第2讲古典概型

合集下载

古典概型2

古典概型2

古典概型(2)一、知识点剖析1、古典概型的定义与特点 掌握要点:古典概型的两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.在古典概型中,P (A )=试验的基本事件数包含的基本事件数事件A易混易错:要套用古典概型的概率计算公式,首先要确定好基本事件总数。

强调在用古典概型计算概率时,必须要验证所构造的基本事件是否满足古典概型的第二个条件(每个结果出现是等可能的),否则计算出的概率将是错误的.另外如果计算中有重复现象,应注意除掉重复部分.在求事件A 包含的基本事件个数时如果情况不同应注意分类讨论. 2、用排列和组合解决古典概型问题 掌握要点:从n 个不同的元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列。

一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

易混易错:共同点: 都要“从n 个不同元素中任取m 个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤. 3、有些抽样问题存在放回和不放回的区别 掌握要点: 分类计数原理完成一件事,有n 类办法. 在第1类办法中有m 1种不同的方法,在第2类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,则完成这件事共有n m m m N ++=21分步计数原理完成一件事,需要分成n 个步骤。

做第1步有m 1种不同的方法,做第2步有m 2种不同的方法, ……,做第n 步有m n 种不同的方法,则完成这件事共有n m m m N ∙∙∙= 21 易混易错:有放回抽样与无放回抽样都属等可能事件. 对于具体问题,不知用分步还是分类二、典型题型剖析1、古典概型的定义与特点 方法归纳:在古典概型中,P (A )=试验的基本事件总数包含的基本事件数事件A例题:例1、将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果?(2)其中向上的数之和是5的结果有多少种? (3)向上的数之和是5的概率是多少?主要过程:有些等可能事件的概率问题中,有时在求m 时,不采取分析的方法,而是结合图形采取枚举的方法,即数出事件A 发生的结果数,当n 较小时,这种求事件概率的方法是常用的.将抛掷2次的所有结果数一一列举出来,如下表所示由上表可知,将骰子先后抛掷2次,一共有36种不同的结果,其中向上的数之和是5的结果有(1,4),(2,3),(3,2),(4,1)共4种,由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,故向上的数之和是5的概率是.例2、甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少? (2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率. 主要过程:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366 .10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果. 出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365. 强调内容:(1)判断一个试验是否是古典概型,要把握两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.“等可能性”指的是结果,而不是事件. (2)“等可能性”指的是结果,而不是事件.(3)使用计算公式时,关键是准确写出试验的基本事件数. 2、利用排列组合解决古典概型问题 方法归纳:判断排列还是组合:有序用排列,无序用组合 例 题:例2、今有强弱不同的十支球队,若把它们分两组进行比赛,分别计算: (1)两个最强的队被分在不同组内的概率. (2)两个最强的队恰在同一组的概率. 解:将十支球队平均分成两组,因每支球队分到哪一组的可能性完全相同,所以是等可能性事件.所有基本事件个数为5510522C C A . (1)两个最强的队被分在不同组记为事件A ,则A 中含有基本事件数为44284222C C A A ,故两支最强的队被分在不同组内的概率为:.C;故两个最强的队(2)两个最强的队恰在同一组记为事件B,则B中含有基本事件数为38恰在同一组内的概率为:强调内容:(1)什么时候用排列什么时候用组合:事件结果有顺序时用排列,无顺序时用组合(2)公式的运用3、放回与不放回求概率问题方法归纳:求概率时放回的用分步计数原理,不放回的采用排列组合来解决。

古典概型课件

古典概型课件

概率公式、全概率公式等。
对概率论的展望
概率论的发展方向
概率论作为数学的一个重要分支,将继续在金融、生物医 学、人工智能等领域发挥重要作用,同时也会随着实际应 用的需求不断发展新的理论和方法。
概率论与其他学科的交叉
概率论与统计学、金融学、生物学、医学等许多学科都有 密切的联系,未来这种交叉将会更加广泛和深入。
03 概率函数
用于计算每个事件发生的概率,通常用P()函数表 示。
02
古典概型的概率计算
排列与组合
排列
从n个不同元素中取出m个元素的所有排列的个数 。
组合
从n个不同元素中取出m个元素的所有组合的个数 。
概率公式
概率的定义
概率是指事件发生的可能性,通常用P表示。
事件的概率
一个事件的概率是指该事件发生的可能性,即事件发生的概率。
概率论的应用前景
随着大数据和人工智能的快速发展,概率论在数据分析和 模式识别等领域的应用前景广阔,同时也会为解决实际问 题提供更加精确和有效的数学工具。
THANKS
感谢观看
古典概型的特征
01 等可能性
每个试验结果的出现概率相等。
02 有限性
试验结果的数量是有限的。
03 互斥性
试验结果之间是互斥的,即一个结果发生时,其 他结果不会发生。
古典概型的概率空间
01 样本空间
包含所有可能的试验结果,通常用大写字母表示 。
02 事件空间
包含所有可能的结果集合,通常用小写字母表示 。
06
总结与展望
对古典概型的总结
01
古典概型的定义和特点
古典概型是一种离散概率模型,其特点是样本空间有限且每个样本点等

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

第十一章概率第二讲古典概型与几何概型1。

[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。

张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。

50%C。

60%D。

90%2。

[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。

12B.13C。

14D.233。

[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。

35D。

7104。

[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。

35D 。

145。

[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。

58C 。

38D 。

126。

[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。

数学人教版一轮复习课件:第11章第2讲 古典概型

数学人教版一轮复习课件:第11章第2讲 古典概型

画出树状图如图11-2-1所示.
图 11-2-1
由图12-2-1可知,所有的基本事件共有25个,满足题意的基本事件有10个,故
10
所求概率为
25
=
2
.
5
考法1 古典概型的求法
(2)(排列、组合法)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,
2
从中随机选取两个不同的数,有C10
古典概型,在高考中常与平面向量、集合、函数、数列、解析几何、
命题分 统计等知识交汇命题,命题角度及背景新颖,考查知识全面,能力要
析预测 求较高.本部分内容重点考查数学建模与数学运算素养.
在2022年高考备考过程中要注意古典概型与数学文化、实际
生活密切联系的问题,要加强实际应用问题的训练.
考点帮·必备知识通关
243 331 112
342 241 244 431 233 214 344 142 134
由此可以估计,恰好第三次就停止摸球的概率为
1
9
1
6
2
9
5
18
A. B. C. D.
考法2 随机模拟的应用
解析 由18组随机数得,恰好在第三次停止摸球的有142,112,241,142,共4
4
组,所以恰好第三次就停止摸球的概率约为
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
每月专享9次VIP专享文档下载特权,自VIP生效
享受60次VIP专享文档下载特权,一次发放,全 VIP专享文档下载特权自VIP生效起每月发放一次,每次发放的特权有
起每月发放一次,持续有效不清零。自动续费,
年内有效。
效期为1个月,发放数量由您购买的VIP类型决定。

第2节古典概型(教师版)

第2节古典概型(教师版)

第二节 古典概型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等. (2)概率公式:P(A)=A 包含的基本事件的个数基本事件的总数.:3.一个判定标准:试验结果有限且等可能.4.两种方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同.题型一 简单古典概型的概率例题【例1】从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).【答案】D 【解析】由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 15C 14=20个;若个位数为偶数时,这样的两位数共有C 15C 15=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 15×1=5个.所求概率为545=19.:【例2】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).【答案】 35【解析】相邻两节文化课之间最多间隔一节艺术课,可以分两类:第一类:文化课之间不排艺术课,设此事件为A ,则P (A )=A 44A 33A 66=15.第二类:文化课之间排艺术课,设此事件为B ,①三节文化课之间有一节艺术课的排列情况总数为2C 13A 33A 33. ②三节文化课中间有两节不相邻艺术课的排列总数为A 33A 23A 22, ∴P (B )=2C 13A 33A 33+A 33A 23A 22A 66=25,∴P =P (A )+P (B )=15+25=35练习题【练1】甲、乙、丙三名同学站成一排,甲站在中间的概率是( ).】【答案】C 【解析】甲、乙、丙三名同学站成一排共有6种站法,甲在中间共有2种站法,故甲站在中间的概率为13.【练2】袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ).【答案】B 【解析】从袋中任取两球有C 26=15种,满足两球颜色为一白一黑的有C 12C 13=6种,概率等于615=25.【练3】从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是( ).【答案】B 【解析】从5个数中任取2个不同的数有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共有10种.其中两个数的和为偶数有:(1,3),(1,5),(2,4),(3,5),故所求概率为:P =410=25.题型二 古典概型与互斥、对立事件的概率综合问题例题【例3】现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.~【解析】(1)从8人中选出日语、俄语和韩语志愿者各1名,共有C 13C 13C 12=18种,用M 表示“A 1恰被选中”这一事件,则包含的结果共有C 13C 12=6种,因而P (M )=618=13.(2)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件,由于N 包含C 13=3个基本事件,所以P (N )=318=16,由对立事件的概率公式得 P (N )=1-P (N )=1-16=56.练习题【练4】在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X 的分布列和数学期望; (2)取出的3件产品中一等品件数多于二等品件数的概率.【解析】(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是【X 的数学期望EX =0×724+1×2140+2×740+3×1120=910.(2) 设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. 题型三 古典概型与统计的综合问题例题【例4】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.2012年2月29日,国家环保部发布了新修订的《环境空气质量标准》,其中空气质量等级标准见下表:日均值k (单位:微克) 空气质量等级 k ≤35一级、35<k ≤75 二级k >75超标某环保部门为了解近期甲、乙两居民区的空气质量状况,在过去30天中分别随机抽测了5P724 2140 740 1120天的日均值作为样本,样本数据如茎叶图所示(十位为茎,个位为叶).(1)分别求出甲、乙两居民区日均值的样本平均数,并由此判断哪个小区的空气质量较好一些; (2)若从甲居民区这5天的样本数据中随机抽取2天的数据,求恰有1天空气质量超标的概率. 【解析】(1)甲居民区抽测的样本数据分别是37,45,73,78,88;乙居民区抽测的样本数据分别是32,48,65,67,80.!故x 甲=37+45+73+78+885=,x 乙=32+48+65+67+805=.则x 甲>x 乙.由此可知,乙居民小区的空气质量要好一些.(2)由茎叶图知,甲居民区5天中有3天空气质量未超标,有2天空气质量超标.记未超标的3天的样本数据为a ,b ,c ,超标的2天为m ,n .则从5天中抽取2天的所有情况为:(a ,b ),(a ,c ),(a ,m ),(a ,n ),(b ,c ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(m ,n ),基本事件数为10.记“5天中抽取2天,恰有1天空气质量超标”为事件A ,可能结果为:(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),基本事件数为6.则P (A )=610=35.练习题【练5】某校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100),4.(1)请把给出的样本频率分布表中的空格都填上;(2)估计成绩在85分以上学生的比例; (3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100)中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率. 样本频率分布表【解析】(1)样本的频率分布表:(2)估计成绩在85分以上的有6+4=10人,估计成绩在85分以上的学生比例为1050=15.¥(3)[40,50)内有2人,记为甲、A .[90,100)内有4人,记为乙、B 、C 、D .则“二帮一”小组有以下12种分组办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ),(甲,B ,C ),(甲,B ,D ),(甲,C ,D ),(A ,乙,B ),(A ,乙,C ),(A ,乙,D ),(A ,B ,C ),(A ,B ,D ),(A ,C ,D ).其中甲、乙两同学被分在同一小组有3种办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ). 所以甲、乙两同学恰好被安排在同一小组的概率为 P =312=14.题型四 正难则反法求古典概型的概率例题【例5】有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地抽取并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( ).【答案】B 【解析】[一般解法] 第一步先排语文书有A 22=2(种)排法.第二步排物理书,分成两类.一类是物理书放在语文书之间,有1种排法,这时数学书可从4个空中选两个进行排列,有A 24=12(种)排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3种排法.因此同一科目的书都不相邻共有2×(12+2×2×3)=48(种)排法,而5本书全排列共有A 55=120(种),同一科目的书都不相邻的概率是48120=25.[优美解法] 语文、数学只有一科的两本书相邻,有2A 22A 22A 23=48种摆放方法.语文、数学两科的两本书都相邻,有A 22A 22A 33=24种摆放方法.而五本不同的书排成一排总共有A 55=120种摆放方法.故所求概率为1-48+24120=25,故选B.|练习题【练6】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个是一等品的概率. 【解析】(1)设A 、B 、C 分别为“甲、乙、丙三台机床各自加工的零件是一等品”的事件.由题设条件,知⎩⎪⎨⎪⎧P A·[1-P B ]=14,PB ·[1-PC ]=112,PA·P C =29,解之得⎩⎪⎨⎪⎧P A =13,PB =14,PC =23.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为“从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个是一等品”的事件,则P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56,故从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个是一等品的概率为56一、选择题1.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为 ( ).【答案】A 【解析】由题意知,基本事件有A 242=12个,满足条件的基本事件就一个,故所求概率为P =112.2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( ).【答案】C 【解析】基本事件有C 25=10个,同色球的有C 23+C 22=4个概率为410=25. 3.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).【答案】A 【解析】(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P =24=12. 4.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,则这班参加聚会的同学的人数为( ). A .12B .18C .24D .32【答案】B 【解析】设女同学有x 人,则该班到会的共有(2x -6)人,所以x 2x -6=23,得x =12,故该班参加聚会的同学有18人,故选B.5.甲、乙两人喊拳,每人可以用手出0,5,10三种数字,每人则可喊0,5,10,15,20五种数字, 当两人所出数字之和等于甲所喊数字时为甲胜,当两人所出数字之和等于乙所喊数字时为乙胜,若甲喊10,乙喊15时,则( ).A .甲胜的概率大B .乙胜的概率大C .甲、乙胜的概率一样大D .不能确定【答案】A 【解析】两人共有9种出数的方法,其中和为10的方法有3种,和为15的方法有2种,故甲胜的概率要大,应选A.6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为( ).【答案】C 【解析】由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14. 二、填空题7.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【答案】13【解析】由题意得到的P (m ,n )有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.8.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎦⎤0,π2的概率是________.【答案】712【解析】∵m ,n 均为不大于6的正整数,∴当点A (m ,n )位于直线y =x 上及其下方第一象限的部分时,满足θ∈⎝⎛⎦⎤0,π2的点A (m ,n )有6+5+4+3+2+1=21个,点A (m ,n )的基本事件总数为6×6=36,故所求概率为2136=712.9.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________. 【答案】16【解析】e =1+b 2a 2>5,∴b >2a ,符合b >2a 的情况有:当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.则所求概率为636=16. 10.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).【答案】23【解析】根据条件求出基本事件的个数,再利用古典概型的概率计算公式求解.因为每人都从三个项目中选择两个,有(C 23)3种选法,其中“有且仅有两人选择的项目完全相同”的基本事件有C 23C 13C 12个,故所求概率为C 23C 13C 12C 233=23. 三、解答题11.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.【解析】(1)由分层抽样的定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,1所大学记为A 6,则抽取2所学校的所有可能结果为(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15.12.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩x n7076727072(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【解析】(1)∵这6位同学的平均成绩为75分,∴16(70+76+72+70+72+x 6)=75,解得x 6=90,这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的成绩共有C 25=10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=,即恰有1位同学成绩在区间(68,75)中的概率为.13.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n 的球重n 2-6n +12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响). (1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回的任意取出2个球,求它们重量相等的概率.【解析】(1)若编号为n 的球的重量大于其编号.则n 2-6n +12>n ,即n 2-7n +12>0. 解得n <3或n >4.∴n =1,2,5,6.∴从袋中任意取出一个球,其重量大于其编号的概率P =46=23. (2)不放回的任意取出2个球,这两个球编号的所有可能情形共有C 26=15种.设编号分别为m 与n (m ,n ∈{1,2,3,4,5,6},且m ≠n )球的重量相等,则有m 2-6m +12=n 2-6n +12,即有(m -n )(m +n -6)=0.∴m =n (舍去)或m +n =6.满足m +n =6的情形为(1,5),(2,4),共2种情形.由古典概型,所求事件的概率为215.14.某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率; (2)若抽到的女教师的人数为ξ,求P (ξ≤2).【解析】由于男教师甲和女教师乙不能同时被抽调,所以可分以下两种情况:①若甲和乙都不被抽调,有C 48种方法;②若甲和乙中只有一人被抽调,有C 12C 38种方法,故从10名教师中抽调4人,且甲和乙不同时被抽调的方法总数为C 48+C 12C 38=70+112=182.这就是基本事件总数.(1)记事件“抽调的4名教师中含有女教师丙,且恰有2名男教师,2名女教师”为A ,因为含有女教师丙,所以再从女教师中抽取一人,若抽到的是女教师乙,则男教师甲不能被抽取,抽调方法数是C 25;若女教师中抽到的不是乙,则女教师的抽取方法有C 12种,男教师的抽取方法有C 26种,抽调的方法数是C 12C 26.故随机事件“抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师”含有的基本事件的个数是C 25+C 12C 26=40.根据古典概型概率的计算公式得P (A )=40182=2091.(2)ξ的可能取值为0,1,2,3,4,所以P (ξ≤2)=1-P (ξ>2)=1-P (ξ=3)-P (ξ=4),若ξ=3,则选出的4人中,可以含有女教师乙,这时取法为C 23C 15种,也可以不含女教师乙,这时有C 33C 16种,故P (ξ=3)=C 23C 15+C 33C 16182=21182=326;若ξ=4,则选出的4名教师全是女教师,必含有乙,有C 44种方法,故P (ξ=4)=C 44182=1182,于是P (ξ≤2)=1-21182-1182=160182=8091.`。

第13章第2讲 古典概型与几何概型

第13章第2讲 古典概型与几何概型

1 3
������
3)ቚ1 −1
=43,故所求概率P=
4 3
2
=23.故选B.
考法4 随机模拟的应用
考法指导 利用随机模拟试验可以近似计算不规则图形A的面积,解题的依 据是根据随机模拟估计概率P(A)=随机随取机的取点点落的在总������中次的数频数,然后根据 P(A)=随机取点构的成全事部件结������的果区构域成面的积区域面积列等式求A的面积.为了方便解题, 我们常常设计出一个规则的图形(面积为定值)来表示随机取点的全部结果 构成的区域.
C方法帮∙素养大提升 易错 几何概型中“区域”选取不准致误
理科数学 第十三章:概率
理科数学 第十三章:概率
考情精解读
考纲解读 命题规律 命题分析预测
考纲解读
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义.
∠∠������������������������������������′=π−π22 π4 =34.
( 利用角度比求概率 )
理科数学 第十三章:概率
拓展变式2 在区间[0,π]上随机取一个数x,使cos x的值介于- 23与 23之间的 概率为( )
A.13 B.23 C.38 D.58 答案 B
思路分析 先写出“6元分成3份”所含的基本事件数,然后求出乙获得“手气 最佳”所含的基本事件数,最后利用古典概型的概率公式即可得结果.
理科数学 第十三章:概率
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元. 乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为 (1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)( 按顺 序列举,不重不漏) 乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1), (2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=140=25. 答案 D

新高考 核心考点与题型 概率 第2讲 古典概型 - 解析

新高考 核心考点与题型 概率 第2讲 古典概型 - 解析

第2讲 古典概型【考情考向分析】全国卷对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件、对立事件一起考查.在高考中单独命题时,通常以选择题、填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题。

知 识 梳 理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.如从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.(2)每一个试验结果出现的可能性相同.如向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∪, 即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.考点一 基本事件及古典概型的判断【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. (2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型. 规律方法 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.【变式】 甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张. (1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么? 解 (1)设(i ,j )表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∪甲胜的概率p =512,∪512≠12,∪此游戏不公平.考点二 简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A.12B.14C.13D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∪一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【变式1】 同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( ) A.13B.12C.23D.56【变式2】用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C 23=3种,故所求的概率为p =36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n =A 55,用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,出现a 1<a 2<a 3>a 4>a 5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∪出现a 1<a 2<a 3>a 4>a 5的五位数的概率p =6A 55=120.考点三 古典概型的交汇问题多维探究角度1 古典概型与平面向量的交汇【例1】 设平面向量a =(m ,1),b =(2,n ),其中m ,n ∪{1,2,3,4},记“a ∪(a -b )”为事件A ,则事件A 发生的概率为( ) A.18B.14C.13D.12解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ∪(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∪{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.角度2 古典概型与解析几何的交汇【例2】 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有6×6=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,即a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.角度3 古典概型与函数的交汇【例3】 已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B.13C.59D.23解析 f ′(x )=x 2+2ax +b 2,由题意知f ′(x )=0有两个不等实根,即Δ=4(a 2-b 2)>0,∪a >b ,有序数对(a ,b )所有结果为3×3=9种,其中满足a >b 有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p =69=23.角度4 古典概型与统计的交汇【例4】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45. (2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710. 规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【变式】 已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率. (1)由题意知14n=0.07,解得n =200,∪14+a +28200×100%=30%,解得a =18,易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p =818=49.基础巩固题组 (建议用时:40分钟)一、选择题1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中任意取一个数,共有C 12·C 13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∪p =26=13. 2.设m ,n ∪{0,1,2,3,4},向量a =(-1,-2),b =(m ,n ),则a ∪b 的概率为( ) A.225B.325C.320D.15解析 a ∪b ∪-2m =-n ∪2m =n ,所以⎩⎪⎨⎪⎧m =0,n =0或⎩⎪⎨⎪⎧m =1,n =2或⎩⎪⎨⎪⎧m =2,n =4,因此概率为35×5=325.3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( ) A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13B.14C.15D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.5.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 二、填空题6.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112. 7.若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∪基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∪椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16.三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法公式,得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=12ax 2+bx +1,其中a ∪{2,4},b ∪{1,3},从f (x )中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( ) A.12B.34C.16D.0解析 f (x )共有四种等可能基本事件即(a ,b )取(2,1),(2,3),(4,1),(4,3),记事件A 为f (x )在(-∞,-1]上是减函数,由条件知f (x )是开口向上的函数,对称轴是x =-ba ≥-1,事件A 共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P (A )=34.12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34B.13C.310D.25解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.13.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∪经过两次这样的调换后,甲在乙的左边包含的基本事件个数m =6,∪经过这样的调换后,甲在乙左边的概率:p =m n =69=23.14.某快递公司收取快递费用的标准如下:质量不超过1 kg 的包裹收费10元;质量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每1 kg(不足1 kg ,按1 kg 计算)需再收5元. 该公司对近60天, 每天揽件数量统计如下表:(1)某人打算将A (0.3 kg),B (1.8 kg),C (1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利? 解 (1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.。

高中新教材数学人课件必修第二册第章古典概型

高中新教材数学人课件必修第二册第章古典概型

05
数学期望与方差
数学期望定义及性质
1 2
数学期望定义
在概率论和统计学中,数学期望(或均值,亦简 称期望)是试验中每次可能结果的概率乘以其结 果的总和。
线性性质
对于任意两个随机变量X和Y以及任意实数a和b ,有E(aX+bY)=aE(X)+bE(Y)。
3
常数性质
对于任意常数c,有E(c)=c。
方差定义及性质
组合数公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不 同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 c(n,m)表示。
排列组合在概率计算中应用
等可能事件的概率
如果一次试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本 事件互为等可能事件。
系统抽样
按照一定规则从总体中抽 取样本,分析抽样方法的 合理性。
有奖销售抽奖
计算不同奖项的中奖概率 ,评估活动的公平性。
其他实际问题中古典概型应用
生日悖论
分析在随机选择的群体中,至少两个人生日相同的概率。
密码安全性评估
探讨密码被破解的概率与密码长度的关系。
遗传问题中的概率计算
应用古典概型分析遗传病的遗传规律。
定义法
根据独立性的定义,如果 P(AB) = P(A)P(B),则事 件A与事件B相互独立。
等可能法
在古典概型中,如果事件 A与事件B的发生是等可能 的,且P(AB) = P(A)P(B) ,则事件A与事件B相互独 立。
条件概率在古典概型中应用
求解复杂事件的概率
01
通过条件概率的定义,可以将复杂事件的概率转化为简单事件

人教版高中数学必修2《古典概型》PPT课件

人教版高中数学必修2《古典概型》PPT课件

现的点数,则试验的样本空间:
Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(2)列举出样本点的各种情况是核心,常用方法除列表法、树形图外还可以
借用坐标系来表示二维或三维问题.
变式训练3(2021福建莆田期末)甲、乙、丙三人互传一个篮球,持球者随机
将球传给无球者之一.由甲开始持球传递,经过4次传递后,篮球回到甲手上
的概率是(
1
A.
4
)
1
B.
3
3
C.
8
3
D.
4
答案 C
解析 总的样本点如图所示,所以总的样本点数为16种,
.
1
答案
4
解析 a,b,c三名学生选择食堂的结果
有:(A,A,A),(A,A,B),(A,B,A),(A,B,B),(B,A,A),(B,A,B),(B,B,A),(B,B,B),共8个,三
人在同一食堂用餐的结果有:(A,A,A),(B,B,B),共2个,所以“三人在同一食堂
1
用餐”的概率为 4
.
探究四
9
反思感悟关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序
不同,所以(a1,b1),(b1,a1)不是同一个样本点,解题的关键是要清楚无论是“不
放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.
变式训练4某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的

新版高中数学必修2课件:10.1.3古典概型

新版高中数学必修2课件:10.1.3古典概型
2.在古典概型中,每个基本事件发生的可能性都相等,称这 些基本事件为等可能基本事件.
[教材答疑]
1.教材P233思考 在10.1.1节中,我们讨论过彩票摇号试验、抛掷一枚均匀硬币 的试验及掷一枚质地均匀骰子的试验.它们的共同特征有哪些? 提示:共同特征:(1)有限性:样本空间的样本点只有有限 个; (2)等可能性:每个样本点发生的可能性相等.
(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5), (3,6),(4,5),(4,6),(5,6)},共有15个样本点.
(1)从口袋中的6个球中任取2个球,所取的2个球都是白球包含 的样本点共有6个,分别为(1,2),(1,3),(1,4),(2,3),(2,4), (3,4).
(A,B,C,D)共11种,选对的概率为111.
4.教材P236思考 在例8中,为什么要把两枚骰子标上记号?如果不给两枚骰子 标记号,会出现什么情况?你能解释其中的原因吗?
提示:如果不给两枚骰子标记号,则不能区分所抛掷出的两
个点数分别属于哪枚骰子,如抛掷出的结果是1点和2点,有可能 第一枚骰子的结果是1点,也有可能第二枚骰子的结果是1点.这 样,(1,2)和(2,1)的结果将无法区别.
(1)如果小球是不放回的,按抽取顺序记录结果(x,y).则x有 10种可能,y有9种可能,共有可能结果10×9=90种.因此,事件 A的概率是1980=15.
(2)如果小球是有放回的,按抽取顺序记录结果(x,y),则x有 10种可能,y有10种可能,共有可能结果10×10=100种,因此, 事件A的概率是11080=590.
Ω={(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0), (0,0,1),(0,0,0)},

古典概型 课件

古典概型    课件

(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6, 4),(6,5),(6,6).共 36 个基本事件.
(2)“出现的点数之和大于 8”包含以下 10 个基本事 件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6, 3),(6,4),(6,5),(6,6).
包括 A1 但不包括 B1 的事件所包含的基本事件有: {A1,B2},{A1,B3},共 2 个,则所求事件的概率为 P=29.

(1)xy≤3 情况有 5 种,所以小亮获得玩具的概率=156. (2)xy≥8 情况有 6 种,所以获得水杯的概率=166=38. 所以小亮获得饮料的概率=1-156-38=156<38,即小 亮获得水杯的概率大于获得饮料的概率.
A.2
B.3
C.4
D.6
(2)将一枚骰子先后抛掷两次,则: (1)一共有几个基本事件? (2)“出现的点数之和大于 8”包含几个基本事件?
(1)解析:用列举法列举出“数字之和为奇数”的可 能结果为:(1,2),(1,4),(2,3),(3,4),共 4 种可能.
答案:C
(2)解:法一(列举法): (1)用(x,y)表示结果,其中 x 表示骰子第 1 次出现的点 数,y 表示骰子第 2 次出现的点数,则试验的所有结果为: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2, 1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3, 2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4, 3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),
4.整数值随机数的产生及应用

§3.2.1古典概型(2)

§3.2.1古典概型(2)
温故知新
1、 基本事件的特点
(1)在同一试验中,任何两个基本事件是互斥的;
(2)任何事件都可以表示成几个基本事件的和。
温故知新
2、古典概型 有两个特征:
(1)有限性:在随机试验中,其可能出现的结果 有有限个,即只有有限个不同的基本事件;
(2)等可能性:每个基本事件发生的机会是 均等的。
温故知新
用A来表示“两数都是奇数”这一事件, 则 A={(1,3),(1,5),(3,5)}
∴m=3 ∴P(A)= 3
10
练习巩固
3、 在掷一颗均匀骰子的实验中,则事件Q={4,6} 的概率是 1
3 4、一次发行10000张社会福利奖券,其中有1张特等 奖,2张一等奖,10张二等奖,100 张三等奖,其余 的不得奖,则购买1张奖券能中奖的概率 113
解:所有基本事件 ab,ac,bc ∴n = 3
设事件A={取出的两件中恰好有一件次品},则
A={ac,bc} ∴nA=2
2
∴P(A)=
3
练习巩固
2、从1,2, 3,4, 5五个数字中,任取两数,求两数 都是奇数的概率。
解:所有基本事件是
(1,2) , (1,3), (1,4) ,(1,5) ,(2,3), (2,4), (2,5), (3, 4) ,(3,5) ,(4,5) ∴n=10
抽样,并按抽取顺序(x,y)记录结果,由于是随机抽
取的,x有12种可能,y有11种可能,但(x,y)和(y,x)
是相同的,所以所有结果共有12×11÷2=66(种). 10 9
答案: 20 1 或1- 2 7
66
66 22
例3、天气预报未来三天内每一天下雨的概率均为40%, 利用计算器(或计算机)产生随机数进行模拟试验的办法 求这三天中恰有两天下雨的概率

古典概型 课件

古典概型 课件

b)是相同的事件,故共有 10 个基本事件.
(2)法一中“2 个都是白球”包括(1,2),(1,3),(2,3),共 3 个基
本事件,法二中“2 个都是白球”包括(a,b),(b,c),(a,c),共
3 个基本事件.
基本事件的三种列举方法 (1)直接列举法:把试验的全部结果一一列举出来.此方法适合于 较为简单的试验问题. (2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄 清基本事件的总数,以及要求的事件所包含的基本事件数.列表法 适用于较简单的试验的题目,基本事件较多的试验不适合用列表 法.
①试验中所有可能出现的基本事件只有__有__限___个; ②每个基本事件出现的可能性__相__等___.
那么这样的概率模型称为古典概率模型,简称为古典概型. (2)计算公式:对于古典概型,事件 A 的概率为 P(A)=A包含基的本基事本件事的件总的数个数.
■名师点拨 (1)古典概型的判断 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个 特点:有限性和等可能性.并不是所有的试验都是古典概型. 下列三类试验都不是古典概型: ①基本事件个数有限,但非等可能. ②基本事件个数无限,但等可能. ③基本事件个数无限,也不等可能.
(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的 一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂 的问题,可以作为一种分析问题的主要手段,树状图法适用于较复 杂的试验的题目.
古典概型的概率计算
(1)有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、
绿、紫.从这 5 支彩笔中任取 2 支不同颜色的彩笔,则取出的 2 支
所以 nP(Ai)=1,所以 P(Ai)=n1(i=1,2,…,n).若在该试验中事

高中数学必修二课件:古典概型

高中数学必修二课件:古典概型

②从1,2,3,…,10中任取一个数,求取到1的概率;
③在正方形ABCD内画一点P,求点P恰好为正方形中心的概率;
④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.
A.1
B.2
C.3
D.4
【解析】 古典概型的特征是样本空间中样本点的个数是有限的,并且每 个样本点发生的可能性相等,故②是古典概型;①和③中的样本空间中的样本 点个数不是有限的,故不是古典概型;④由于硬币质地不均匀,样本点发生的 可能性不相等,故④不是古典概型.故选A.
平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出 剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出 剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.
设平局为事件A,甲赢为事件B,乙赢为事件C.
由图容易得到: (1)平局含3个基本事件(图中的△); (2)甲赢含3个基本事件(图中的⊙); (3)乙赢含3个基本事件(图中的※). 由古典概型的概率计算公式,可得: P(A)=39=13,P(B)=39=13,P(C)=39=13.
答:该试验的基本事件是“出现正面向上”和“出现反面向上 ”.由于该 硬币质地不均匀,故P(出现正面向上)≠P(出现反面向上),从而两个基本事件出 现的可能性不同.
课时学案
题型一 古典概型的判断
例1 (1)下列试验中是古典概型的是( B ) A.在适宜的条件下,种下一粒种子,观察它是否发芽 B.口袋里有2个白球和2个黑球,这4个球除颜色外其他完全相同,从中任 取一球 C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的 D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…, 命中0环
【解析】 共有(a1,a2),(a1,b),(a2,b)三个基本事件. 设A={恰有一件次品},则A含(a1,b),(a2,b)两个基本事件. 故P(A)=23.

高中数学(新人教A版)必修第二册:古典概型【精品课件】

高中数学(新人教A版)必修第二册:古典概型【精品课件】

知识点二 样本点的计数问题 [例 2] (1)4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中
随机抽取 2 张,则取出的 2 张卡片上的数字之和为奇数的所有样
本点个数为()A来自2B.3C.4
D.6
(2)连续掷 3 枚质地均匀的硬币,观察这 3 枚硬币落在地面上
时是正面朝上还是反面朝上.
[变式训练]
从含有两件正品 a1,a2 和一件次品 b 的三件产品中,每次 任取一件. (1)若每次取后不放回,连续取两次,求取出的两件产品中 恰有一件次品的概率; (2)若每次取后放回,连续取两次,求取出的两件产品中恰 有一件次品的概率.
解:(1)每次取出一个,取后不放回地连续取两次,其一切 可能的结果组成的样本点有 6 个,即(a1,a2),(a1,b),(a2, a1),(a2,b),(b,a1),(b,a2).其中小括号内左边的字母 表示第 1 次取出的产品,右边的字母表示第 2 次取出的产 品.总的事件个数为 6,而且可以认为这些样本点是等可 能的. 设事件 A=“取出的两件中恰有一件次品”,所以 A= a1,b,a2,b,b,a1,b,a2,所以 n(A)=4, 从而 P(A)=nnΩA=46=23.
[知识小结一]
判断一个试验是不是古典概型要抓住两点:一是 有限性;二是等可能性.
[变式训练]
某同学随机地向一靶心进行射击,这一试验的结果只有有限 个:命中 10 环、命中 9 环、……、命中 5 环和不中环.你认 为这是古典概型吗?为什么?
解:不是古典概型,因为试验的所有可能结果只有 7 个,而命 中 10 环、命中 9 环、……、命中 5 环和不中环的出现不是等 可能的,即不满足古典概型的第二个条件.
紫),所以所求事件的概率 P=140=25.故选 C. 答案:C

2014届高考江苏专用(理)一轮复习第十三章第2讲古典概型

2014届高考江苏专用(理)一轮复习第十三章第2讲古典概型
解析 由条件,基本事件总量有 36 个.由 log2xy=1,从而 y
=2x,包含的事件有以下三种:(1,2),(2,4),(3,6),所求概 3 1 率大小为 P= = . 36 12
1 答案 12
5.盒中装有形状、大小完全相同的5个球,其中红色球3 个,黄色球2个,若从中随机取出2个球,则所取出的2 个球颜色不同的概率等于________.
考向二
古典概型的概率问题
【例2】 现有甲、乙两只盒子,甲盒装有2个黑球、4个红球, 乙盒装有4个黑球、3个红球,若从甲、乙两盒中任意取两 球交换后,计算甲盒内恰有4个红球的概率. 解 记事件Ai:恰从甲盒中取出i个红球;事件Bi:恰从乙
盒中取出i个红球,i=0,1,2, C2 C1· 1 C4 C2 C2 ∴P(A0)= 2,P(A1)= 2 2 ,P(A2)= 4,P(B0)= 4,P(B1) C2 C6 C2 C2 6 6 7
其中有A类轿车10辆. 轿车A
舒适型 100
轿车B
150
轿车C
z
标准型 (1)求z的值;
300
450
600
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样 本.将该样本看成一个总体,从中任取2辆,求至少有1辆 舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测
它们的得分如下:
第2讲 古典概型
考点梳理
1.古典概型 (1)我们把具有:①试验中所有可能出现的基本事件只有 有限 相等 _____个;②每个基本事件出现的可能性_____,以上两个 特点的概率模型称为古典概率模型,简称古典模型.
(2)古典概率模型的概率求法 如果一次试验中基本事件共有 n 个, 那么每一个基本事件 1 n 发生的概率都是___,如果某个事件 A 包含了其中的 m 个 m n 基本事件,那么事件 A 发生的概率为 P(A)=___. 2.古典概型的概率公式

古典概型(共24张PPT)

古典概型(共24张PPT)

解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的 情况如下表所示:
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
(1,2),(1,3),(1,4),(1,5),
(2,3),(2,4),(2,5),(3,4),
(3,5),(4,5). 因此,共有10个基本事件.
(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到
2只白球(记为事件A),
小结
满足以下两个特点的随机试验的概率模型称为古典概型
1
2
试 验 2
1点
P(“1点”)
2点
3点
P(“2点”)
P(“5点”)
4点 5点 P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性

“正面朝上”

“反面朝上”
1
试 “1点”、“2点” 验2 “3点”、“4点”
“5点”、“6点”
没有区别。
为什么要把两个骰子标上记号?如果不标记号会出 现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(3,6)和(6,3)的结果将
没有区别。
这时,所有可能的结果将是:
2号骰子
因此,1号在骰子投掷两
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)事件“出现点数相等”包含以下6个基本事件(1,1), (2,2),(3,3),(4,4),(5,5),(6,6). (4)事件“出现点数之和大于10”包含以下3个 基本事件(5,6),(6,5),(6,6). 【反思与悟】 基本事件数的探求主要有两种方法:列举 法和树状图法.
【变式1-1】 用红、黄、蓝三种不同颜色给图中3个矩形随 机涂色,每个矩形只涂一种颜色,写出: (1)试验的基本事件; (2)事件“3个矩形颜色都相同”; (3)事件“3个矩形颜色都不同”.
考向三
古典概型的综合应用
【例 3】(2011· 广东 ) 在某次测验中,有 6位同学的平均成绩为 75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且 前5位同学的成绩如下:
编号n 成绩xn
1 70
2 76
3 72
4 70
5 72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成 绩在区间(68,75)中的概率.
解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6) (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6) (2)事件“出现点数之和大于8”包含以下10个基本事件 (3,6),(4,5),(4,6)(5,4),(5,5),(5,6),(6,3),(6,4),(6,5), (6,6).

(1)所有可能的基本事件共27个.
(2)由图可知,事件“3个矩形都涂同一颜色”包含以下3 个基本事件:红红红,黄黄黄,蓝蓝蓝. (3)由图可知,事件“3个矩形颜色都不同”包含以下6 个基本事件:红黄蓝,红蓝黄,黄红蓝,黄蓝红,蓝 红黄,蓝黄红. 考向二 古典概型
【例2】现有8名2012年伦敦奥运会志愿者,其中志愿者 A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通 晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名, 组成一个小组. (1)求A1被选中的概率; (2)求B1和C1不全被选中的概率.
考向一
基本事件数的探求
【例1】做抛掷两颗骰子的试验:用(x,y)表示结果,其中 x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点 数,写出: (1)试验的基本事件; (2)事件“出现点数之和大于8”; (3)事件“出现点数相等”; (4)事件“出现点数之和大于10”. [审题视点] 用列举法一一列举.
[审题视点] 本题考查平均数、标准差、古典概型概率的计 算.(1)由这6位同学的平均成绩为75分,建立关于x6的方程, 可求得x6,然后求方差,再求标准差;(2)用列举法可得所求古 典概型的概率.
【反思与悟】 有关古典概型与统计结合的题型是高考考查概率 的一个重要题型,已成为高考考查的热点,概率与统计结合题, 无论是直接描述还是利用频率分布表、分布直方图、茎叶图等 给出信息,只需要能够从题中提炼出需要的信息,则此类问题 即可解决.
1.基本事件的特点
(1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型,简 称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等.
3.古典概型的概率公式
一条规律 从集合的角度去看待概率,在一次试验中,等可能出现的 全部结果组成一个集合I,基本事件的个数n就是集合I的 元素个数,事件A是集合I的一个包含m个元素的子集.故
[审题视点] 确定基本事件总数,可用排列组合或用列举法, 确定某事件所包含的基本事件数,用公式求解.
【反思与悟】 古典概型是基本事件个数有限,每个基本 事件发生的概率相等的一种概率模型,其概率等于随机 事件所包含的基本事件的个数与基本事件的总个数的比 值.
【变式2-1】 (2011· 全国新课标)有3个兴趣小组,甲、乙两位 同学各自参加其中一个小组,每位同学参加各个小组的可能 性相同,则这两位同学参加同一个兴趣小组的概率为 ( ).
m P A card I n card A
两种方法 (1)列举法:适合于较简单的试验. (2)树状图法:适合于较为复杂的问题中的基本事件的探 求.另外在确定基本事件时,(x,y)可以看成是有序的,如 (1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1) 相同.
【变式3-1】 一汽车厂生产A,B,C三类轿车,每类轿车均有 舒适型和标准型两种型号,某月的产量如下表(单位:辆): 轿车A 舒适型 标准型 100 300 轿车B 150 450 轿车C z 600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆, 其中有A类轿ቤተ መጻሕፍቲ ባይዱ10辆.
(1)求z的值; (2)用分层抽样的方法在C类轿车中抽取一个容量为5的样 本.将该样本看成一个总体,从中任取2辆,求至少有1辆 舒适型轿车的概率; (3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检 测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一 个总体,从中任取一个数,求该数与样本平均数之差的绝 对值不超过0.5的概率.
专题十二 概率、随机变量及其分布
第2讲古典概型
1.考查古典概型概率公式的应用,尤其是古典概型与互斥、 对立事件的综合问题更是高考的热点. 2.在解答题中古典概型常与统计相结合进行综合考查,考 查学生分析和解决问题的能力,难度以中档题为主. 【复习指导】 1.掌握解决古典概型的基本方法,列举基本事件、随机事 件,从中找出基本事件的总个数,随机事件所含有的基本 事件的个数. 2.复习时要加强与统计相关的综合题的训练,注重理解、 分析、逻辑推理能力的提升.
相关文档
最新文档