统计学基础 第7章--抽样推断分析

合集下载

统计学分章作业和答案解析

统计学分章作业和答案解析

第一章绪论一、判断题:1、社会经济统计的研究对象是社会经济现象总体的各个方面。

(×)2、统计调查过程中采用的大量观察法,是指必须对研究对象的所有单位进行调查。

(×)3、总体的同质性是指总体中的各个单位在所有标志上都相同。

(×)4、个人的工资水平和全部职工的工资水平,都可以称为统计指标。

(×)5、对某市工程技术人员进行普查,该市工程技术人员的工资收入水平是数量标志。

(×)6、某一职工的文化程度在标志的分类上属于品质标志,职工的平均工资在指标的分类上属于质量指标。

(√)7、总体和总体单位是固定不变的。

(×)8、质量指标是反映总体质的特征,因此可以用文字来表述。

(×)9、指标与标志一样,都是由名称和数值两部分组成的。

(×)10、数量指标由数量标志值汇总而来,质量指标由品质标志值汇总而来。

(×)11、一个统计总体可以有多个指标。

(√)二、单选题:1、属于统计总体的是(B )A、某县的粮食总产量B、某地区的全部企业C、某商店的全部商品销售额D、某单位的全部职工人数2、构成统计总体的个别事物称为( D)。

A、调查单位B、标志值C、品质标志D、总体单位3、对某城市工业企业未安装设备进行普查,总体单位是(B )。

A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业企业4、工业企业的设备台数、产品产值是(D )。

A、连续变量B、离散变量C.前者是连续变量,后者是离散变量 D、前者是离散变量,后者是连续变量5、在全国人口普查中(B )。

A、男性是品质标志B、人的年龄是变量C、人口的平均寿命是数量标志D、全国人口是统计指标6、总体的变异性是指(B )。

A.总体之间有差异 B、总体单位之间在某一标志表现上有差异C.总体随时间变化而变化 D、总体单位之间有差异7、几位学生的某门课成绩分别是67分、78分、88分、89分、96分,“学生成绩”是(B )。

统计学原理第七章 抽样调查

统计学原理第七章 抽样调查
29


x A 2 x A ( d ) f ( d )f d σ f f
2
256 72 σ 50 11504 50 53.63 200 200
2
30
第三节 全及指标的推断
一、全及指标的点估计
22
不具有某一标志的单位数用N0表示。 ► 总体成数和标准差与样本成数和标准差的计 算方法相同。只是总体指标用大写字母表示, 样本指标用小写字母表示。例如: ► 具有某一标志的单位数占总体的比重:
N1 P N
总体成数
n1 p n
样本成数
不具有某一标志的单位数占总体的比重:
N0 Q 1 P N
13
► 2.
(二)中心极限定律 ► 1. 独立同分布中心极限定理:证明不论变量 总体服从何种分布,只要它的数学期望和方 差存在,从中抽取容量为n 的样本,则这个 样本的总和或平均数是个随机变量,当n 充 分大时,样本的总和或平均数趋于正态分布.
► 2.
德莫佛-拉普拉斯中心极限定理:证明属性 总体的样本成数和样本方差,在n足够大时, 同样趋于正态分布。
σ N n σ n μx ( ) μx (1 ) n N 1 n N
2 2
总体单位总数
样本单位总数
抽样比例
21
(一)抽样成数的抽样平均误差μp ► 属性总体的标志值是用文字表示的,且标志 只有两个取值,非此即彼,故将属性总体的 标志称为“交替标志”或“是非标志”。 ► 交替标志也可以计算平均数(即成数)和标 准差。为了计算交替标志的平均数和标准差 必须将交替变异的标志过渡到数量标志。 ► 交替标志仍以x表示,设:x =1表示单位具有 某一标志, x = 0表示单位不具有某一标志。 具有某一标志的单位数用N1表示;

统计学题库

统计学题库

第五、六、七章:抽样推断1.总体分布、样本分布、抽样分布总体分布:总体中各个数据的分布样本分布:样本中各个数据的分布抽样分布:样本统计量的概率分布总体的分布通过直方图观察,但一般不可能得到所有的数据,也就不能直接观察到总体分布。

只要知道总体的分布类型和反映总体分布特征的参数就能够满足需要。

样本分布也称为经验分布,样本来源于总体,会包含总体的信息和特征,特别当样本容量较大时,样本的分布会很接近总体分布,但样本是随机抽取的,一般与总体分布有一定差异。

抽样分布是说明样本分布特征的统计量的分布,对它的理解是建立在反复抽样的基础上,样本是随机抽取的,不同的样本会有不同的统计量值,一个总体可以有很多个不同的样本,这样一个统计量就会有很多不同的取值,这些不同值的分布就是抽样分布。

由于在实践中对于同一总体我们不会反复抽取很多样本,因此,抽样分布一般不能直接观察到,仅是一种理论分布。

抽样分布揭示了样本统计量与总体参数的内在联系,为统计推断提供了理论基础。

2.总体单位与抽样单位、样本容量与样本可能数目3.统计量、总体参数及统计量的标准化统计量是样本数据的函数,在实际抽样之前,由于是样本随机的,统计量也是随机的,但在抽取样本之后,样本已经确定,统计量也就是确定的,不包含任何未知变量。

总体参数是说明统计总体的数据特征值,一般是确定但未知的,是待估计的。

统计量的标准化是统计推断的必要过程,是将具体的统计量转化为已知分布的统计量,转化以后就可以确定一定区间的概率。

4.统计误差、抽样误差、抽样标准误差与抽样边际误差统计误差是统计调查得到的值与客观实际值之间的差异。

包括抽样误差和非抽样误差。

非抽样误差又称工作误差或调查误差,是指调查登记过程中由于登记、过录、计算等原因引起的误差。

在全面调查和非全面调查中都有可能存在。

抽样误差也称为随机误差,是指在坚持了随机抽样的情况下,由于样本的随机性造成样本统计量与总体参数的差异。

样本是随机的,样本的统计量也是随机的,而总体参数是唯一的,因而抽样误差也是随机的。

《统计学原理》课件第七章抽样调查

《统计学原理》课件第七章抽样调查
4 -6
第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序

究 原
总体分布 样本分布 抽样分布

一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析

《统计学》第七章抽样推断第二节 抽样误差

《统计学》第七章抽样推断第二节 抽样误差
6-3
经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差

p p P


如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差

抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:

x x X

即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x

n
式中,n为样本容量; 为总体标准 。


成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)

7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)

2

统计学原理形成性考核册及答案作业(三)

统计学原理形成性考核册及答案作业(三)

《统计学原理》作业(三)(第五~第七章)一、判断题:1、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免的会产生误差,这种误差的大小是不能进行控制的。

(×)2、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。

(×)3、抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证(√)4、抽样误差即代表性误差和登记性误差,这两种误差都是不可避免的。

(×)5、总体参数区间估计必须具备的三个要素是估计值、抽样误差范围、概率保证程度。

(√)6、在一定条件,施肥量与收获率是正相关关系。

(√)7、甲产品产量与单位成本的相关系数是-0.8,乙产品单位成本与利润率的相关系数是-0.95,则乙比甲的相关程度高(√ )。

8、利用一个回归方程,两个变量可以互相推算(×)。

二、单项选择题1、在一定的抽样平均误差条件下( A )。

A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度2、反映样本指标与总体指标之间的平均误差程度的指标是( C )。

A、抽样误差系数B、概率度C、抽样平均误差D、抽样极限误差3、抽样平均误差是( C )。

A、全及总体的标准差B、样本的标准差C、抽样指标的标准差D、抽样误差的平均差4、当成数等于( C )时,成数的方差最大。

A、1B、0 c、0.5 D、-15、对某行业职工收入情况进行抽样调查,得知其中80%的职工收入在800元以下,抽样平均误差为2%,当概率为95.45%时,该行业职工收入在800元以下所占比重是( C )。

A、等于78%B、大于84%c、在此76%与84%之间 D、小于76%6、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同,但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差(A )。

07心理统计学-第七章 参数估计

07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p

n
p, SE p

n

pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)

第7章 《抽样推断》练习题

第7章 《抽样推断》练习题

第7章《抽样推断》练习题《第7章抽样推断》练习题一、单项选择题1、对某市居民生活状况作了一次抽样调查, 据样本资料计算, 平均每居民实际月生活费用76元, 抽样平均误差3元, 调查队推断市居民实际月生活费用在70—82之间, 这一推断的可靠程度为:A、68.27%B、95%C、95.45%D、99.73%2、在一定的抽样平均误差条件下,A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度3、按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验4、一所较大规模的大学教务部决定调整课程时间安排,以便提供足够的时间使大家可以为上课做好准备。

到目前为止,教务部认为课间安排20分钟的时间足够了。

表述零假设H0和备择假设H1A、H0:µ=20 H1:µ≠20B、H0:µ≥20 H1:µ<20C、H0:µ≤20 H1:µ>205、当我们根据样本资料对零假设作出接受或拒绝的决定时,可能出现的情况有:①当零假设为真时接受它;②当零假设为假时接受它;③当零假设为真时拒绝它;④当零假设为假时拒绝它.A、①B、②C、①②③D、①②③④6、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A、53.3B、1.65C、720D、13207、在其他条件不变的情况下,要使抽样误差减少1/3,则样本量必须增加多少倍?A、1/3B、1.25C、3 D、9二、多项选择题1、推断统计学研究的主要问题是A、如何科学地确定总体B、如何科学地从总体中抽取样本C、怎样控制样本对总体地代表性误差D、怎样控制总体对样本地代表性误差E、由所抽取地样本去推断总体特征2、在抽样推断中,样本单位数的多少取决于A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式3、抽样推断的概率度、可靠性和精确度的关系为()A、概率度增大,估计的可靠性也增大B、概率度增大,估计的精确度下降C、概率度减小,估计的精确度下降D、概率度减小,估计的可靠性增大E、估计的可靠性增大,估计的精确度也增大3、影响抽样平均误差大小的因素有A、样本各单位标志值的差异程度B、总体各单位标志值的差异程度C、样本单位数D总体单位数E、抽样方法4、在其他条件不变时,抽样估计的置信度(1-α)越大,则:A、允许误差范围越大B、允许误差范围越小C、抽样估计的精确度越高D、抽样估计的精确度越低E、抽样估计的可靠性越高5、在假设检验中,当我们作出拒绝原假设而接受备择假设的结论时,表示A、有充足的理由否定原假设B、原假设必定是错误的C、犯错误的概率不大于αD、犯错误的概率不大于βE、在原假设为真的假设下发生了小概率事件三、判断改错题1、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的。

经济统计学第7章抽样调查

经济统计学第7章抽样调查
CHAPTER ONE
参数的假设检验是根据样本,对总体参数某种假设的正确性作出判断。 可以分别提出两种假设: 前一种不能轻易拒绝的假设为原假 设,后一种为备选假设。假设检验就是根据样本,检验 是否成立, 不成立就接受备选假设 。
一、基本思想: 小概率原则:认为在一次实验中 小概率事件几乎是不可能发生的,小概率事件的概率为显著性水平 。
一个总体的检验
Z 检验 (单尾和双尾)
t 检验 (单尾和双尾)
Z 检验 (单尾和双尾)
2检验 (单尾和双尾)
均值
一个总体
比例
方差
总体方差已知时的均值检验 (双尾 Z 检验)
均值的双尾 Z 检验 (2 已知)
假定条件 总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30) 原假设为:H0: =0;备择假设为:H1: 0
单侧检验 (原假设与备择假设的确定) 例如,某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上
除非样本能提供证据表明使用寿命在1000小时以下,否则就应认为厂商的声称是正确的 建立的原假设与备择假设应为
H0: 1000 H1: < 1000
第二节
一个正态总体参数的假设检验
-10
100
20
25
-5
25
30
30
0
0
离差
40
35
5
25
50
40
10
100
10
25
-5
25
20
30
0
0
30
35
5
25
40
40
10
100
50
45
15

《统计学基础》(专)阶段练习四(第七、八章)

《统计学基础》(专)阶段练习四(第七、八章)

《统计学基础》(专)阶段练习四(第七、八章)一、填空题1.抽样调查中,抽取样本的方法有___重复抽样____和____不重复抽样___。

2。

根据总体各单位的标志值或标志属性计算的、反映总体数量特征的综合指标称为___总体指标____。

样本指标是根据___样本____标志值或标志属性计算的综合指标.3.在纯随机重复抽样的条件下,若其他条件不变,抽样平均误差缩小一半,则样本单位数___增加____;若抽样平均误差增加一倍,则样本单位数___减少____.4.影响抽样误差大小的因素主要有:___样本容量的大小____、___抽样方法____、___总体各单位标志值的变动程度____和抽样调查的组织形式.5.抽样误差是由于抽样的___随机性____而产生的误差,这种误差不可避免,但可以____控制___。

6。

影响样本单位数的因素主要有___总体标志值的变异程度____、___概率保证程度的大小____、___极限误差____及___抽样方法与组织形式____.7。

抽样估计的方法有___点估计____和___区间估计____两种。

8.常用的抽样组织形式有___简单随机抽样____、___分类抽样____、___整群抽样____、___等距抽样____四种。

9。

现象之间的相关关系按相关的程度分有___完全相关____相关、____不相关___相关和____不完全相关___相关;按相关关系的方向分有___正相关____相关和___负相关____相关;按相关关系的表现形式分有____线性相关___相关和___非线性相关____相关;按自变量的多少分有_______相关和_______相关。

10.相关系数等于0,说明两变量之间____无线性相关___;直线相关系数等于1,说明两变量之间____完全正线性相关___;直线相关系数等于-1,说明两变量之间___完全负线性相关____。

二、单项选择题1。

抽样平均误差是( A )。

统计学PPT课件

统计学PPT课件
19世纪初,法国数学家、统计学家拉普拉斯在总结前人成果 的基础上出版了《概率的分析理论》一书,从而形成完整的应用 理论体系。
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义

自考00974统计学原理复习重点

自考00974统计学原理复习重点

00974统计学原理章节基础知识第一章:总论1、统计的三基本方法:大量观察法,综合分析法,归纳推断法((可扩展未简答)2、凯特乐将统计学的三个主要源泉:英国的政治学派,德国的国势学,法国的概率统计3、“统计”一词的含义:统计包括三个含义:统计工作、统计资料和统计科学。

统计工作、统计资料、统计科学三者之间的关系是:统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。

(简答)4、统计信息的两大特征:数量性和总体性(多选、简答)5、统计的三大职能:信息,咨询,监督(多选)6、四大计量尺度:定类尺度,定序尺度,定距尺度,定比尺度(重点前两个)7、按度量层次低到高:定类尺度>定序尺度>定距尺度>定比尺度8、区别总体和总体单位(选择,判断)9、统计指标的的三大特性:总体性,数量性,综合性(多选)10、区分变异和变量,变量又可以分为:连续变量和离散变量(多选)第二章:统计资料的收集和整理1.统计资料的三大特性:数量性,总体性,客观性(选择,填空)2.总体性的定义是指统计是从整体上反映和分析事物数量特征,而不是着眼于个别事物,因为事物的本质和发展规律只有从整体上观察,才能作出正确的判断。

(判断)3.原始资料的搜集方法访问方法观察方法实验方法(多选)4.统计调查的方式:1)普查:专门组织进行一次性的全面调查(填空、多选)2)抽样调查:最常用的方法3)统计报表4)重点调查:了解定义(选择)(多年都有考到)5)典型调查6.结论:统计方式是以普查为基础,抽样调查为主体(选择、判断)7.统计调查方案的内容:(1) 调查目的:调查目的要符合客观实际,是任何一套方案首先要明确的问题,是行动的指南。

(2) 调查对象和调查单位:调查对象即总体,调查单位即总体中的个体。

(3) 调查项目:即指对调查单位所要登记的内容。

(4) 调查表:就是将调查项目按一定的顺序所排列的一种表格形式。

统计学课件:抽样推断

统计学课件:抽样推断

3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,

徐国祥《统计学》(第2版)配套题库【章节题库】第7章~第9章 【圣才出品】

徐国祥《统计学》(第2版)配套题库【章节题库】第7章~第9章 【圣才出品】
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 7 章 抽样和抽样分布
一、单项选择题 1.进行抽样推断时,必须遵循的基本原则是( )。 A.准确性原则 B.标准化原则 C.随机性原则 D.可靠性原则 【答案】C 【解析】抽样推断是指按照随机的原则从调查总体中抽取一部分样本单位进行观察,并 以样本指标对总体指标做出具有一定可靠性的估计和推断,从而达到对调查总体的认识的一 种统计方法。
2 / 65
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( )。 A.简单随机抽样 B.分层抽样 C.等距抽样 D.整群抽样 【答案】D
6.下列关于样本平均数和总体平均数的说法,正确的是( )。 A.前者是一个确定值,后者是随机变量 B.前者是随机变量,后者是一个确定值 C.两者都是随机变量 D.两者都是确定值 【答案】B
A.类型抽样 B.等距抽样 C.整群抽样 D.多阶段抽样 【答案】A 【解析】类型抽样即分类抽样或分层抽样,它是指先将总体按主要标志进行分组,再按
4 / 65
圣才电子书 十万种考研考证电子书、题库视频学习平台

随机原则从各组中抽取样本单位的一种抽样组织形式。
10.通常所说的大样本是指样本容量( )。 A.大于等于 30 B.小于 30 C.大于 10 D.在 10~20 之间 【答案】A
2.抽样调查中,无法避免和消除的是( )。 A.登记误差 B.系统性误差 C.测量工具误差 D.随机误差 【答案】D 【解析】随机误差是指遵守了随机原则,但可能抽到不同的样本而产生的误差。随机误 差在抽样调查中是不可避免的,是偶然的代表性误差。这种误差的大小可以计算并加以控制。

第7章抽样与抽样分布

第7章抽样与抽样分布

· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等

统计学基础及应用-抽样推断

统计学基础及应用-抽样推断

任务八 抽样推断任务描述与分析在A市自来水公司的客户满意度调查中,我们抽样调查了A市自来水公司的700个客户,从前面的调查分析中我们了解到这700户客户对A市自来水公司的产品和服务等方面的评价。

现在你需要思考的是:这700户客户的意见能在多大程度上反映所有客户的意见?误差的可能性有多大?为了保证调查的准确性,我们是否需要再追加调查?任务分析(1)如何判断我们抽样调查的700个客户够不够?(2)根据抽调客户的意见我们如何推断出所有客户的意见?(3)被调查客户的意见与所有客户的意见误差有多少?案例8-1:为了加强与顾客的沟通,深入了解客户需求,以解决客户遇到的问题,并在此基础上持续改进公司的产品质量,进一步优化供水服务,A市自来水公司决定进行客户满意度调查,要求在2个月时间内完成调查报告。

A市共有自来水用户200万户,在短短两个月时间内必须完成客户调查并出具调查报告,你如何完成这项工作?抽样调查抽样推断是按照随机原则从总体中抽取一部分总体单位作为样本单位,组成样本总体,并以样本的数量特征对总体的数量特征做出具有一定可靠程度的估计和推断的统计分析方法。

抽样推断具有以下特点:1.抽样推断是用样本指标值来估计总体指标值 2.抽样的随机原则是抽样推断的前提3.抽样推断的误差是可以事先计算并加以控制节省调查费调查速度快调查结果准确可靠应用范围广抽样调查抽样推断常用概念总体样本从总体中按照随机原则抽选出来的一部分单位称为样本,用n 表示 我们所要调查研究的事物或现象的全体,总体单位数通常用N表示总体指标样本指标总体指标又称参数,是反映总体数量特征的综合指标,总体指标主要有:总体平均数,总体方差σ 2,总体标准差σ、总体成数P 和Q。

样本指标又称统计量,是根据样本各单位的标志值或标志特征计算的、反映样本数量特征的综合指标。

样本指标主要有:样本平均数,样本方差s2,样本标准差s,样本成数p和q。

样本容量样本样本个数又称样本可能数目,是指在一个抽样方案中从总体中所有可能被抽取的样本总数。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学第七章、第⼋章课后题答案统计学复习笔记第七章参数估计⼀、思考题1.解释估计量和估计值在参数估计中,⽤来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本⽐例、样本⽅差等。

根据⼀个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)⽆偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的⽅差尽可能⼩。

对同⼀总体参数的两个⽆偏估计量,有更⼩⽅差的估计量更有效。

(3)⼀致性:是指随着样本量的增⼤,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道⼀些调查结果只给出百分⽐和误差(即置信区间),并不说明置信度,也不给出被调查的⼈数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查⼈数是负责任的表现。

这样则可以由此推算出置信度(由后⾯给出的公式),反之亦然。

4.解释95%的置信区间的含义是什么置信区间95%仅仅描述⽤来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,⽆穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某⼀样本数据得到总体参数的某⼀个95%置信区间,就以为该区间以的概率覆盖总体参数。

5.简述样本量与置信⽔平、总体⽅差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信⽔平1-α、总体⽅差、估计误差E 之间的关系为与置信⽔平成正⽐,在其他条件不变的情况下,置信⽔平越⼤,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越⼤;与总体⽅差成正⽐,总体的差异越⼤,所要求的样本量也越⼤;与与总体⽅差成正⽐,样本量与估计误差的平⽅成反⽐,即可以接受的估计误差的平⽅越⼤,所需的样本量越⼩。

吉珠统计学期末考试重点第7章 抽样及抽样分布

吉珠统计学期末考试重点第7章  抽样及抽样分布

x
时, f (x) 的曲线以 x 轴为渐近线。
第七章 抽样调查
4. 标准正态分布
标准正态分布的概率密度函数为:
1 ( z) e , <z< 2
若随机变量 Z 服从标准正态分布, 则记为 Z~ (0, 1)
z2 2
1. 任何一个一般的正态分布,可通过下面的 线性变换转化为标准正态分布
总体均值的区间估计
(一) 大样本时总体均值的区间估计
第七章 抽样调查
例:某企业生产A产品的工人有1000人, 某日采用不重复抽样从中随机抽取100人调查 他们的当日产量,样本人均产量为35件,产量 的样本标准差为4.5件。请以95.45%的臵信度
估计该日人均产量的臵信区间。
解:①计算抽样平均误差
x 0
x a
第七章 抽样调查
标准差 决定密度函数曲线 f (x) 的陡缓程度.
0.5
1
2
第七章 抽样调查
3. 正态分布密度函数的特点
(1) 对称性。 (2) 非负性。
(3) f (x) 在 X x 时达到极大值 f(x ) 1 2
(4) f (x) 的曲线在 X x 处有拐点。 (5 )当
Z X

x2 2
~ N (0,1)
2. 标准正态分布的概率密度函数
1 ( x) e 2 , x
3. 标准正态分布的分布函数 t2 x x 1 -2 ( x) (t )dt e dt 2
第七章 抽样调查
标准正态分布, 具有如下性质或结论:
③计算抽样极限误差
由 1 ) 0.95 ,查t分布表得, (
t n 1 t 2.5% (9)=2.2622
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p t p
2. 抽样极限误差
(2)抽样极限误差的计算
1)重复条件下
2 平均数的抽样极限误差 x t x t n 成数的抽样极限误差 t t P(1 P)
1)全及指标 (参数)
◆ 总体平均数和总体标准差
总体平均数

X
总体各单位某一数量标志标志值的算术平均数。
X X N
或 X
XF F
总体标准差
测定总体各单位标志值差异程度的指标。
X
(X X )
N
2

X
(X X ) F F
2
1)全及指标 (参数)
◆ 总体成数和总体成数标准差
抽样平均误差的计算
【例7-1】某高等职业技术学院2009年9月从1000名新生 中随机抽取100名进行英语口语测试,测得平均成绩为76 分,标准差为11.2分,其中60分以上的学生有94名。根 据上述资料,计算该校新生英语口语平均成绩和及格率 的抽样平均误差。
已知 N 1000 n 100 x 76 s x 11.2 2 2 由于总体方差不知道,需用 s x 代替 p(1 p) 代替 P(1 P) 重复抽样条件下:

国家旅游局自1993年起,每年委托国家统计局城市 社会经济调查总队(现为国家统计局城市社会经济调查 司),对我国大陆地区城镇居民国内旅游情况进行抽样 调查(2006年以前未将西藏纳入调查范围)。同时,在 连续三年(1997—1999年)与国家统计局城市社会经济 调查总队合作开展农村居民国内旅游调查取得经验的基 础上,从2000年开始,委托国家统计局农村社会经济调 查总队(现为国家统计局农村社会经济调查司)在我国 除西藏以外的大陆地区开展了农村居民国内旅游抽样调 查。根据2007年这两项调查的结果,对全国国内旅游人 数、出游率、出游花费等主要指标进行测算,从而分别 得出2007年城镇居民旅游总体情况、农村居民旅游总体 情况及全国国内居民旅游总体情况。
(3)全及指标和抽样指标
2)样本指标(统计量)
样本指标
根据样本各单位标志值或标志属性计算的综合指标。 它是样本变量的函数,用来估计总体参数的,又称为 统计量,它和总体参数相对应。 统计量有样本平均数、样本成数、样本标准差(或 样本方差)。
2)样本指标(统计量)
◆ 样本平均数和样本标准差
样本平均数
XP 0 N 0 1 N1 N1 N
(0 P) 2 N 0 (1 P) 2 N1 P 2 N 0 Q 2 N1 P N N
P 2Q Q 2 P PQ ( P Q) PQ P(1 P)
分组讨论:
全及指标虽然是客观存在的, 为什么在抽样推断中是不可能直 接计算的,只能推断得出?
(2)抽样平均误差的计算公式
2)均误差
2 N n 2 n x ( ) (1 ) n N 1 n N
成数的抽样平均误差
p
P(1 P) N n P(1 P) n ( ) (1 ) n N 1 n N
提 示
应用上述公式计算抽样平均误差时, 一般总体方差是未知的, 通常使用样本方差来代替, 有时也可用小规模的试验性调查资料来代替。
章首引例
由国家旅游局与国家统计局城市社会经济调查司、农 村社会经济调查司合作,在我国大陆地区开展的国内旅游 抽样调查结果表明,2007年我国国内旅游人数继续平稳增 长,国内旅游收入突破7000亿元;国内旅游总人数为16.10 亿人次,比上年增长15.5%;国内旅游总收入为7770.62亿 元,比上年增长24.7%;国内游客人均花费482.6元/人次, 比上年增长8%。 上述案例中,为什么采取抽样调查这种非全面调查方式 同样可以取得反映全国国内旅游情况的资料?案例中的数据 是采用何种方法估计推断的?
样本个数(样本可能数目)
样本个数指有多少个样本。是从一个全及总体中可能 抽取的样本数目。
2. 抽样推断中的几个基本概念
(3)全及指标和抽样指标
1)全及指标 (参数)
指根据全及总体各个单位的标志值或标志属性计算的, 反映总体某种特征或属性的统计指标。 全及指标是总体变量的函数,其数值是由总体各单位 的标志值或标志属性决定的。由于一个全及指标的指标值是 确定的、唯一的,所以称为参数。常用的全及指标包括总 体平均数和总体标准差、总体成数和总体成数标准差。
(2)抽样推断的特点
遵循随机取样的原则 由部分资料推算总体的数量特征 抽样误差可以事先计算和控制
2. 抽样推断中的几个基本概念
(1)全及总体和样本总体
全及总体
指所要认识的研究对象的全体。是所要认识的、具有 某种共同性质的许多单位的集合体。 总体单位总数用“N”表示。 在抽样推断中,全及总体是客观存在、唯一确定的。
1. 抽样平均误差
(1)抽样平均误差的概念
抽样平均误差是反映抽样误差一般水平的指标。 x 表示抽样平均数的抽样平均误差, p 表示抽样成数的抽样平均误差,
M 表示全部可能的样本数目。
提 示
上述公式只能表示抽样 平均误差的意义。 实际工作中不能用其来计算。 在抽样推断中总体指标 是不知道的,需要推断 才能得到。 另外还需知道所有可能的样 本平均数和成数,这实际上 也是很难办到的。
4. 抽样组织方式
(3)等距抽样
等距抽样又称为机械抽样或系统抽样。它是先将 总体各单位按某一标志排序,然后按照固定的顺序和 相同的间隔来抽选样本单位的抽样组织形式。
(4)整群抽样
整群抽样也称为分群抽样或集团抽样。它是将总 体划分为若干群,然后以群为单位从中随机抽取部分 群,对中选群中的所有单位进行全面调查的抽样组织 方式。
不重复抽样 重复抽样 抽样误差小 抽样误差大
抽样误差
抽样调查的组织形式
在样本容量相同的情况下 采用等距抽样或类型抽样 抽样误差就比简单随机抽样 或整群抽样小。
2. 抽样极限误差
(1)抽样极限误差的含义
抽样极限误差是指联系一定可靠程度的抽样误差 的可能范围,是进行抽样推断时可以允许的误差范围, 故又称为允许误差,用 表示。 根据可靠程度的要求,抽样极限误差与抽样平均 误差之间的关系式为: t 抽样平均数的抽样极限误差 x t x 抽样成数的抽样极限误差
7.1 抽样推断的基本概念
1. 抽样推断的概念及特点 (1)抽样推断的概念 抽样推断就是按照随机抽样的原则, 从总体中抽出一部分单位作为样本,并 利用样本的实际资料计算样本指标值, 然后根据样本指标对总体指标(数量特 征)做出具有一定可靠程度的估计和判 断的一种统计分析方法。
1. 抽样推断的概念及特点
平均成绩的抽样 2 11.2 2 x 1.12 (分) n 100 平均误差 及格率的抽样 p P(1 P) 94% (1 94%) 2.37% n 100 平均误差
x 2
及格率 p
94 94 % 100
不重复抽样条件下:
n 11.22 100 (1 ) (1 ) 1.06 (分) n N 100 1000
第7章 抽样推断分析
学习目标
理解抽样推断的概念和特点、掌握抽样推断中 涉及的几个基本概念;知道如何采用重复抽样和 不重复抽样方法选取样本,能结合实际有关资料 进行点估计和区间估计,并能确定必要样本容量; 熟练应用Excel进行抽样推断。
关键术语
抽样推断 点估计 抽样平均误差 区间估计 抽样极限误差
章首引例
n p 1 n

n0 q 1 p n
2)样本指标(统计量)

样本成数标准差
s p pq p(1 p)
提示
全及总体是唯一确定的, 反映全及总体数量特征的全及指标也是个定值。 从一个总体中可抽取多个样本, 样本总体不是唯一的,样本指标是随机变量。
3.抽样方法
(1)重复抽样 从总体N个单位中随机抽取一个容量为n的样本,每 次从总体中抽取一个单位,并把它看作是一次试验, 把结果登记下来,又重新放回,参加下一次抽选,连 续进行n次试验构成一个样本的方法。 从总体N个单位中,用重复抽样的方法,随机抽取n 个单位构成一个样本,则共可抽取个 N n 个样本。 总体有A、B、C、D四个单位,用重复抽样的方法抽 取2个单位构成样本。全部可能抽取的样本数目为42=16 个,它们是:AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
3.抽样方法
(2)不重复抽样
从总体N个单位中抽取一个容量为n的样本,每次 从总体中抽取一个单位,但每次抽出一个单位后就不 再放回参加下一次的抽选,连续进行n次抽取构成一个 样本的方法。 从总体N个单位中,用不重复抽样的方法,抽取n 个单位构成一个样本,全部可能抽取的样本数目为
( N 1)(N 2)......(N n 1) 个 N 总体有A、B、C、D四个单位,用重复抽样的方法抽 取2个单位构成样本。全部可能抽取的样本数目为4×3 =12 个,它们是:AB AC AD BA BC BD CA CB CD DA DB DC
94%(1 94%) 100 (1 ) 2.25% 100 1000
P
P(1 P) n (1 ) n N
提示
平均数的抽样平均误差的计量单位与平均 数的计量单位相同,成数的抽样平均误差一般 用百分数来表示。
1. 抽样平均误差
(3)影响抽样误差大小的因素
总体各单位标志值的差异程度 正比 样本的单位数 反比 抽样误差 抽样方法
反映样本各单位某一数量标志标志值的算术平均数。
x x n

xf x f
样本标准差
用来测定样本各单位标志值变异程度的指标。
sx
( x x)
n
2

sx
( x x) f
相关文档
最新文档