量度的探索过程;2.了解刻画数据离散程度的三个量度——极差、方差、标准差; 3.能借助计算器求出相应的数值,并在具体问题情境中加以应用; 4.通过实例体会用样本估计总体的思想。
【学习过程】本章前面曾经有一个图,反映了甲乙丙三个选手的射击成绩。
显然,图中甲的成绩整体水平比丙的好。
那么,甲乙两人的射击成绩如何比较呢?除了平均水平外,是否还有其他直播奥反映数据的信息呢。
活动1:认识极差、方差、标准差1.(1)估计甲、乙两位选手射击成绩的平均数;(2)具体算一算甲、乙两位选手射击成绩的平均数,并在图中画出纵坐标等于平均成绩的直线;(3)甲乙的平均成绩差不多,但好像稳定性差别挺大的。
你认为哪个选手更稳定?你是怎么看出来的?(4)一般地,你认为如何刻画一组数据的稳定性。
学习链接1运用•巩固2.分别求甲、乙两位选手射击成绩的极差、方差、标准差,说明选手更稳定。
甲选手:极差= ;方差= ;标准差= ; 乙选手:极差= ;方差= ;标准差= 。
选手 更稳定。
24681012345678910次数环数甲乙丙活动2:在实例中感受极差、方差、标准差的关系1.为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分。
某外贸公司要出口一批规格为75克的鸡腿,现有3个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙、丙3个工厂的产品中抽样调查了20个只鸡腿,它们的质量如下图所示:7071727374757677787980甲厂(1(2)依次求出三个工厂抽取的10进行比较。
反思•交流2.极差、方差、标准差三者之间有什么区别和联系?在选择统计量刻画数据的波动水平方面,你有哪些经验,与同伴交流。
活动3:探索用计算器求极差、方差、标准差1.探索用计算器求数据的极差、方差、标准差,并与同伴交流。
提示:与求数据代表类似,总得先进入统计状态,依次输入数据,只是最后选择的统计量不一样了;另外,多数计算器没有方差键,可以先算出标准差,然后再平方。
八年级数学上册第6章数据的分析4数据的离散程度第1课时极差方差和标准差课件新版北师大版
数=(83+92+80+95+90)÷5=88,甲的中位数为89,
乙的中位数为90.
1
2
3
4
5
6
7
8
9
10
11
12
(2)现要从中选派一人参加操作技能比赛,从统计学的角
度考虑,你认为选派哪名工人参加合适?请说明理由.
解:派乙参赛合适.理由如下:甲的方差=[(95-88)2+
(82-88)2+(89-88)2+(81-88)2+(93-88)2]÷5=32,
乙的方差=[(83-88)2+(92-88)2+(80-88)2+(95-88)2
+(90-88)2]÷5=31.6.两人的平均数相等,乙的方差
小,比较稳定,应选乙参赛.
1
2
3
4
5
6
7
8
9
10
11
12
12. 在一组数据 x1, x2,…, xn 中,各数据与它们的平均数
的差的绝对值的平均数,即 T = (| x1- |+| x2
A
)
A. 中位数
B. 众数
中位数
众数
平均数
方差
C. 平均数
D. 方差
9. 3
9.4
9.2
9.5
1
2
3
4
5
6
7
8
9
10
11
12
7. 在一次数学测试中,某小组五名同学的成绩(单位:分)统计
如下表(有两个数据被遮盖),那么被遮盖的两个数据依次是
(
C
)
组员
甲
乙
丙
丁
戊
方差
平均成绩
北师大版初二数学上册6.4数据的离散程度(1)教学设计.4数据的离散程度(第1课时)教学设计
第六章数据的分析6.4 数据的离散程度(第 1 课时)一、学情分析学生的技能基础:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力。
二、教学目标1. 知识与技能:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
2. 过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。
3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
三、教学过程第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿•现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:75747476737675777774甲厂:74757576737673787772乙75787277747573797275厂:80717677737871767375把这些数据表示成下图:质量/g 质量/g(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4 )如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
3.小游戏:设计一个简单的统计小游戏,让学生在游戏中体验数据离散程度的概念,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.创设生活情境:以学生熟悉的生活实例为背景,提出问题,引导学生运用所学知识解决问题,让他们体会数学在现实生活中的应用价值。
2.合作探究:组织学生进行小组讨论,鼓励他们相互交流、共同探究,培养合作精神和解决问题的能力。
3.激励评价:及时对学生的表现给予肯定和鼓励,提高他们的自信心,激发学习积极性。
4.游戏化教学:设计富有挑战性的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣和动机。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学八年级上册第6章“数据的收集与整理”中的6.4节“数据的离散程度”,是学生在学习了如何收集和整理数据的基础上,对数据特征进行进一步研究的课程。这部分内容在整个课程体系中起到了承上启下的作用,既是对前面所学统计知识的深化,也为后续学习概率统计打下基础。
(二)学习障碍
在学习本节课之前,学生已经掌握了数据的收集、整理和描述的基本方法,具备了一定的统计学基础。然而,他们在面对极差、方差和标准差等抽象概念时,可能会感到难以理解。此外,方差和标准差的计算过程较为繁琐,学生在运算过程中可能会出现错误,导致学习障碍。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
这些资源和技术工具能够丰富教学内容,提高学生的学习兴趣,同时也便于学生更好地理解和掌握知识。
2019-2020学年八年级数学上册-6.4.1-数据的离散程度教案1-北师大版
2019-2020学年八年级数学上册 6.4.1 数据的离散程度教案1 北师大版教学目标:1.了解刻画数据程度的三个量——极差、方差和标准差,并在具体情境中加以应用.能借助计算器求相应的数值.2.通过经历表示数据离散程度的几个量的探索,体会用样本估计总体的思想,感悟其实际运用价值,培养学生的合作意识和处理问题的能力.3.经历用方差刻画数据离散程度的过程,发展数据分析观念.教学重点与难点:重点:利用极差、标准差和方差解决实际问题.难点:理解极差、方差和标准差的概念.课前准备:计算器、多媒体课件.教学过程:一、创设情境,引入新课[师]:我们学校田径队准备选拔一名运动员参加中学生运动会,在激烈的竞争中,侯潇同学和赵伟强同学脱颖而出,下表是两位同学在8次百米跑训练中的成绩:序数1234567812.012.213.012.613.112.512.412.2侯潇的成绩/秒赵伟强的成12.212.412.712.512.912.212.812.3绩/秒[师]:田径队李教练认真分析两个队员的成绩,做出了一个艰难的决定,你想知道李教练为什么决定这么艰难吗?首先请同学们完成下面的问题.活动内容1:引例探究1.请同学们根据上表信息完成下表:( 多媒体展示)2.根据你所得到的信息分析两名运动员的成绩,你认为谁的成绩更好?你觉得李教练最终选择了哪名运动员呢?处理方式:同桌之间分工合作完成两位同学的平均数、中位数以及众数的计算,然后小组交流后汇总比较.教师确定是否完全一致后再进行分析和比较成绩,为了给学生更好的直观感觉,教师绘制折现统计图给学生展示,帮助学生分析问题.让学生假设自己是李教练进行选择并说出选择的理由,小组交流完成,有的人会认为侯潇的成绩较好,因为侯潇超过13秒的较多,也有的会认为赵伟强的成绩较好,因为成绩比较稳定在平均数的周围,通过学生深入地探究让学生感受这几个量无法满足现实问题,从而引出本节课学习的内容. (1)附统计图:根据上表中的数据完成下面的折线统计图(2)附答案:赵伟强成绩统计图成绩/秒成绩/秒侯潇成绩统计图侯潇12.5 12.45 12.2赵伟强12.5 12.45 12.2[师]:我们研究的平均数、中位数、众数都是刻画数据集中趋势的三个量,但有时仅有集中趋势还难以准确刻画一组数据,实际生活中,我们还常常关注数据的离散程度,即它们相对于集中趋势的偏离程度(多媒体展示)本节课我们来探讨它.(板书课题)设计意图:通过两个层次的问题的精心设计,既复习了上节课所学习了的知识,又引导学生有目的地进行思考和探究,让学生充分感受只有那些量是不能完全地对数据进行处理的,刻画数据离散程度的量的引入就成了必然.二、合作探究,展示汇报活动内容2:规范引领[师]:刚才同学们用观察的方法判断了数据的离散程度,我们来考虑将我们所观察的用什么具体的数值来清晰地表示呢?处理方式:小组交流探讨后,找小组代表回答.绝大对数同学应该会很容易就会想到用最大值和最小值的差,之后确定极差是刻画数据偏离程度的一个统计量.极差引入后肯定有些同学会疏忽单位的问题,一定要强调极差的单位与原单位相同.极差是指一组数据中最大数据与最小数据的差.(教师板书)设计意图:延续原来的教学情境,顺利引入研究数据的其它量:极差.这样,既能吸引了学生的注意力,又激发了学生的求知欲,也能让学生感受生活离不开数学.三、巩固提高,再探新知活动内容3:巩固应用[师]:利用你所学到的知识解决下面问题.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,他们的价格相同,鸡腿品质相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿的质量(单位:g)如下:(多媒体展示)甲厂75 74 74 76 73 76 75 77 77 74把这些数据表示成如图所示:(1)从甲、乙两厂抽取的鸡腿的平均质量分别是什么?在图中画出纵坐标等于平均质量的直线?(2)如果只考虑鸡腿的价格,你认为外贸公司应该买那个厂家的鸡腿?处理方式:多媒体展示甲乙两厂的鸡腿问题,要求学生同桌之间分工完成平均质量的计算,然后小组交流后汇总,学生也可以参考课本图形完成老师提问,学生很容易就可以利用极差解决题目中的问题.如果学生画出纵坐标等于平均质量的直线后,在分析过程中可能会出现它们的值谁的更集中在平均数的周围这样的想法,这时可以提醒学生将所有数据都和平均数比较差距并取其绝对值,并引导学生明确74克的鸡腿和76克的鸡腿的偏离程度是相同的,涉及平均差的概念,平均差是刻画数据偏离程度的一个统计量.平均差即各个数据与平均数之差的绝对值的平均数.(平均差的概念可以看学生能力决定,也可以不涉及)设计意图:通过又一个实际情景和图示,让学生更直观地估计两厂抽取的20只鸡腿的平均质量;更进一步地让学生体会两组数据的平均数相近时,它们的离散程度未必相同.活动内容4:再探新知[师]:市场竞争是激烈的,如果丙厂也参与了竞争,从该厂抽样的20只鸡腿如图所示:(3)在甲和丙两个厂家中,你认为哪个厂的鸡腿更符合要求呢?( 多媒体展示) 处理方式:将两个厂家的数据用一个统计图展示给学生以直观,如果之前没有提及平均差的话,就让同桌之间按顺序分工完成题目中的甲厂和丙厂的问题,得出(1)数值后汇总就容易发现了极差所不能解决的这个实际问题,在解决问题(2)的时候,学生找差距容易带有符号,这时应提出探讨74克和76克的鸡腿的偏离程度是否是一样的,因此提出用鸡腿质量和平均数的差的绝对值来刻画,可以将它们求和也可以将它们求平均数(即平均差).问题(3)的处理可以借助图像直观得出结论也可以用求和或者求平均的方法解决.如果前面已经提及平均差的话就可以让学生自主分析选择哪一个更符合要求.[师]:我们探讨了用极差(和平均差)来表示数据的离散程度,数据的离散程度还可以用方差或者标准差来刻画.请同学们阅读课本150页,并思考计算一组数据的方差的步骤.处理方式:阅读时间两分钟,学生独立完成阅读后小组方差的计算步骤,教师强调::70707274767880质量/g乙厂丙厂方差是各个数据与平均数之差的平方的平均数,即s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中x是x1,x2,…,x n的平均数,s2是方差,而标准差(S)就是方差的算术平方根.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.小组研究较简单的记忆方法,交流出结论后让小组代表概括,如果小组代表的语言不够严谨,教师可引导学生完成,可以简单地记作:先平均,后求差,平方后,再平均.(教师板书黑体部分)完成交流后独立计算丙厂的方差和甲厂比较.等待学生完成后教师强调:(1)极差和标准差的单位和原单位一致;(2)方差的单位应该为原单位的平方,但是不具有什么实际意义,一般都省略不写.(3)计算器不具有求方差的功能,可以先求出标准差,再平方即可求出方差.设计意图:在前面的问题情境中,极差很容易比较出两个厂家的鸡腿的离散程度.在这里增加一个丙厂,目的是通过与前两个厂的对比,发现仅有极差刻画数据的离散程度是不够的从而引出其他量.设计丙厂的数据时,和课本比较有了一个数据的改动,目的是让甲和丙的平均数和极差都完全相同,给学生离散程度的比较制造更大的难度,能够更大程度地激起学生的求知欲和探索交流的欲望,也为方差和标准差的呈现做好充分的准备.同时使学生在实际问题的解决过程中认识到离散程度的意义和影响,形成一定的数据意识和解决问题的能力,进一步体会数学的应用价值.[师]:看来方差的计算比极差的计算麻烦多了,使用计算器可以很方便地帮助我们计算方差.大家利用课余时间自学课本151页,计算后与课本比较是否正确.四、应用举例、概念加深活动内容5:规范应用[师]:掌握了刻画数据离散程度的几种方法,让我们一起来帮助农民伯伯做判断吧!农民伯伯为了比较甲、乙两种棉花结桃情况,任意抽取每种棉花各10棵,统计它们结桃数的情况如下:(多媒体展示)甲种棉花 84,79,81,84,85,82,83,86,87,89;乙种棉花 86,85,90,80,82,92,80,77,83,85.请你对这两组数据进行分析比较,看看能获得什么结论?处理方式:两位学生到黑板板演,其他学生自主完成,两位同学的方法不一定完全不同,教师可以做一些引导,以便达到更好的示范效果.附答案:解:x 甲=101(84+79+81+84+85+82+83+86+87+89)=84(分) x 乙=101(86+85+90+80+82+92+80+77+83+85)=84(分) s 2甲=101[(84-84)2+(79-84)2+(81-84)2+(84-84)2+(85-84)2+(82-84)2+(83-84)2+(86-84)2+(87-84)2+(89-84)2]=7.8s 2乙=101[(86-84)2+(85-84)2+(90-84)2+(80-84)2+(82-84)2+(92-84)2+(80-84)2+(77-84)2+(83-84)2+(85-84)2]=19.2因为 7.8<19.2,所以甲种棉花更稳定.设计意图:尽情体会不同的方法刻画数据的离散程度,并在观察比较中获得最简单的方法;另一个目的是规范学生的解题过程,尤其是方差的计算.五、归纳小结、反思提高[师]:通过今天学习和探讨,你有哪些收获,请大家各自总结一下,然后共同分享! 处理方式:学生归纳总结,教师补充升华.设计意图:教给学生反思的方法,注重学生知识的掌握和探究过程的完成情况.引导学生小结本节知识及学习活动,让学生畅所欲言,相互进行补充,能用自己的话对本节课的重点内容进行归纳总结;养成学习—总结—再学习的良好学习习惯,发挥自我评价的作用,进一步培养学生的语言表达能力.[师]下面我们利用大家归纳的知识和方法进行自我评价完成过关检测习题,比一比,看一看,谁能领先.六、分层达标,反馈矫正A 组:基础达标题( 多媒体展示)1.数据 1 ,2 ,3,x 的极差是 6 ,则x =________.2.若一组数据的方差为0.16,那么这组数据的标准差为________.3.对甲、乙两个小麦品种各100株小麦的株高x (单位:m )进行测量,算出x 甲= 0.95,s 2甲=1.01, x 乙= 0.95,s 2乙=1.35,于是可估计株高较整齐的小麦品种是________.B 组:能力挑战题( 多媒体展示)4. 甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:请你评价两人的射击水平,则谁的射击成绩更稳定些?处理方式:学生做题的时候教师巡视,监督学生独立完成,但尽量少指导,因为会影响学生独立思考和做题的进度.学生做完后教师及时批改,初步了解掌握学生解题情况.七、作业分层,各显其能必做题:课本151页和152页.选做题:1.已知三组数据1、2、3、4、5;11、12、13、14、15和3、6、9、12、15.(1)求这三组数据的平均数、方差和标准差.(2)对照结果,你能从中发现哪些有趣的结论?(3)请你用发现的结论来解决以下的问题:已知数据a1,a2,a3,…,a n的平均数为X,方差为Y标准差为Z.则①数据a1+3,a2 + 3,a3 +3 ,…,a n +3的平均数为,方差为,标准差为.②数据3a1,3a2,3a3,…,3a n的平均数为,方差为,标准差为.③数据2a1-3,2a2-3,2a3-3 ,…,2a n-3的平均数为,方差为,标准差为.结束语:在数学的天地里重要不是我们知道了什么,而是我们怎么知道什么!——毕达哥拉斯板书设计。
北师大版数学八年级上册4《数据的离散程度》教学设计1
北师大版数学八年级上册4《数据的离散程度》教学设计1一. 教材分析《数据的离散程度》是北师大版数学八年级上册第四单元的内容。
本节课的主要内容是让学生了解离散程度的定义,掌握极差、方差、标准差的概念和计算方法,并能够运用这些统计量描述数据的离散程度。
教材通过具体的例子和实际问题,引导学生探究数据的离散程度,培养学生的数据分析能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了数据的收集、整理和描述的基本方法,对平均数、中位数、众数等统计量有一定的了解。
但学生可能对离散程度的概念和计算方法较为陌生,需要通过具体的例子和实际问题来理解和掌握。
此外,学生可能对数据的波动性和离散程度的概念有一定的困惑,需要教师进行解释和引导。
三. 教学目标1.了解离散程度的定义,掌握极差、方差、标准差的概念和计算方法。
2.能够运用极差、方差、标准差描述数据的离散程度,培养数据分析能力。
3.通过实际问题,培养解决问题的能力。
四. 教学重难点1.离散程度的定义和计算方法。
2.数据的波动性和离散程度的概念。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生探究数据的离散程度,培养学生的数据分析能力和解决问题的能力。
同时,采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例子和实际问题,用于引导学生探究数据的离散程度。
2.准备计算器等辅助教学工具,用于计算极差、方差、标准差。
七. 教学过程1.导入(5分钟)通过一个具体的例子,如某班级学生的身高数据,引导学生思考如何描述数据的离散程度。
2.呈现(10分钟)呈现离散程度的定义,以及极差、方差、标准差的概念和计算方法。
通过具体的例子,解释这些概念和计算方法的含义。
3.操练(10分钟)让学生分组讨论,每组选择一组数据,计算其极差、方差、标准差,并描述数据的离散程度。
教师在旁边进行指导,解答学生的问题。
北师大版八年级数学上册《数据的离散程度》精品教案
定义:方差是各个数据与平均数差的平方的平均数.其中x-是12xn、x、...x的平均数,s2是方差.标准差(s)是方差的算术平方根.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.五、尝试应用1、据统计,某学校教师中年龄最大的为59岁,年龄最小的为20岁.那么学校教师年龄的极差是_______岁.2、数据1、4、5、6的方差是__________.3、若一组数据的方差为0.47,那么这组数据的标准差为____.4、对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_____.六、补偿提高张明、王成两位同学对八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)统计分别如下图所示:根据上图中提供的数据填写下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是_______。
解:(1)(2)张明的优秀率为3÷10=30%,王成的优秀率为5÷10=50%,独立思考并完成,然后在小组里交流。
独立思考,并在组内交流,并选两个同学到黑板上进行板练,教师进行点评。
尝试应用时针对以上知识进行的练习,以便于学生及时巩固。
补偿提高是在学生基本掌握的情况下,适当的进行拓展提高。
同时训练学生板书的能力。
课后练习旨在],)()()[(1222212xxxxxxnsn-++-+-=Λ所以王成的优秀率高。
七、课后练习1、已知数据2,-1,3,5,6,5这组数据的众数和极差分别为_______.2、样本数据3,6,a,4,2,的平均数是5,则这个样本的方差是____3、如果一组数据x1,x2…x5的方差是3,那么另一组数据2x1-1,2x2-1…2x5-1的方差是________-.4、甲乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩均为8环,10次射击成绩的方差分别是S2甲=2,S2乙=1.2,那么,射击成绩较为稳定的是__________.5、水稻种植是传统农业.为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势.课后帮助学生及时复习和巩固练习课堂小结1、极差2、方差3、标准差现在组内交流,然后在班上口头展示。
北师大版4_数据的离散程度_教案1八年级八年级数学上册
《第六章4数据的离散程度》讲解与例题1 .极差定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差,即极差=最大值—最小值•极差反映了这组数据的波动范围.谈重点极差(1) 极差是最简单、最便于计算的一种反映数据波动情况的量,极差能够反映一组数据的波动范围;(2)在对一组数据的波动情况粗略估计时经常用到极差;(3)极差仅仅反映了数据的波动范围没有提供数据波动的其他信息,且受极端值的影响较大;(4) 一组数据的极差越小,这组数据就越稳定.【例1】在一次体检中,测得某小组5名同学的身高分别是170,162,155,160,168( 单位:cm),则这组数据的极差是____________ cm.解析:根据极差的概念,用最大值减去最小值即可,170—155 = 15(cm).答案:152.方差(1) 定义:设有n个数据X1, X2, X3,…,X n,各数据与它们的平均数的差的平方分别是(X1 —X ) 2, (X2 —X ) 2, (X3—X )2,…,(X n—X ) 2,用它们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差.(2) 方差的计算公式:通常用s2表示一组数据的方差,用7表示这组数据的平均数.2 2 2 2 2s = n)[( X1—X ) + (X2 —X ) + (X3—X ) +•••+ (X n —X )].(3) 标准差:标准差就是方差的算术平方根.谈重点方差(1) 方差是用来衡量一组数据的波动大小的重要的量,方差反映的是数据在它的平均数附近波动的情况;(2)对于同类问题的两组数据,方差越大,数据的波动越大,方差越小,数据的波动越小;(3) —组数据的每一个数据都加上(或减去)同一个常数,所得的一组新数据的方差不变;(4) 一组数据的每一个数据都变为原来的k倍,则所得的一组新数据的方差将变为原数据方差的k2倍.【例2】已知两组数据分别为:甲:42,41,40,39,38 ;乙: 40.5,40.1,40,39.9,39.5.计算这两组数据的方差.1解:x 甲= X (42 + 41 + 40 + 39+ 38) = 40,51s*= X [(42 - 40)2+…+ (38 - 40) 2] = 2.5— 1x 乙= X (40.5 + 40.1 + 40 + 39.9 + 39.5) = 40,51s;= —X [(40.5 - 40)2+…+ (39.5 - 40)2] = 0.104.53 .极差与方差(或标准差)的异同相同之处:(1) 都是衡量一组数据的波动大小的量;(2) 一组数据的极差、方差(或标准差)越小,这组数据的波动就越小,也就越稳定. 不同之处:(1) 极差反映的仅仅是数据的变化范围,方差(或标准差)反映的是数据在它的平均数附近波动的情况;(2) 极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算比较复杂.【例3】已知甲、乙两支仪仗队队员的身高如下(单位:cm):甲队:178,177,179,178,177,178,177,179,178,179乙队:178,179,176,178,180,178,176,178,177,180(1)(2) 甲队队员身高的平均数为__________ cm,乙队队员身高的平均数为____________ cm;(3) 这两支仪仗队队员身高的极差、方差分别是多少?解:(1)甲队从左到右分别填:0,3,乙队从左到右分别填:4,2 ;(2) 178,178 ;(3) 经过计算可知,甲、乙两支仪仗队队员身高数据的极差分别为 2 cm和4 cm,方差分别是0.6和1.8.4.运用方差解决实际问题方差是反映一组数据的波动大小的统计量,通过计算方差,可以比较两组数据的稳定程度,进而解决一些实际问题.对于一般两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,因此从平均数看或从方差看,各有长处.方差的计算可用一句话“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的程度•方差的单位是原数据的平方单位,方差反映了数据的波动大小,在实际问题中,例如长得是否整齐一致、是否稳定等都是波动体现.点技巧方差反映波动情况在实际问题中,如果出现要求分析稳定性的问题,因为方差是反映数据的波动大小的量,所以一般就要计算出各组数据的方差,通过方差的大小比较来解决问题.【例4】某工厂甲、乙两名工人参加操作技能培训•现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1) 请你计算这两组数据的平均数、中位数;(2) 现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.1解:(1) x 甲=(95 + 82+ 88 + 81 + 93 + 79 + 84 + 78) = 85,8— 1X 乙=;(83 + 92 + 80+ 95 + 90+ 80 + 85+ 75) = 85.8这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适•理由如下:由(1)知x甲=x乙,2 1 2 2 2 2 2 2s甲=5 [(95 —85) + (82 —85) + (88 —85) + (81 —85) + (93 —85) + (79 —85) + (84 —82 285) + (78 —85) ] = 35.5 ,2 1 2 2 2 2 2 2s乙=〔[(83 —85) + (92 —85) + (80 —85) + (95 —85) + (90 —85) + (80 —85) + (85 —82 285) + (75 —85) ] = 41,2 2T X甲=X乙,S甲V S乙,•••甲的成绩较稳定,派甲参赛比较合适.5•运用用样本估计总体的思想解决实际问题统计学的基本思想是用样本估计总体,它主要研究两个基本问题:一是如何从总体中抽取样本,二是如何通过对所抽取的样本进行计算和分析,从而对总体的相应情况作出推断.用样本估计总体是统计的基本思想,正像用样本的平均数估计总体的平均数一样,考察总体方差时,如果所要考察的总体包含很多个体,或考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差.方差是反映已知数据的波动大小的一个量. 在日常生活中,有时只用平均数、中位数和众数难以准确地分析一组数据时,就要用方差来评判.但是并不是方差越小越好,要根据问题的实际情况灵活运用数据分析问题,作出正确的判断.注:在解决问题或决策时,应运用统计思想,搞清楚特殊和一般的关系,具体问题具体对待.全方位、多角度地分析与评判是关键.【例5】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?1 1 2解:x 甲=:(9.6 + 9.7 +…+ 10.6) = 10.0 , x 乙=(9.5 + 9.9 +…+ 9.8) = 10.0. S甲=8 820.12 , S z = 0.102 5.结果甲、乙两选手的平均成绩相同,S甲〉s乙.乙的方差小,波动就小,似乎应该选乙选手参加比赛.但是就这个问题而言,我们不能仅看平均成绩和方差就妄下结论. 在这里平均成绩和方差不是最重要的,重要的是看他们的发展潜力或比赛时的竞技状态. 从甲、乙两选手的最后四次成绩看,甲的状态正逐步回升,成绩越来越好,而乙明显不如甲的状态好.所以从这个角度看,应选甲选手参加比赛更好.。
6.4数据的离散程度(第一课时)教学设计2024-2025学年北师大版数学八年级上册
- 《统计学基础》:介绍了统计学的基本概念、原理和方法,包括数据的收集、处理和分析,其中涉及方差、标准差等离散程度的度量。
- 《生活中的统计学》:通过生活中的实例,展示了统计学在各个领域的应用,让学生了解统计学的实用性和广泛性。
- 《数据可视化》:介绍了如何利用图表、图像等可视化手段展示数据的特征和规律,包括离散程度的相关图表。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 硬件资源:多媒体教学设备、投影仪、黑板、计算器。
2. 软件资源:教学课件、统计软件(如Excel)、数学学科软件。
3. 课程平台:学校教学管理系统、课堂互动平台。
4. 信息化资源:电子教材、教学视频、在线统计图表工具。
学情分析
八年级学生在知识层面,已具备基本的数学运算能力和数据收集、整理、描述的能力,掌握了平均数的概念及其应用。在能力方面,他们具有一定的逻辑思维和问题解决能力,但对方差和标准差的深入理解及实际应用尚属初步阶段。素质方面,学生的合作意识和探究精神逐渐增强,但个别学生在自主学习能力和习惯上存在差异。
学生在前期的学习中,对统计图表的绘制和使用有一定的实践经验,但对于数据的离散程度及其意义的理解可能还不够深入。此外,部分学生在数学学习中可能存在畏惧心理,对复杂计算和抽象概念接受度不高,这可能会影响他们对本节课内容的理解和掌握。
在观察环节,我发现学生在小组讨论时积极参与,互相交流,通过讨论加深对方差和标准差的理解。但在课堂测试环节,部分学生在计算方差时出现了一些错误,尤其是在公式的应用上。
针对这些问题,我在课后进行了认真的作业批改和点评,对学生的作业进行了详细的反馈。在作业中,我不仅纠正了学生的错误,还给出了一些改进的建议,鼓励学生继续努力,提高自己的计算能力和数据分析能力。
北师大版4_数据的离散程度_学案1八年级八年级数学上册
6.4数据的离散程度(第1课时)了解刻画数据离散程度的三个量度极差、标准差和方差。
(1) 你能从图中估计出甲、乙两厂被抽取鸡腿的平均 质量是多少? (2) 求甲、乙两厂被抽取鸡腿的平均质量,并在图中 画出表示平均质量的直线。
(3) 从甲厂抽取的这 20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这 20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4 )如果只考虑鸡腿的规格,你认为外贸公司应购买哪家 公司的鸡腿?说明你的理由。
在学生讨论交流的的基础上,教师结合实例给出极差的概念:它是刻画数据离散程度的一个统计量。
课题 6.4数据的离散程度(第 1课时)课型复习课教具 教材、课件学习 目标 过程与方法 经历探索过程,体会用样本估计总体,培养数学应用能力。
教学重点 教学难点 教法学法 教学环节 情境引入 合作探究 情感态度价值观通过活动,培养学生的合作意识,体会数学与生活的联系。
了解刻画数据离散程度的三个量度极差、标准差和方差,能求出相应的数值。
通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。
引导、启发,合作交流教学过程为了提高农副产品的国际竞争力,一些行业协会对农副 产品的规格进行了划分,某外贸公司要出口一批规格为 的鸡腿•现有 2个厂家提供货源,它们的价格相同,鸡腿的 品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了 20只鸡腿, 它们的质量(单位:g )如下: 甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72 乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76把这些数据表示成下图:75g 设计意图 通过现实 情景,激发学生 思维,调动学生 学习积极性。
73 75质量/g80 _____78 _76 .174 . 72 . 70甲厂80 78 7674 72 70质量/g通过一个 实际问题情境, 让学生感受仅 有平均水平是 很难对所有事 物进行分析,从 而顺利引入研 究数据的其它 量度:极差。
北师大版八年级数学上册《数据的离散程度》第1课时示范课教学设计
第六章 数据的分析6.4 数据的离散程度第1课时一、教学目标1.会计算一组数据的极差、方差、标准差,并能用它们来比较不同样本的波动情况.2.理解一组数据极差、方差、标准差的含义,知道三个统计量之间的区别与联系.3.通过实验和探索,体会用三个统计量表示数据波动情况的合理性,并能用它们解决有关实际问题.4.学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.二、教学重难点重点:会计算一组数据的极差、方差、标准差,并能用它们来比较不同样本的波动情况. 难点:通过实验和探索,体会用三个统计量表示数据波动情况的合理性,并能用它们解决有关实际问题.三、教学用具多媒体四、教学过程设计【复习导入】我们学过哪几个描述数据集中趋势的统计量?平均数:()121n x x x x n=+++众数:出现次数最多的数(不唯一)中位数:【归纳总结】平均数、众数、中位数都是反映数据集中趋势的量; 实际生活中,人们除了关心数据的集中趋势外,还要关注数据的离散程度,即它们相对于集中趋势的偏离情况.【情境导入1】为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75,74,74,76,73,76,75,77,77,74,74,75,75,76,73,76,73,78,77,72;乙厂:75,78,72,77,74,75,73,79,72,75,80,71,76,77,73,78,71,76,73,75.把这些数据制成下图:(1)你能从图中估计出甲、乙两厂抽取的鸡腿的平均质量吗?预设答案:从图中来看,两厂都是75g较为密集,所以估计两厂的平均质量都是75g.(2)从甲、乙两厂抽取的鸡腿的平均质量分别是多少?从上图中画出纵坐标等于平均质量的直线.预设答案:甲:(75+74+74+76+73+76+75+77+77+74+74+75+75+76+73 +76+73+78+77+72)÷20=75g乙:(75+78+72+77+74+75+73+79+72+75+80+71+76+77+73 +78+71+76+73+75)÷20=75g【情境导入2】如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如下图所示:(1)丙厂这20只鸡腿质量的平均数和极差分别是多少?平均数:(75+74+73+78+72+76+74+76+74+75+74+72+73+72+ 78+76+77+77+77+79)÷20=75.1g的平均数, 2s 是方差.)就是方差的算术平方根一组数据的极差、方差或标准差越小,(n x x ++-教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁注意:成绩好:平均数大;发挥稳定:方差小.需将二者综合考虑.2.某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是_____环,以思维导图的形式呈现本节课所讲解的内容:教科书第151页知识技能1、2.。
数学北师大八年级上册(2013年新编)《数据的离散程度(1)》教案3
《数据的离散程度》教案教学目标:1、通过复习熟练掌握考察数据离散程度的量及意义。
2、能根据数据统计结果作出简单判定与决策。
学习过程:一、本章知识结构:极差——概念概念——用科学方差——公式——计算器数据离散程度的度量计算方标准差——概念——差和标公式——准差。
二、依据知识结构翻阅课本与笔记本记忆基本知识点1、检查知识点2、完成下列题目:(1)样本2,3,0,5,-7,6的极差是。
(2)下面几个概念中,能体现一组数据离散程度的是。
A、平均数B、中位数C、众数D、极差(3)数学老师对小明参加的4次中考模拟的考试成绩进行统计分析,判断小明成绩是否稳定的应计算的数学量是。
A、平均数B、中位数C、众数D、方差(4)已知1,2,3,4,5的方差为s2,则11,12,13,14,15这组数的方差是。
3、专题研究:(1)甲、乙两个小组各6名同学,某次数学测验成绩如下:甲:76,90,84,86,81,81乙:82,80,85,89,79,80甲组的众数是,乙组的中位数是,甲组的方差是,乙组的方差是,由计算知学习成绩较稳定的小组是。
(2)为了从甲、乙两名射击选手中选出一人参加射击比赛,辅导员对它们的实际水平进行了测试,每人射击10次,成绩如下:甲:9,9,10,8,6,10,10,8,10,8乙:10,8,7,10,10,10,10,8,7,8你如何帮助辅导员作出决策?限时作业:(每小题2分)1、下列说法正确的是()A、如果两名运动员的训练成绩的平均数、众数、中位数相同则他们的成绩一样B、一组数据的方差总是大于标准差C、一组数据的方差越大,则这组数据的波动越小D、一组数据的方差越小,则这组数据的波动越小2、已知一组数据为-1,0,x,1,-2的平均数是0那么这组数据的方差是。
3、一组数据x1,x2,… …xn的方差s2=0.36,则这组数据x1,x2,… …xn,x的方差是()。
4、一个样本的方差s2=1/50【(x1- 5)2+(x2- 5)2+… …+(xn- 5)2】那么这个样本的容量是,平均数是。
北师版八年级数学上册教案 4 数据的离散程度(1课时)
4 数据的离散程度一、基本目标1.理解方差与标准差的概念与作用.2.灵活运用方差与标准差来处理数据.3.能用计算器求数据的方差和标准差.二、重难点目标【教学重点】方差和标准差概念的理解.【教学难点】应用方差和标准差分析数据,并做出决策.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P149~P151的内容,完成下面练习.【3 min 反馈】1.设一组数据是x 1、x 2、…、x n ,它们的平均数是x ,我们用s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]来衡量这组数据的离散程度,并把它叫做这组数据的方差.而标准差就是方差的算术平方根.2.一组数据的方差越大,说明这组数据的离散程度越大,当两组数据的平均数相同或差异比较小时,可用方差来比较这两组数据的离散程度.3.已知一组数据1,2,1,0,-1,-2,0,-1,则这组数据的平均数为0,方差为1.5,标准差为62. 4.在甲、乙两块试验田内,对生长的禾苗高度进行测量,分析数据得出甲试验田内禾苗高度数据的方差比乙试验田的方差小,则( B )A .甲试验田禾苗平均高度较高B .甲试验田禾苗长得较整齐C .乙试验田禾苗平均高度较高D .乙试验田禾苗长得较整齐环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】求数据7,6,8,8,5,9,7,7,6,7的方差和标准差.【互动探索】(引发学生思考)怎样求一组数据的方差和标准差?【解答】(方法一)因为这组数据的平均数为110(7×4+6×2+8×2+5+9)=7,所以s2=110[(7-7)2+(6-7)2+(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+(6-7)2+(7-7)2]=1.2,所以标准差s=30 5.(方法二)将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0. 由题易知,新数据的平均数为0,所以s2=110[02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2,所以标准差s=30 5.【互动总结】(学生总结,老师点评)计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差(或标准差)的计算公式计算.【例2】在一次女子排球比赛中,甲、乙两队参赛选手的年龄(单位:岁)如下:甲队:26,25,28,28,24,28,26,28,27,29;乙队:28,27,25,28,27,26,28,27,27,26.(1)两队参赛选手的平均年龄分别是多少?(2)利用标准差比较说明两队参赛选手年龄波动的情况.【互动探索】(引发学生思考)怎样求一组数据的平均数和标准差?怎样利用标准差比较说明两队参赛选手年龄波动?【解答】(1)x甲=110×(26+25+28+28+24+28+26+28+27+29)=26.9(岁),x乙=110×(28+27+25+28+27+26+28+27+27+26)=26.9(岁).(2)s2甲=110×[(26-26.9)2+(25-26.9)2+…+(29-26.9)2]=2.29,s2乙=110×[(28-26.9)2+(27-26.9)2+…+(26-26.9)2]=0.89.所以s甲= 2.29≈1.51,s乙=0.89≈0.94.因为s甲>s乙,所以甲队参赛选手年龄波动比乙队大.【互动总结】(学生总结,老师点评)求标准差时,应先求出方差,然后取其算术平方根.标准差越大(小)其数据波动越大(小).活动2巩固练习(学生独学)1.在统计中,样本的方差可以反映这组数据的(C)A.平均状态B.分布规律C.离散程度D.数值大小2.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是(D) A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同3.高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是8环,方差是2,标准差是 2.环节3课堂小结,当堂达标(学生总结,老师点评)求方差的步骤:(1)求平均数;(2)求偏差;(3)求偏差的平方和;(4)求平方和的平均数.请完成本课时对应练习!。
北师大版数学八年级上册数据的离散程度第1课时数据的离散程度(一)课件(共21张)
品的个数为:11,10,11,13,11,13,15.关于这组数据,冉
冉得出如下结论,其中错误的是( D )
A. 众数是11
B. 平均数是12
C. 方差是
D.中位数是13
典例精析 【例4】某射击运动员甲进行了5次射击训练,平均成绩为9环, 且前4次的成绩(单位:环)依次为:8,10,9,10. (1)求甲第5次的射击成绩与这5次射击成绩的方差; (2)运动员乙在相同情况下也进行了5次射击训练,平均成绩为 9环,方差为0.9,请问甲和乙谁的射击成绩更稳定?
谢谢
对点范例
1.已知一组数:3,-2,1,-4,0,那么这组数的极差是( D )
A.3
B.4
C.6
D.7
知识重点 知识点二:方差、标准差
方差:各个数据与平均数的差的平方的平均数,即
_
_
_
s2=____[__(_x_1_-_x_)_2_+_(_x_2-_x_)_2_+_…__+_(_x_n_-_跳绳个数/个 141
144
145
146
学生人数/名
5
2
1
2
则关于这组数据的结论正确的是( B )
A. 平均数是144
B. 众数是141
C. 中位数是144.5
D.方差是5.4
思路点拨:根据平均数、众数、中位数、方差的定义计算即可.
举一反三
3. 冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰
思路点拨:一组数据的极差、方差、标准差越小,这组数据就越 稳定,反之就越不稳定.
举一反三
4. 甲、乙两台机床生产同种零件,10天内产出的次品个数分 别是: 甲:0,1,0,2,2,0,3,1,2,4; 乙:2,3,1,1,0,2,1,1,0,1. 分别计算两台机床生产零件产出次品的平均数和方差,并根据计 算估计哪台机床性能较好.
《数据的离散程度第1课时》示范公开课教学设计【北师大版八年级数学上册】
第六章数据的分析6. 4 数据的离散程度第 1 课时极差、方差、标准差教学设计本节课在学生在有了初步的统计意识,并能对数据进行相应的处理和分类的基础上,又安排学生怎样对数据进行分析,力图使学生在统计意识和方法上再上一个台阶.通过对现实生活中的某外贸公司对几个不同的厂家鸡腿的质量进行分析,引出极差、方差、标准差等相关概念,从而培养学生的统计应用能力.1.了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值.2.经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.3.通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.【教学重点】了解极差的意义,掌握极差的计算方法.【教学难点】理解方差、标准差的意义,会用样本方差、标准差估计总体的方差、标准差.教师准备课件,学生阅读课本相关材料.一、创设情境,引入新知◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程我们知道,接受检阅的仪仗队必须精挑细选,整齐划一,所以特注重队员的身高.下面有两组仪仗队,准备抽取其中一组参与检阅.已知这两组仪仗队队员的身高(单位:cm)如下:你认为哪支仪仗队更为整齐?你是怎么判断的?二、合作交流,探究新知(一)极差内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:7878质量/g甲厂乙厂(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线.(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由. 在学生讨论交流的的基础上,教师结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差.它是刻画数据离散程度的一个统计量. (二)方差与标准差内容: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:78质量/g (1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距.(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画. 方差是各个数据与平均数之差的平方的平均数,即: ()()()[]222212 (1)x x x x x x ns n -++-+-=注:x 是这一组数据x 1,x 2,…,x n 的平均数,s 2是方差,而标准差就是方差的算术平方根.一般说来,一组数据的极差、方差、标准差越小,这组数据就越稳定.说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位. 三、运用新知例1 (1)分别计算出从甲、丙两厂抽取的20只鸡腿质量的方差? (2)根据计算的结果,你认为哪家的产品更符合规格?例2 小明和小兵两人参加体育项目训练,近期的五次测试成绩如下表 所示.谁的成绩较为稳定?为什么?四、归纳小结◆教学反思略.。
数学北师大版八年级上册《数据的离散程度》(第一课时)说课稿
《数据的离散程度》(第一课时)说课稿中宁二中邵兴丽今天我说课的课题是北师大版八年级上册第六章第4节《数据的离散程度》(第一课时)。
我将从以下六个方面进行说明。
一、教材分析:我将从以下两个方面加以阐述:标准差”1.本节课的主要内容:探究数据的离散程度及认识“极差”“方差”“三个量度及其实际意义,并掌握利用计算器求方差和标准差。
2.地位作用:纵观本章的教材安排体系,以数据“集中趋势—离散程度—处理—整体评判”的顺序展开。
数据的离散程度是本章学习的最终目的和落脚点。
通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。
所以本节课内容有着承上启下的作用。
二、学情分析:我将从以下三个方面加以阐述:1.与之相关的知识基础:在八年级上册第六章数据的分析一章中学生学习了平均数、众数、中位数。
2.学生已有的生活经验:通过七年级上册的学习,学生已初步经历了数据收集的过程,并会对收集的数据进行简单的表示和处理。
3.学生已有的学习方式、习惯、能力:学生能够自主学习了解教材新知、通过小组合作交流解决简单的新知。
能够看图估计一组数据的平均数。
能够得出一组数据的众数、中位数。
三、教学目标分析:【知识与技能】 1.理解方差与标准差的概念与作用. 2.灵活运用方差与标准差来处理数据.3.能用计算器求数据的方差和标准差.【过程与方法】经历探索用方差与标准差来分析数据、做出决策的过程,培养学生运用数学知识解决实际问题的意识和“让数字来说话”的习惯.【情感、态度与价值观】 1.通过生活学习数学,了解数学与生活的紧密联系.2.通过生活学习数学,并通过用数学知识解决生活中的问题来激发学生的学习热情.教学重难点:重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。
难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
四、教法与学法:本节课教学以问题为中心,以提出问题、解决问题,归纳概括、巩固应用、拓展创新为五环,采用自主、合作、点拨的学习方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章数据的分析
6. 4 数据的离散程度
第 1 课时极差、方差、标准差
教学设计
本节课在学生在有了初步的统计意识,并能对数据进行相应的处理和分类的基础上,又安排学生怎样对数据进行分析,力图使学生在统计意识和方法上再上一个台阶.通过对现实生活中的某外贸公司对几个不同的厂家鸡腿的质量进行分析,引出极差、方差、标准差等相关概念,从而培养学生的统计应用能力.
1.了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数
值.
2.经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思
想,培养学生的数学应用能力.
3.通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活
的密切联系.
【教学重点】
了解极差的意义,掌握极差的计算方法.
【教学难点】
理解方差、标准差的意义,会用样本方差、标准差估计总体的方差、标准差.
教师准备课件,学生阅读课本相关材料.
一、创设情境,引入新知
◆教材分析
◆教学目标
◆教学重难点
◆
◆课前准备
◆
◆教学过程
我们知道,接受检阅的仪仗队必须精挑细选,整齐划一,所以特注重队员的身高.下面有两组仪仗队,准备抽取其中一组参与检阅.已知这两组仪仗队队员的身高(单位:cm)如下:
你认为哪支仪仗队更为整齐?你是怎么判断的?
二、合作交流,探究新知
(一)极差
内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 74
74 75 75 76 73 76 73 78 77 72
乙厂:75 78 72 77 74 75 73 79 72 75
80 71 76 77 73 78 71 76 73 75
把这些数据表示成下图:
7878
质量/g
甲厂乙厂
(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?
(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线.
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?
(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由. 在学生讨论交流的的基础上,教师结合实例给出极差的概念:
极差是指一组数据中最大数据与最小数据的差.它是刻画数据离散程度的一个统计量. (二)方差与标准差
内容: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:
78质量/g (1)丙厂这20只鸡腿质量的平均数和极差分别是多少?
(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距.
(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画. 方差是各个数据与平均数之差的平方的平均数,即: ()()()[]
222212 (1)
x x x x x x n
s n -++-+-=
注:x 是这一组数据x 1,x 2,…,x n 的平均数,s 2是方差,而标准差就是方差的算术平方根.一般说来,一组数据的极差、方差、标准差越小,这组数据就越稳定.
说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位. 三、运用新知
例1 (1)分别计算出从甲、丙两厂抽取的20只鸡腿质量的方差? (2)根据计算的结果,你认为哪家的产品更符合规格?
例2 小明和小兵两人参加体育项目训练,近期的五次测试成绩如下表 所示.谁的成绩较为稳定?为什么?
四、归纳小结
◆教学反思
略.。