有限元分析在桥梁结构中的应用
浅析ANSYS在桥梁工程中的应用
3 3-3 4.
ห้องสมุดไป่ตู้
第五 , 保证建筑物 的质量和耐久性 , 坚决杜绝各种偷
工 减 料 、以次 充 好 等 等 为 了谋 取 暴 利 而 采取 降低 工 程 质 量 的现 象 发 生 , 来 减 少 不 必 要 的 维 修 加 固 , 至 拆 除 。 从 甚
重要 的意义 ,我们要保证建筑垃圾 的绿色 回收和合理利 用率 。 如果多方施力 , 必然可 以有效改变建筑垃圾 随意堆 第三 , 源头上加 以控制 , 从 向施工企业大力推广新 型 放和露天填埋等处理行 为 ,并使建筑垃圾综合利用成为 建筑材料 ,力求使建设过程 和拆 除过程 中少产生建筑垃 主 流 , 不 仅 是 对 于 环 境 保 护 而 言 , 是 对 于 节 约 土 地 、 这 还 圾, 或者即使产生 的垃圾都是 可以回收的。 节约资源而言 , 意义都积极而深远 。 第 四, 将建筑垃 圾处理分类改革 。 提倡高级 利用 , 将 建筑垃圾还原 成水泥 、 沥青 ; 推广 中级利用 , 将建筑垃圾 参 考 文 献 : 经处理加工成骨料 , 再制成各种建筑用砖 , 用作建筑物或 1 徐 张 对 道路的基础材料 ; 限制低级利用 , 减少现场分拣 分类利用 [】刘 超 , 晓朝 , 莉 . 于 建 筑 垃 圾 处 理 现状 的 思 考 及 建 议
22 悬 索单 元 .
法。 采用 A S S程序通常所求得 的结果 和实测值 比较相 NY 近, 能够基本反映结构 的实际状况 。 桥梁 自振特性理论分
析 主 要 用 到 了 A S S的 瞬 态 动 力学 分 析功 能 , NY 瞬态 动 力 学 分 析 是用 于确 定 承 受 任 意 的随 时 问 变 化 荷 载 的结 构 的
有限元实验报告
有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
自锚式悬索桥吊索张拉计算和有限元分析研究
因此,本次演示旨在深入探讨大跨度自锚式斜拉悬索桥的分析方法与性能研 究,以期为相关工程实践提供有益的参考。
分析方法
1、几何分析
几何分析是大跨度自锚式斜拉悬索桥分析的重要环节。该方法主要考虑桥梁 的几何非线性效应,通过模拟桥梁的刚度与变形关系,以及结构在荷载作用下的 位移分布情况,为后续的静力分析和动力分析提供基础数据。在进行几何分析时, 一般采用有限元方法建立结构模型,并利用非线性方程求解几何形状和位移。
2、边界条件根据实际桥梁的情况,对模型施加相应的边界条件。例如,对 于自锚式悬索桥,可以约束主塔底部的位移和转角,以及主梁两端的位移和转角。
3、材料模型根据实际材料的属性,选择适当的材料模型进行模拟。例如, 对于混凝土材料,可以采用ANSYS中的Solid185单元进行模拟;对于钢材,可以 采用Shell185单元进行模拟。
自锚式悬索桥的研究现状自锚式悬索桥以其优美的造型和独特的设计理念, 逐渐成为了现代桥梁工程的代表之一。近年来,随着计算机技术和数值计算方法 的不断发展,自锚式悬索桥的有限元建模和分析取得了长足进步。然而,目前的 研究仍存在以下不足之处: (1)有限元模型的准确性有待进一步提高; (2) 自锚式悬索桥的地震响应分析尚不完善; (3)缺乏统一的评估标准和规范,导 致设计缺乏依据。
综合本次演示的研究成果和发现,可以得出以下结论:
1、自锚式悬索桥作为一种具有独特特点的桥梁结构形式,在力学性能和行 为表现方面具有显著优势。
2、通过建立详细的力学模型、采用有限元方法和优化计算过程,可以实现 对自锚式悬索桥各构件内力和变形的准确计算。
3、实验研究结果表明,本次演示所采用的计算分析方法具有较高的精度和 可靠性,可以为相关工程实践提供有效的参考和依据。
桥梁的ansys有限元分析
(一)研究背景桥梁在一个国家的交通运输和经济发展中占有十分重要的位置 ,而桥梁桁架结构是保证桥梁安全运营的重要手段。
随着技术的发展,桥梁桁架结构己经发展成为桥梁领域中必不可少的专用结构,桥梁桁架结构更是代表了桥梁的主流发展方向,具有广阔的市场前景。
木文的研究对象为桥梁桁架结构,采用有限元法对该车结构进行了有限元分析。
(二)研究目的本文认真研究了桥梁的结构组成和工作原理,对桥梁各组成部件进行了合理的模型处理和简化,利用有限元分析软件ANSYS的APDL语言,建立了各部件的有限元参数化模型。
按照真实情况采用合理的方式模拟各部件间的连接关系,将各部件组成一个整体。
通过以上工作建立了桥梁的有限元分析模型,对桥梁桁架结构进行静力学分析,分析桥梁桁架结构在静态情况下的位移变形,应力应变分布,为桥梁桁架结构的设计与制造提供理论依据。
(三)有限元分析过程1.定义材料属性,包括密度、弹性模量、泊松比。
点击主菜单中的"Preprocessor'Material Props >Mat erialModels” ,弹出窗口,逐级双击右框中“Structural、Linear\ Elastic\ Isotropic n前图标,弹出下一级对话框,在"弹性模量” (EX)文本框中输入:2. Oell ,在“泊松比” (PRXY)文本框中输入:0. 3,如图所示,点击“0K”按钮,同理点击Density输入7850即为密度。
A define Material Model BehaviorMaterial Edit Favorite HelpA Linear I&otropic Properties for P/aterhl Number 1Linear Isotropic Ifaterial Propertiesfor Kat erial NuiTber 1T1Terrperatures |0 EX PRX7|o.3Add Temper attire | Delete TeiuperatureGraphOKdree] |HebA Define Material Model Behavior Matenal Edit Favorite Help2. 定义单元属性,包括单元类型、单元编号、实常数。
应用有限元分析工程实例
结构稳定性分析
总结词
结构稳定性分析研究结构在各种载荷作用下的失稳临界状态,包括屈曲、后屈曲和流动 等。
详细描述
结构稳定性分析是评估结构在各种载荷作用下的稳定性的关键环节。通过结构稳定性分 析,可以确定结构的失稳临界点,预测结构的极限承载能力。在进行结构稳定性分析时, 需要考虑结构的形状、支撑条件、材料属性和外部载荷等因素,以准确评估结构的稳定
局限性
有限元分析需要耗费大量的计算资源 和时间,对于大规模系统可能存在计 算效率低下的问题,同时对于某些复 杂问题可能需要建立较为精细的模型, 导致计算成本增加。
有限元分析的应用领域
01
02
03
04
工程结构分析
广泛应用于机械、航空、土木 、交通等领域,用于分析结构 的强度、刚度、稳定性等。
流体动力学分析
工程实例应具有实际应用价值,能够为相关领域提 供参考和借鉴。
难度适中
工程实例的难度应适中,既不过于复杂也不过于简 单,能够保证分析过程的完整性和可靠性。
工程实例背景介绍
工程实例名称:某桥梁工程
工程背景:该桥梁位于高速公路上,是连接两个城市的交通要道。桥梁全长1000 米,主跨为300米,设计载荷为公路一级。由于该桥跨越峡谷,主跨跨度较大, 因此需要进行详细的有限元分析来确保结构安全。
工程实例问题描述
02
01
03
问题一
该桥梁在承受载荷时,各部分的应力分布情况如何?
问题二
该桥梁在不同载荷下的变形情况如何?
问题三
该桥梁的稳定性如何?
03
有限元模型的建立
模型建立的原则与步骤
模型建立的原则
真实反映实际结构、合理划分网 格、选择合适的边界条件和载荷 。
有限元分析及应用
有限元分析及应用介绍有限元分析,简称FEA(Finite Element Analysis),是一种数值计算方法,用于预测结构的力学行为。
它可以将结构离散为有限个小单元,在每个小单元内进行力学计算,并通过求解得到整个结构的应力和位移分布。
有限元分析常用于工程领域中,如结构分析、热传导分析、流体流动分析等。
原理有限元分析的基本原理可以概括为以下几个步骤:1.离散化:将结构或物体离散为有限个小单元。
常见的小单元形状有三角形、四边形等,在三维问题中可以使用四面体、六面体等。
2.建立数学模型:在每个小单元内,根据结构的物理特性和力学行为建立数学模型。
模型中包括了材料的弹性模量、泊松比等参数,以及加载条件、约束条件等。
3.组装和求解:将所有小单元的数学模型组装成一个整体的数学模型,然后利用求解算法进行求解。
常见的求解算法有直接法、迭代法等。
4.后处理:得到结构的应力和位移分布后,可以进行各种后处理操作,如绘制位移云图、应力云图等,以帮助工程师分析结构的强度和刚度性能。
应用有限元分析在工程领域有着广泛的应用。
下面介绍几个常见的应用案例:结构分析有限元分析可以用于结构分析,以评估结构的刚度和强度。
在设计建筑、桥梁、航空器等工程项目时,工程师可以使用有限元分析来模拟结构的力学行为,预测结构在不同加载条件下的变形和应力分布,以优化结构设计。
热传导分析有限元分析也可以用于热传导分析,在工程项目中评估热传导或热辐射过程。
例如,在电子设备的散热设计中,可以使用有限元分析来预测电子元件的温度分布,优化散热设计,确保电子元件的正常工作。
流体流动分析在流体力学研究中,有限元分析可以用于模拟流体的运动和流动行为。
例如,在船舶设计中,可以使用有限元分析来模拟船体受到波浪作用时的变形和应力分布,验证船体的可靠性和安全性。
优缺点有限元分析具有以下优点:•可以模拟复杂结构和物理现象,提供准确的结果。
•可以优化结构设计,减少设计成本和时间。
第二章--桥梁结构有限元法及可视化软件的开发1
第二章–桥梁结构有限元法及可视化软件的开发在桥梁建设中,结构的安全性和稳定性至关重要。
有限元分析是一种常用的方法,可以在建设桥梁之前模拟结构,确保其能够承受负载和抵御自然灾害的影响。
近年来,有限元分析的计算机程序已经逐渐普及,为桥梁设计建设提供了更多的支持。
本章主要讨论有限元分析和可视化软件开发。
在这个过程中,我们将介绍有限元方法的原理和应用。
此外,我们还将讨论如何构建可视化软件以更好地利用有限元分析模型。
有限元方法有限元法(FEM)是一种以数值分析为基础的工程方法,它用于模拟和分析结构物的特定已知条件下的行为。
在建筑领域中,有限元法可以用于确定建筑物的荷载和应力行为,并预测可能的结构问题。
有限元法可以在电子计算机上运行,因此可以更高效地执行,以便进行必要的计算。
有限元方法的原理有限元法的主要思想是将结构物分成许多非常小的部分(称为有限元),然后对每个部分进行数学建模。
这些部分是以三角形或四边形等多边形的形式定义的,每个部分都通过数学函数来描述。
用于建立每个元素的适当数学函数被称为形状函数。
在有限元模型的计算过程中,结构物被看作是由有限元素组成的系统。
对于每个有限元素,可以在该元素中定义一个节点来表示该元素的端点。
在此过程中,可以对节点应用各种荷载或约束条件。
有限元法的主要应用之一是为桥梁建设创建模型。
在桥梁模型中,各种因素(如重量、温度、荷载等)被定义为荷载,并将它们应用于系统中的各个节点。
通过运行模拟,可以预测结构物的应力行为、变形等方面。
有限元模型的应用有限元法的应用主要分为两类:静态和动态。
在静态有限元分析中,考虑结构静态变形和结构的响应,这些分析可以进行结构设计优化和结构的安全性分析。
在动态有限元分析中,考虑结构在特定时间因素下如何受力变形以及如何应对自然灾害等情况。
有限元分析的准确性取决于多方面的因素,如模型的准确性、荷载的准确性、边界条件的准确性等。
在实际应用中,有限元分析应仔细检查这些因素的质量,以确保得到准确的结果。
桥梁结构分析的有限元原理及其程序简介
故
e FEe = K E Rδ e
其中 R 为坐标变换矩阵。 若 e 号单元内还作用有跨间荷载以及给定的温 度分布,它们在局部坐标系下的单元等效结点荷载 分别记为 Pqe 和 PTe ,则
e e FE = ΚE Rδe − Pqe − Pte
以上即杆系结构有限元法的基本计算过程。
1.2 有限元软件简介
1.2有限元软件简介
与通用有限元的区别
ANSYS MIDAS/CIVIL
前处理 单元、材料、边界、荷载
前处理 单元、材料、边界、荷载、施工过程、 预应力、收缩徐变等 求解 静力、动力、稳定等 后处理 显示、列表、时程等 设计验算 基于规范的荷载组合、 设计验算
求解 静力、动力、稳定等
后处理 显示、列表、时程等
1. 桥梁结构分析的内容
• (1)桥梁一般是分阶段逐步施工完成的,结构最终受力 状态往往与施工过程有着很大的关系,因而结构分析必须 按实际的施工过程和结构形成的过程逐阶段进行分析,并 且能够自动累加各阶段的内力和位移等。 (2)计算成桥后在二期恒载,支座不均匀沉降、混凝土 长期收缩、徐变效应、温度变化等作用下的内力和位移。 (3)计算各种活载引起的内力和位移,包括影响线或影 响面的计算以及对它们进行纵向、横向的加载等。 (4)计算各种偶然荷载(加地震)等引起的内力和位移。 (5)按规范对上述各种荷载引起的内力和位移进行组 合,得出最不利的组合情况。 (6)按规范进行强度、刚度、抗裂性、稳定性以及动力 性能验算。
2.2 桥梁结构分析的施工过程及体系转换 • 比如,同为三跨连续梁,在合拢的先后顺 序上,先合拢边跨还是中跨对结构成桥内 力是有影响的; • 有时为了获得良好的成桥线形或内力,可 以在施工中采取一些辅助措施。
大跨度桥梁抗震分析中的整体有限元法及其应用
大跨度桥梁抗震分析中的整体有限元法及其应用目录一、内容概要 (2)1. 桥梁工程的重要性 (2)2. 抗震分析的意义与挑战 (3)二、有限元法概述及其在桥梁抗震分析中的应用 (4)1. 有限元法基本概念与原理 (6)1.1 有限元法定义与发展历程 (7)1.2 基本原理与计算步骤 (8)2. 有限元法在桥梁抗震分析中的应用现状 (9)2.1 应用范围及优势 (10)2.2 存在的问题与挑战 (11)三、大跨度桥梁整体有限元建模与分析方法 (13)1. 整体有限元建模流程 (14)1.1 模型建立前的准备工作 (15)1.2 模型建立过程及参数设置 (16)1.3 模型验证与校准 (17)2. 大跨度桥梁整体分析方法 (19)2.1 静力分析方法 (21)2.2 动力分析方法 (22)2.3 抗震性能评估指标 (23)四、大跨度桥梁抗震分析中的关键技术与策略 (25)1. 地震波输入与选择 (27)1.1 地震波特性分析 (28)1.2 地震波输入方法比较与选择 (29)2. 结构损伤评估与修复策略 (30)2.1 结构损伤识别技术 (32)2.2 损伤程度评估方法 (34)2.3 修复策略与建议 (35)一、内容概要本文档主要介绍了大跨度桥梁抗震分析中的整体有限元法及其应用。
整体有限元法是一种将结构划分为多个单元,通过离散化的方法对整个结构进行建模和求解的方法。
在大跨度桥梁抗震分析中,整体有限元法具有较高的计算精度和效率,能够有效地模拟桥梁在地震作用下的响应过程,为桥梁的抗震设计提供有力的支持。
本文档首先介绍了大跨度桥梁的基本结构特点和抗震要求,然后详细阐述了整体有限元法的基本原理、方法和步骤,包括单元划分、刚度矩阵和边界条件设置等。
通过实例分析,展示了如何运用整体有限元法对大跨度桥梁进行抗震分析,以及如何根据分析结果优化结构设计,提高桥梁的抗震性能。
对整体有限元法在大跨度桥梁抗震分析中的应用前景和技术发展趋势进行了展望。
桥梁结构中混合截面梁的有限元计算分析
第11卷第9期中国水运V ol.11N o.92011年9月Chi na W at er Trans port Sept em ber 2011收稿日期:66作者简介:卢兵,中交第二公路勘察设计研究有限公司。
桥梁结构中混合截面梁的有限元计算分析卢兵1,肖承初2(中交第二公路勘察设计研究有限公司,湖北武汉430052)摘要:针对工程结构中广泛应用的组合截面构件,以梁的平面假设为前提,根据有限元基本理论,推导组合截面梁的截面属性计算、初应变计算和内力分配计算。
关键词:组合截面;平截面假设;有限单元法中图分类号:U 441.3文献标识码:A文章编号:1006-7973(2011)09-0211-02组合截面梁在桥梁工程实践中被广泛应用,如大跨径钢管混凝土拱桥,梁桥的加固等。
形成组合截面梁的方式和方法很多,在研究和计算过程中出现很多分歧,有分两种截面,有采用等效刚度法等理论进行研究。
各种方法理论根据不一,结论差别加大。
为了提高工程结构计算的安全和可信性,笔者根据梁的平截面假设以及有限单元法的基本理论获得组合截面梁的截面属性计算、初应变计算和内力分配计算方法。
一、组合截面的形式组合截面即不同材料拟合在同一截面内,常见的以钢混为主。
我们这里这里提到的组合截面是一个广义的组合截面,既包括钢——混凝土这样的叠合梁组合截面,也包括钢筋混凝土和预应力混凝土这样的组合截面。
所以,本文档所述的分截面指的就是钢材分截面、混凝土分截面或者是钢筋分截面。
二、换算截面法组合截面分析常规采用换算截面法[1],其主要原则是首先选定一种截面当做主截面,其他截面当做分截面,通过弹性模量比值的折换,将分截面换作虚拟的主截面块,得到等效的匀质材料换算截面,推导并建立相应的计算公式。
换算截面法有如下两个假定[1]:(1)虚拟主截面块仍居于原分截面的形心处且应变相同(2)虚拟主截面块与原分截面承担的内力相同ct s ct sεεκκ==(1)ct s ct sF F M M ==(2)式中:ct ε—替换分截面的虚拟主截面块的形心轴向应变;s ε—分截面的形心轴向应变;K ct —替换分截面的虚拟主截面块的形心曲率应变;K s —分截面的形心曲率应变;F ct —替换分截面的虚拟主截面块的形心轴向拉力;F s —分截面的形心轴向拉力;M ct —替换分截面的虚拟主截面块的形心弯矩;M S —分截面的形心弯矩;F ct 、F s 、M ct 、M S 的表达式如下:ct c t ct ct s s s s ct ct ct c t s s s sF E A F E A M E I M E I εεκκ====(3)式中:E S —分截面的弹性模量;A S —分截面的面积;I S—分截面的惯性矩;E ct —替换分截面的虚拟主截面块的弹性模量;A ct —替换分截面的虚拟主截面块的面积;I ct —替换分截面的虚拟主截面块的惯性矩;将式(1)和式(3)代入式(2)并整理得:ct sc s A n A =(4)ct sc sI n I =(5)式中,sc n 为换算截面的面积换算系数:sc s ctn E E =(6)由以上结论可以得出由n 个截面组成的梁单元的截面常数为:组合截面形心位置:()()()()1111nnctictiiii i nn ctct iii i A y A z y z A A ======∑∑∑∑(7)式中,iy 、i z 为第i 个分截面的形心位置。
浅析ANSYS在桥梁工程中的应用
浅析ANSYS在桥梁工程中的应用摘要:文章主要介绍了ANSYS在桥梁工程中常用的单元建模、自振特性的模态分析,以及优化施工方面的应用,希望能为广大的桥梁工程技术人员提供一些参考。
关键词:ANSYS;有限元;桥梁1 ANSYS软件简介ANSYS作为世界知名的大型通用有限元分析软件,已经广泛应用于核工业,铁道,土木工程,地矿,水利等各工业领域。
它除具有图形处理,前处理,分析,后处理和单元库等重要功能外,还有强有力的结构分析功能,如线形动静力分析,非线性动静力分析等。
近年来,紧跟最先进的计算机方法和计算机技术,ANSYS不断发展更新,特别是强大的后处理功能的推出,方便了设计人员在程序进行有限元分析后的数据处理和结果分析,缩短了设计周期,提高了分析精度。
目前,ANSYS已成为桥梁工程结构设计分析是常用的必备软件之一。
2 ANSYS在桥梁工程中的建模设计2.1 梁单元和杆单元组合ANSYS软件具有强大的建模功能。
建模时,先建立结构的几何模型,给出材料参数和单元类型,最后划分网格,形成结构的有限元模型。
ANSYS软件提供了近200种单元,其中桁架、桁拱、拱肋、上下平纵联、横联、上下层桥面系中的纵横梁及撑杆通常采用梁单元模拟(如BEAM188单元),梁拱间的吊索采用空间杆单元模拟(如LINK10单元)。
运用有限元软件ANSYS建立梁、杆的单元模型,可以详细分析桥梁的极限承载力,变形和强度,以及稳定性。
工程上有很多这方面的成功实例。
2.2 悬索单元斜拉索索力的大小对斜拉桥结构的内力状态影响很大。
特别是大跨度斜拉桥,结构几何非线性效应十分明显。
ANSYS目前还不能模拟施加斜拉索索力,也没有专门的拉索单元,工程上通常采用LINK8和LINK10两种杆件单元模拟斜拉索,用等效弹性修正模量或者多段杆单元来考虑拉索的垂度效应、梁柱效应、大位移效应,利用单元的生死特性,单元初应变或者用温度荷载来施加索力。
2.3 桥墩单元和桩基单元有很多研究人员用ANSYS软件中的Solid65单元,模拟分析混凝土结构桥墩的荷载试验,并取得了不少成果。
浅析有限元分析对城市桥梁建设的作用
浅析有限元分析对城市桥梁建设的作用作者:王瑞锋王慧敏来源:《城市建设理论研究》2013年第35期摘要:随着现代技术的发展,有限元分析方法已经成功运用到城市桥梁建设中,本文主要阐述通过有限元分析方法,得出桥梁建设中的重要参数,辅助桥梁设计,体现有限元方法为城市桥梁建设提供了理论基础和科学依据的重要作用。
关键词:有限元、城市桥梁建设、桥梁设计中图分类号:K928.78 文献标识码:A引言:现代社会的交通事业迅速发展,城市桥梁已在交通中发挥着非常重要的作用。
为了合理设计桥梁,对桥梁进行物理实验分析,既费时又不经济,已经不是一种合理的方法。
而随着技术的发展,我们可以通过有限元分析的方法,对桥梁进行全面的分析,得到更为可靠的数据,设计更为科学的桥梁,保证桥梁的安全可靠。
1.有限元分析在桥梁混凝土凝固过程中的作用。
通过有限元分析,可以在钢筋混凝土凝固过程,合理控制温度和温度应力,防止出现温度裂缝,保证结构的整体性和耐久性。
结构内温度场发生变化时,若受到外部约束或温度场不均匀时,会产生一定的应力,称为温度应力。
温度应力的出现以及其危害,引起工程上的关注。
混凝土凝固过程分为两个阶段。
第一个阶段是水泥在凝固和硬化期放出大量的热,混凝土处于迅速升温阶段,如果混凝土外表温度较低,内部温度持续升高。
当混凝土初凝时,内部混凝土升温膨胀,体积变大,就会造成混凝土表面开裂。
第二阶段是硬化后期降温,随着核心混凝土温度的降低,体积逐渐变小,如果内外温差较大,就会在混凝土中心形成拉应力乃至裂缝。
通过有限元,建立分析模型,引入边界条件,进行温度场和应力场分析,收缩和徐应变分析,我们得出以下结论:(1)水泥在水化过程中产生大量的热量,这些热量聚集在混凝土底板内部不易散失,随着混凝土龄期的增长,实际混凝土内部的最高温度多数发生在混凝土浇筑的三到五天。
浇筑初期混凝土强度很低,温度应力也较小,随着时间的增长其强度相应提高,第七天左右开始出现高强度区域,而且分布的范围最广,第七天以后超高强度的区域逐渐减小且大部分分布在边界应力集中的地区,施工时应主要控制第七天左右的温度和热应力变化,同时关注高强区分布范围的变化;(2)混凝土受外界气温及浇筑温度的影响较明显,高温施工是造成混凝土内部温度高的直接原因;(3)施工中常通过加入添加剂来降低强度,但是效果并不是很理想,建议通过调整保温层来控制高强区的应力;利用这些参数与结论,有效地利用了高强度的钢筋和混凝土,可以形成比普通混凝土跨度大而自重轻、截面小的承重结构物;可以改善钢筋混凝土的使用性,可以承受相当大的的过载而不会引起永久性的破坏,进而得到更加稳固的桥梁。
美国某洲际大桥桥梁结构的有限元分析
美国某洲际大桥桥梁结构的有限元分析摘要:采用Python面向对象语言来进行二次开发的应用,计算平台采用著名的Simulia Abaqus,本文主要讨论Abaqus脚本接口和对象结构逻辑化在开发中的优势,把工业模拟计算平台再次模块化可以减少重复逻辑的调用,流程更清晰、简明,应用更方便,提高效率。
关键词:有限元分析桥梁结构Abaqus PythonFinite element analysis of An InterContinental bridge frame structure Abstract:The secondary development of object-oriented language Python was used to calculate the axial force in a certain bridge structure with the application platforms of the famous Simulia Abaqus.Advantages of Abaqus scripting interface and objects logical structure in the development was discussed in this paper.Reliability analysis codes were also introduced to carry out bridge structural reliability analysis.Re-modularization of industrial simulation platform can highly reduce duplication of logic,make the process clear and concise and thus improve efficiency and reliability of bridge design.Key word:Finite Element Analysis,Bridge frame structure,Abaqus,Secondary Development,pythonABAQUS是国际上最先进的大型通用有限元计算分析软件之一,可以模拟绝大部分工程材料的线性和非线性行为。
有限元分析在桥梁结构中的应用
6
3、有限元的应用领域
医学中的生物力学
有限元法在牙体修复研究领域
航天航空领域
机械制造和设计
环境 能源 气象 土建(道桥隧、工民建、水利)
……
2019/2/5 7
4、有限元的学术领域
结构(静力、动力学、运动力学、冲击动力学)
流体力学 电和磁
机械 航天航空 军工
2019/2/5
y
Qi
M
i
M
j
j
j
j
i
N
i
i
N
j
Vi
0 12 EI l3 6 EI l2 0 12 EI l2 6 EI l2
θi
0 6 EI l2 4 EI l 0 6 EI l2 2 EI l
Uj
EA l 0 0 EA l 0 0 0
Vj
θj
6 EI 2 l 2 EI l 0 6 EI l2 4 EI l 0
1 2 3 0 0 0 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) k 11 k 12 k 13 k 14 k 15 k 16 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) k 21 k 22 k 23 k 24 k 25 k 26 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) k 31 k 32 k 33 k 34 k 35 k 36 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) k k 42 k 43 k 44 k 45 k 46 41 k ( 1 )k ( 1 )k ( 1 )k ( 1 )k ( 1 )k ( 1 ) 51 52 53 54 55 56 (1) (1) (1) (1) (1) (1) k 61 k 62 k 63 k 64 k 65 k 66 4 5 6 0 0 7
桥梁结构分析的杆系有限元法及结构模型的建立2015
结构的离散化
确定了结构的全部 节点,也就确定了 结构的单元划分, 然后对结构进行单 元编号和节点编号, 通常单元编号用①, ②,……表示,节 点编号用1, 2,……表示,如图 所示。
6 67
5
4
3
5
4
1
2
1
2
3
单元杆端力与杆端位移的表示方法
• 平面桁架单元的局部坐标和整体坐标:
y
y
x
3
x2
2
y
1
结构分析的杆系有限元法
• 概述 • 有限单元法的概念及应用 • 结构的离散化 • 单元杆端力与杆端位移 • 逆步变换 • 单元刚度矩阵 • 总刚度矩阵 • 边界条件的后处理法 • 线性代数方程组的数值解法
结构分析的含义
• 结构分析的含义,不仅指在一定的已知条件下对结构的变 形和内力等进行计算,而且包括分析构件刚度变化对内力 变化的影响,对结构的几何组成进行分析,以及选择合理 的结构形式等等。
结构分析的有限元法
• 美国20世纪70年代推出的至今仍然是世界销售量最大的 NASTRAN(NAsa STRuctural Analysis,美国国家航空和 宇宙航行局结构分析程序系统)程序与当时西德推出的 ASKA(Automatic System for Kinematics Analysis,运动 分析的自动程序系统)齐名,同为当时最为著名和广泛应 用的程序,但几十年后的现在,ASKA已无法与 NASTRAN相比。原因是ASKA后来没有大规模的资金投 入,使程序不断得到滚动发展(维护)和组织推广、剌激 程序在竞争中不断改进各种功能。
向量
X
e i
Yi e
F
e
Fi e Fje
BIM技术在斜拉桥有限元分析中的应用
BIM技术在斜拉桥有限元分析中的应用一、概述随着科技的不断发展,建筑信息模型(BIM)技术在工程领域的应用越来越广泛。
斜拉桥作为一种重要的交通工程结构形式,其设计和施工过程中对有限元分析的需求也日益增加。
BIM技术作为一种集成化的建筑设计和管理工具,可以有效地辅助斜拉桥的有限元分析,提高分析的准确性和效率。
本文将探讨BIM技术在斜拉桥有限元分析中的应用,包括BIM技术的基本原理、在斜拉桥设计阶段的应用以及在施工阶段的应用,并通过实际案例分析验证了BIM技术在斜拉桥有限元分析中的优势和价值。
1. 斜拉桥的概述斜拉桥是一种跨越河流、峡谷等地形障碍的桥梁结构,其主要特点是在主梁上设置一个或多个斜向索塔,通过索塔与主梁之间的钢索连接,形成一个整体结构。
斜拉桥的设计和施工技术对于保证桥梁的安全性能和使用寿命具有重要意义。
随着科技的发展,建筑信息模型(BIM)技术在斜拉桥有限元分析中的应用越来越广泛,为斜拉桥的设计、施工和维护提供了有力支持。
BIM技术是一种基于三维可视化的建筑设计和管理工具,通过对建筑物的各个构件进行数字化建模,实现设计、施工、运营和维护等全过程的信息化管理。
在斜拉桥有限元分析中,BIM技术可以为设计师提供更加直观、准确的桥梁结构模型,有助于提高设计的精度和效率。
同时BIM技术还可以实现多专业协同设计,促进各专业之间的信息共享和沟通,降低设计风险。
有限元分析是一种计算流体力学方法,通过对结构模型施加边界条件和加载条件,模拟结构的受力过程,从而评估结构的强度、刚度和稳定性等性能。
在斜拉桥有限元分析中,有限元方法可以帮助设计师识别潜在的结构问题,优化设计方案,提高桥梁的安全性能。
此外有限元分析还可以为斜拉桥的施工提供技术支持,如预制构件的设计、施工过程的模拟等。
BIM技术在斜拉桥有限元分析中的应用为桥梁设计和施工提供了新的思路和技术手段,有助于提高斜拉桥的质量和安全性,降低工程成本,推动桥梁行业的可持续发展。
桥梁结构体系转换有限元分析
Value Engineering 0引言上世纪90年代初期我国修建了大量的装配式简支T 梁桥。
随着运营年限的增加及交通发展,大量此类桥梁面临承载能力下降及设计荷载不足的窘境,为了提高此类桥梁的承载能力及安全性能,必须对该类旧桥进行合理的加固。
对旧桥主梁跨中截面承载能力不足进行加固采用的方法很多,一般有简支变连续梁法、增大截面法、梁底粘贴钢板法、梁底粘贴碳纤维片材法等。
[1][2]其中简支变连续梁法是多跨简支T 梁桥加固改造、提高承载能力的行之有效的方法。
该方法可结合桥面铺装整修,在两跨桥之间的T 梁上翼缘添加负弯矩钢筋,从而改变简支梁为连续梁的受力体系,降低了荷载产生的跨中弯矩,从而达到提高荷载等级的加固效果。
[3]此方法可结合梁底粘贴钢板或碳纤维片材的方法同时应用,将能达到更好的效果。
由于其方法简单、思路明确、效果明显、经济实惠而受到青睐,在多跨简支T 梁桥的加固中得到广泛应用。
[4]为了更为清楚的了解体系转换结构受力特性,需要桥梁进行结构分析,而桥梁结构的仿真计算近年来得到了快速的发展。
作为有限元分析的一种手段,仿真技术在桥梁结构的设计和计算中越来越体现出其快速精准的优势。
[5][6]对于荷载和桥梁体系均会在施工过程中发生转变的简支转连续桥梁,用仿真分析的方法进行计算,这种优势无疑就更为明显。
[7][8]本文结合某桥简支转连续加固的工程实例,利用有限元分析软件Ansys ,对简支转连续桥梁全桥进行三维仿真计算,并介绍了工程实例的关键部位的计算结果,得到一些有很好参考性的结论。
1桥梁简介本桥采用4片16米的跨径的简支T 梁,桥梁总长为84.04米、桥面净宽为7.5米、桥梁的总宽度为8.8米、设计荷载为汽—20,挂—100,由于桥梁服役时间长,现在不在满足逐渐增加的车辆荷载,需要通过把原来简支桥梁转化为连续桥梁。
即在两片主梁之间添加纵向约束来抵消增大的汽车荷载产生的弯矩,具体的加固方式是在在T 梁翼缘板下靠近梁肋在横隔板上面加纵向的预应力钢绞线,在梁肋下部加钢板来抵抗压力。