高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习)

合集下载

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。

积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。

下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高一数学必修一函数知识点总结

高一数学必修一函数知识点总结

高一数学必修一函数知识点总结函数知识点总结篇一1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程(1)方程k=f(x)有解k∈D(D为f(x)的值域);(2)a≥f(x) 恒成立a≥[f(x)]max,;a≤f(x) 恒成立a≤[f(x)]min;(3)(a>0,a≠1,b>0,n∈R+);log a N= ( a>0,a≠1,b>0,b≠1);(4)log a b的符号由口诀“同正异负”记忆;a log a N= N ( a>0,a≠1,N>0 );6.映射判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.函数单调性(1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性;(2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题8.反函数对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).9.数形结合处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.10. 恒成立问题恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;函数知识点总结篇二1.集合的含义与表示集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。

- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。

- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。

例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。

解答:由于函数是多项式函数,所以定义域为全体实数。

接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。

导函数的系数为正数4,所以原函数是递增函数。

考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。

将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。

所以值域为$[-\frac{7}{8},+\infty)$。

2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。

- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。

- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 三角函数:正弦函数、余弦函数、正切函数等。

例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。

解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。

由指数函数的性质可知,$x=\log_2 3$。

高一数学必修一函数知识点

高一数学必修一函数知识点

【导语】考试是检测学⽣学习效果的重要⼿段和⽅法,考前需要做好各⽅⾯的知识储备,对于数学更加要进⾏复习归纳。

下⾯就让给⼤家分享⼀些⾼⼀数学必修⼀函数知识点总结吧,希望能对你有帮助!⾼⼀数学必修⼀函数知识点总结篇⼀1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可⽤于求参数);(3)判断函数奇偶性可⽤定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题⼀定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或⽅程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中⼼(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中⼼(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的⽅程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2⽅程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成⽴,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成⽴,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像⼜关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像⼜关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.⽅程k=f(x)有解 k∈D(D为f(x)的值域);6.a≥f(x) 恒成⽴ a≥[f(x)]max,; a≤f(x) 恒成⽴ a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由⼝诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不⼀定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地⽤定义证明函数的单调性,求反函数,判断函数的奇偶性。

高中数学知识点总结及典型例题

高中数学知识点总结及典型例题

一、函数1、函数概念与基本初等函数一、知识导学1.映射:一般地,设A 、B 两个集合,如果按照某种对应法则 ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的单值对应叫做集合A 到集合 B的映射,记作f :A →B.(包括集合A 、B 及A 到B 的对应法则)2.函数: 设A ,B 都是非空的数集,如果按某种对应法则f ,对于集合A 中每一个元素x ,在集合B 中都有唯一的元素和它对应,且B 中每一个元素都的原象,这样的对应叫做从集合A 到集合 B 的一个函数,记作 ()y f x =.其中所有的输入值x 组成的集合A 称为函数()y f x =定义域.对于A 中的每一个x ,都有一个输出值y 与之对应,我们将所有输出值y 组成的集合称为函数的值域.3.反函数:一般地,设函数y=f(x)(x ∈A)的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出来,得到x=f -1(y). 若对于y 在C 中的任何一个值,通过x 在A 中都有唯一的值和它对应,那么x=f -1(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数叫做函数y=f(x)(x ∈A)的反函数,记作x=f -1(y). 我们一般用x 表示自变量,用y 表示函数,为此我们常常对调函数x=f -1(y)中的字母x,y ,把它改写成y=f -1(x) 反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.二、疑难知识导析1.对映射概念的认识(1) 与 是不同的,即 与 上有序的.或者说:映射是有方向的,(2) 输出值的集合是集合B 的子集.即集合B 中可能有元素在集合A 中找不到对应的输入值.集合A 中每一个输入值,在集合B 中必定存在唯一的输出值.或者说:允许集合B 中有剩留元素;允许多对一,不允许一对多.(3)集合A ,B 可以是数集,也可以是点集或其它类型的集合.2.对函数概念的认识(1)对函数符号 ()f x 的理解知道 y=()f x 与 ()f x 的含义是一样的,它们都表示 是 的函数,其中 是自变量,()f x 是函数值,连接的纽带是法则 .是单值对应.(2)注意定义中的集合 A ,B 都是非空的数集,而不能是其他集合;(3)函数的三种表示法:解析法,列表法,和图像法.3.对反函数概念的认识(1)函数y=()f x 只有满足是从定义域到值域上一一映射,才有反函数;(2)反函数的定义域和值域分别是原函数的值域和定义域,因此反函数的定义域一般不能由其解析式来求,而应该通过原函数的值域而得.(3)互为反函数的函数有相同的单调性,它们的图像关于y=x 对称.三、经典例题导讲[例1]设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数.解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有 一共有27个映射 (2)符合条件的映射共有4个0222,2,2,0,0,2220a a a a b b b b c c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩[例2]已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域 正解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤10x -≤≤,∴(1)f x +的定义域是[-1,0][例3]已知:*,x N ∈5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,求(3)f .正解:∵ 5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,∴(3)f =(32)(5)f f +==(52)(7)f f +==7-5=2 [例4]已知()f x 的反函数是1()f x -,如果()f x 与1()f x -的图像有交点,那么交点必在直线y x =上,判断此命题是否正确?错解:正确错因:对互为反函数的图像关于直线y x =对称这一性质理解不深,比如函数1161()log 16x y y x ==与的图像的交点中,点1111(,),2442(,)不在直线y x =上,由此可以说明“两互为反函数图像的交点必在直线y x =上”是不正确的.[例5]求函数2()46y f x x x ==-+,[1,5)x ∈的值域.解:配方,得22()46(2)2y f x x x x ==-+=-+∵[1,5)x ∈,对称轴是2x =∴当2x =时,函数取最小值为(2)f =2,()(5)11f x f <= ()f x ∴的值域是[)211,[例6]根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x =+,求()f x(3)若()f x 满足()2(),f x f ax x +=求()f x 解:(1)本题知道函数的类型,可采用待定系数法求解 设()f x =2(0)ax bx ca ++≠由于(0)0f =得2()f x ax bx =+, 又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++ 211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x = (2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥ ∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x += 与 1()2()f x f ax x += 联列可消去1()f x 得:()f x =233a ax x -. 点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法.[例7] 已知x y x 62322=+,试求22y x +的最大值.1(0),1(1)u x u u =≥=-≥21122x x +分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y 又,29)3(2132322222+--=+-=+x x x x y x ∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+-- 点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-= ,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题..2、函数的性质1.函数的单调性:(1)增函数:一般地,设函数()y f x =的定义域为I ,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(2)减函数:一般地,设函数()y f x =的定义域为I ,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(3)单调性(单调区间)如y=f(x)在某个区间上是增函数或减函数,那么就说函数f(x)在这区间上具有单调性,这一区间叫做函数y=f(x)的单调区间.2.函数的奇偶性:(1)奇函数:一般地,如果对于函数f(x)的定义域内的任意一个x ,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数.(2)一般地,如果对于函数f(x)的定义域内的任意一个x ,都有f(-x) =f(x),那么函数f(x)就叫做偶函数.(3)如果函数f(x)是奇函数或偶函数,那么就说f(x)具有奇偶性.3.函数的图像:将自变量的一个值x 0作为横坐标,相应的函数值f(x 0)作为纵坐标,就得到平面内的一个点(x 0,f(x 0)),当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点,所有这些点的集合(点集)组成的图形就是函数y=f(x)的图像.二、疑难知识导析1. 对函数单调性的理解, 函数的单调性一般在函数的定义域内的某个子区间上来讨论,函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x ,都有f(-x)=f(x),f(-x)=-f(x)的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图像关于直线x=a对称的充要条件是对定义域内的任意x ,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图像的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.3. 用列表描点法总能作出函数的图像,但是不了解函数本身的特点,就无法了解函数图像的特点,如二次函数图像是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图像的特征描绘出来的.三、经典例题导讲[例1]判断函数1()3x y -=的单调性.正解: 令t x =-,则该函数在R 上是减函数,又1101,()33t y <<∴=在R 上是减函数, ∴ 1()3x y -=是增函数[例2]判断函数()(1f x x =+的奇偶性.正解:()(1f x x =+有意义时必须满足10111x x x-≥⇒-<≤+ 即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数[例3] 判断2()log (f x x =+的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log 22++-x x =-)(x f∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f=01log )1()1[(log 2222==++-⋅++x x x x )()(x f x f -=- ∴)(x f 是奇函数[例5] 已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围. 正解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 3、基本初等函数一、知识导学1. 二次函数的概念、图像和性质. (1)注意解题中灵活运用二次函数的一般式2()(0)f x ax bx c a =++≠二次函数的顶点式2()()(0)f x a x m n a =-+≠和 二次函数的坐标式12()()()(0)f x a x x x x a =--≠(2)解二次函数的问题(如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等)要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解. ①2()(0)f x ax bx ca =++≠,当240b ac ∆=->时图像与x 轴有两个交点. M (x 1,0)N(x 2,0),|MN|=| x 1- x 2② 二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数x y a =(0,1)a a >≠和对数函数log a y x =(0,1)a a >≠的概念和性质.(1)有理指数幂的意义、幂的运算法则: ①m n m n a a a +⋅=;②()m n mn a a =;③()n n n ab a b =(这时m,n 是有理数)对数的概念及其运算性质、换底公式.log ()log log ;log log log a a a a a a M M N M N M N N ⋅=+=-1log log ;log log n a a a a M n M M n==; log log log c a c b b a = (2)指数函数的图像、单调性与特殊点.对数函数的图像、单调性与特殊点.①指数函数图像永远在x 轴上方,当a >1时,图像越接近y 轴,底数a 越大;当0<a<1时,图像越接近y 轴,底数a 越小.②对数函数的符号常受到底数和真数的范围的制约,注意对底数a 的讨论.③当a>1时,图像越接近x 轴,底数a 越大; 当0<a<1时,图像越接近x 轴,底数a 越小.3.幂函数y x α=的概念、图像和性质.结合函数y=x,y=x 2 ,y=x 3,y=12,y x y x --==,y=12x 的图像,了解它们的变化情况. ①α>0时,图像都过(0,0)、(1,1)点,在区间(0,+∞)上是增函数;注意α>1与0<α<1的图像与性质的区别.②α<0时,图像都过(1,1)点,在区间(0,+∞)上是减函数;在第一象限内,图像向上无限接近y 轴,向右无限接近x 轴.③当x>1时,指数大的图像在上方.二、疑难知识导析1.二次函数在区间上最值的求解要注意利用二次函数在该区间上的图像.二次函数的对称轴与区间的位置通常有三种情况:(1)定义域区间在对称轴的右侧;(2)定义域区间在对称轴的左侧;(3)对称轴的位置在定义域区间内2.幂的运算性质、对数的运算性质的运用,要注意公式正确使用.会用语言准确叙述这些运算性质防止出现下列错误:(1=a , (2)log ()log log ;log ()log log a a a a a a M N M N M N M N +=+⋅=⋅ 3.利用指数函数的性质解题,一定要注意底数的取值. 4.函数()f x y a =的研究方法一般是先研究()f x 的性质,再由a 的情况讨论()f x y a =的性质. 5.对数函数log a y x =(0,1)a a >≠与指数函数x y a =(0,1)a a >≠互为反函数,会将指数式与对数式相互转化. 6.幂函数y x α=的性质,要注意α的取值变化对函数性质的影响.(1)当奇奇=α时,幂函数是奇函数;(2)当奇偶=α时,幂函数是偶函数;(3)当偶奇=α时,定义域不关于原点对称,幂函数为非奇非偶函数.三、经典例题导讲[例1]已知18log 9,185,b a ==求36log 45 正解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b a b a b a a a a ++++=====+-++ [例2]分析方程2()0f x ax bx c =++=(0a >)的两个根都大于1的充要条件.正解:充要条件是2(1)01240f b ab ac >⎧⎪⎪->⎨⎪⎪∆=-≥⎩ [例3]求函数361265x x y =-⋅-的单调区间. 正解:令6x t =,则6x t =为增函数, 361265x x y =-⋅-=2125t t -⋅-=2(6)41t --∴当t ≥6,即x ≥1时,y 为关于t 的增函数,当t ≤6,即x ≤1时,y 为关于t 的减函数 ∴函数361265x x y =-⋅-的单调递减区间是(,1]-∞,单调递增区间为[1,)+∞[例4]已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 正解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <2[例5]已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32) (2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =- 当2x =时,()f x 没有意义,故这样的实数不存在. 点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.4、函数与方程一、知识导学1.函数的零点与方程的根的关系:一般地,对于函数()y f x =(x D ∈)我们称方程()0f x =的实数根x 也叫做函数的零点,即函数的零点就是使函数值为零的自变量的值. 求综合方程f (x )=g (x )的根或根的个数就是求函数()()y f x g x =-的零点.2.函数的图像与方程的根的关系:一般地,函数()y f x =(x D ∈)的图像与x 轴交点的横坐标就是()0f x =的根.综合方程f (x )=g (x )的根,就是求函数y =f (x )与y =g (x )的图像的交点或交点个数,或求方程()()y f x g x =-的图像与x 轴交点的横坐标.3.判断一个函数是否有零点的方法:如果函数()y f x =在区间[a,b]上图像是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(a,b )上至少有一个零点,即至少存在一个数(,)c a b ∈使得()0f c =,这个c 也就是方程()0f x =的一个根.对于我们学习的简单函数,可以借助()y f x =图像判断解的个数,或者把()f x 写成()()g x h x -,然后借助()y g x =、()y h x =的图像的交点去判断函数()f x 的零点情况.4. 二次函数、一元二次方程、二次函数图像之间的关系: 二次函数2y ax bx c =++的零点,就是二次方程20ax bx c ++=的根,也是二次函数2y ax bx c =++的图像与x 轴交点的横坐标.5. 二分法:对于区间[a,b]上的连续不断,且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.二、疑难知识导析1.关于函数()()y f x g x =-的零点,就是方程()()f x g x =的实数根,也就是()y f x =与函数()y g x =图像的交点的横坐标. 要深刻理解,解题中灵活运用.2.如果二次函数2()y f x ax bx c ==++,在闭区间[m,n]上满足()()0f m f n ⋅<,那么方程20ax bx c ++=在区间(m,n )上有唯一解,即存在唯一的1(,)x m n ∈,使1()0f x =,方程20ax bx c ++=另一解2(,)(,)x m n ∈-∞⋃+∞.3. 二次方程20ax bx c ++=的根在某一区间时,满足的条件应据具体情形而定.如二次方程()f x =20ax bx c ++=的根都在区间(,)m n 时 应满足:02()0()0b m n a f m f n ∆≥⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩ 4.用二分法求二次方程的近似解一般步骤是 (1)取一个区间(,a b )使()()0f a f b ⋅< (2)取区间的中点,02a b x +=(3)计算0()f x ,①若0()0f x =,则0x 就是()0f x =的解,计算终止;②若0()()0f a f x ⋅<,则解位于区间(0,a x )中,令110,a a b x ==;若0()()0f x f b ⋅<则解位于区间(0,x b )令101,a x b b ==(4)取区间是(11,a b )的中点,1112a b x +=重服第二步、第三骤直到第n 步,方程的解总位于区间(,n n a b )内(5)当,n n a b 精确到规定的精确度的近似值相等时,那么这个值就是所求的近似解.三、经典例题导讲 [例1]已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 正解:设()f x 的最小值为()g a(1)当22a -<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在; (2) 当[2,2]2a -∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2 又-4≤a ≤4,故-4≤a ≤2;(3)22a ->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4 故-7≤a <-4综上,得-7≤a ≤2 [例2]已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在 综上所得,m <-2[例3]已知一次函数y kx b =+与二次函数2y ax =图像如图,其中y kx b =+的交点与x 轴、y 轴的交点分别为A (2,0),B (0,2);与二次函数2y ax =的交点为P 、Q ,P 、Q 两点的纵坐标之比为1︰4.(1)求这两个函数的解析式.(2)解方程:2ax kx b =+ 正解:(1)抛物线方程为2y x = (2)方法一:由(1)得方程2ax kx b =+ 即为 22x x =-+解得x 1=-2,x 2=1. 方法二:方程2ax kx b =+的根即为二次函数2y ax =与一次函数y kx b =+的交点的横坐标.由(1)知它们交点的坐标分别为P (1, 1),Q (-2, 4), ∴方程2ax kx b =+的解为x 1=-2,x 2=1.[例4]是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由. 解:令2()(23)(31)f x x k x k =+---那么由条件得到 2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解 即不存在满足条件的k 值. [例5]已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +, 则方程 ()f x =121[()()]2f x f x + ① 与方程 F (x )=0 ② 等价∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+ ∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠ ∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 函数的综合运用(因今年高考对此不作要求,故略)二、三角函数1任意角三角函数一、知识导学1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l =α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制.3.弧度与角度的换算:rad π2360= ;rad 1745.01801≈=π ;130.57180≈⎪⎭⎫ ⎝⎛=πrad .用弧度为单位表示角的大小时,弧度(rad )可以省略不写.度() 不可省略. 4.弧长公式、扇形面积公式:,r l α=2||2121r lr S α==扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形.5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是yr x r y x x y r x r y ======ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数.x y sin = Rx y cos =R x y tan = ⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ x y cot = {}Z k k x x ∈≠,πx y sec = ⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ x y csc ={}Z k k x x ∈≠,π 示(各象限注明的函数为正,其余为负值)可以简记为“一全、二正、三切、四余”为正.二、疑难知识导析1.在直角坐标系内讨论角(1)角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就称这个角是第几象限角(或说这个角属于第几象限).它的前提是“角的顶点为原点,角的始边为x 轴的非负半轴.否则不能如此判断某角为第几象限.若角的终边落在坐标轴上,就说这个角不属于任何象限.(2)与α角终边相同的角的集合表示. {}Z k k ∈+⋅=,360αββ ,其中α为任意角.终边相同的角不一定相等,相等的角终边一定相同,终边相同的角有无数多个,它们相差 360整数倍.2.值得注意的几种范围角的表示法 “0 ~ 90间的角”指 900<≤θ;“第一象限角”可表示为{}Z k k k ∈+⋅<<⋅,90360360 θθ;“小于90 的角”可表示为{}90<θθ. 3.在弧度的定义中r l 与所取圆的半径无关,仅与角的大小有关. 4.确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键.当终边在坐标轴上时点P 坐标中必有一个为0.5.根据三角函数的定义可知:(1)一个角的三角函数值只与这个角的终边位置有关,即角α与)(360Z k k ∈⋅= β的同名三角函数值相等;(2)r y r x ≤≤,,故有1sin ,1cos ≤≤αα,这是三角函数中最基本的一组不等关系.6.在计算或化简三角函数关系式时,常常需要对角的范围以及相应三角函数值的正负情况进行讨论.因此,在解答此类问题时要注意:(1)角的范围是什么?(2)对应角的三角函数值是正还是负?(3)与此相关的定义、性质或公式有哪些?三、经典例题导讲 [例1] 若A 、B 、C 是ABC ∆的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的个数是( )①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos <A .1 B.2 C.3 D.4正解:法1C A < 在ABC ∆中,在大角对大边,A C a c sin sin ,>∴>法2 考虑特殊情形,A 为锐角,C 为钝角,故排除B 、C 、D ,所以选A .[例2]已知βα,角的终边关于y 轴对称,则α与β的关系为 . 正解:∵βα,角的终边关于y 轴对称∴ )(,22Z k k ∈+=+ππβα即)(,2z k k ∈+=+ππβα说明:(1)若βα,角的终边关于x 轴对称,则α与β的关系为)(,2Z k k ∈=+πβα(2)若βα,角的终边关于原点轴对称,则α与β的关系为)(,)12(Z k k ∈++=πβα(3)若βα,角的终边在同一条直线上,则α与β的关系为)(,Z k k ∈+=παβ[例3] 已知542cos ,532sin -==θθ,试确定θ的象限. 正解:∵0542cos ,0532sin <-=>=θθ,∴2θ是第二象限角,又由43sin 22532sinπθ=<=知z k k k ∈+<<+,22432ππθππ z k k k ∈+<<+,24234ππθππ,故θ是第四象限角. [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值.正解:若0>a ,则a r 5=,且角α在第二象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===∴a a a a a a a a αααα 若0<a ,则a r 5-=,且角α在第四象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-==--=-=-=∴a a a a a a a a αααα说明:(1)给出角的终边上一点的坐标,求角的某个三解函数值常用定义求解; (2)本题由于所给字母a 的符号不确定,故要对a 的正负进行讨论.[例5]一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?解:设扇形的半径为rcm ,则扇形的弧长cm r l )220(-= 扇形的面积25)5()220(212+--=⋅-=r r r S 所以当cm r 5=时,即2,10===r l cm l α时2max 25cm S =.点评:涉及到最大(小)值问题时,通常先建立函数关系,再应用函数求最值的方法确定最值的条件及相应的最值.[例6]已知α是第三象限角,化简ααααsin 1sin 1sin 1sin 1+---+。

高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习)课件

高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习)课件
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
高中数学必修一函数 知识点与典型例题总 结(经典)(适合高一 或高三复习)课件
目录
CONTENTS
• 函数的基本概念 • 函数的性质 • 一次函数与二次函数 • 函数的应用 • 典型例题解析
REPORTLeabharlann CATALOGDATE
ANALYSIS
例题
答案与解析
复合函数是由两个或多个简单 函数通过复合而成的函数。解 题时需注意内外层函数的单调 性。
复合函数的形式为 f(g(x)) 或 g(f(x)),其中 f 和 g 是简单函 数。解题时需要理解内外层函 数的单调性对复合函数的影响 。
求函数 f(x) = log_2(x) 在 [1, 4] 上的值域,其中 g(x) = x^2。
首先确定内层函数 g(x) = x^2 在 [1, 4] 上是增函数,外层函 数 f(x) = log_2(x) 在 [1, 4] 上 也是增函数。然后计算端点处 的函数值,得到最小值为 log_2(1) = 0,最大值为 log_2(4) = 2,所以值域为 [0, 2]。
REPORT
THANKS
详细描述
函数的周期性是指函数图像是否具有重复性。如果存在一个非零常数T,使得对于定义域内的任意x, 都有f(x+T)=f(x),则称f(x)为周期函数,T称为这个函数的周期。判断函数周期性的常用方法是通过观 察函数图像或计算周期的公式。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
一次函数与二次函数
一次函数
01
02
03

高一数学函数知识总结及例题

高一数学函数知识总结及例题

高一数学函数知识总结及例题高一数学函数知识总结及例题第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知f(x)的定义域,求fg(x)的定义域思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f 对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。

例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。

解析:函数f(u)的定义域为(0,1)即u(0,1),所以f 的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)1,则函数ff(x)的定义域为______________。

x11解析:先求f的作用范围,由f(x),知x1x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1f(x)1x1即1,解得x1且x21x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。

例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。

解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5 即函数f(x)的定义域为1,5x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。

x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以2x(4,),即f(x)的定义域为(4,)(3)、已知fg(x)的定义域,求fh(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。

高中数学最全必修一函数性质详解与知识点总结与题型详解

高中数学最全必修一函数性质详解与知识点总结与题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分—、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A, B是平面直角坐标系上的两个点集,给定从A~B的映射f:(x,y)^(x^/.xy),求象(5, 2)的原象13•已知集合A到集合B= {0, 1, 2, 3}的映射f:x-x ijjUM合A中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是二、函数的解析式与定义域函数解析式的七种求法待定系数法:在已知函数解析式的构造时,可用待定系数法。

= 2(X) lg X , g(x) 2lg xC、B、f (X) lg+u) - - ,g(v)=1 u”D、f (x) =x,1 vX +1--- ,()决1)+ Ig( - 2、一fX~ Xx 1 =厂 f (X) X2、M {x|0 x 2}, N {y |0 寻给出下列四个图形, 其中能表示从集合M到集合N的函数关系的有y配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,f[g(x)]的表达式容易配成g(x)的运算形式时,常用配凑法。

但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。

例2已知f(x + 丁亍+ —(X 0尸,求f(x)的解析式2X X三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求心)的解析式。

与配凑法一样,要注意所换元的定义域的变化。

广+ = +广+例 3 已知f( x 1) x 2 x ,求 f (x 1)四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

+2 x y g x例4已知:函数y x 与 ()的图象关于点(2,3)对称,求g(x)的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过—— =1解方程组求得函数解析式。

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结

完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。

我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。

需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。

同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。

相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。

在考虑函数的值域时,我们可以使用观察法、配方法或代换法。

函数图象是指在平面直角坐标系中,以函数y=f(x)。

(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。

区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。

同时,还有无穷区间。

我们可以使用数轴来表示区间。

映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。

我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。

对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。

3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。

高中数学最全必修一函数性质详解与知识点总结与题型详解

高中数学最全必修一函数性质详解与知识点总结与题型详解

.(经典 )高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合 A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射 f:(x,y) →(x 2+y 2,xy) ,求象 (5, 2)的原象 .13. 已知集合 A 到集合 B ={0,1,2,3}的映射 f:x → x 1,则集合 A 中的元素最多有几个 ?写出元素最多时的集合 A.2、函数。

构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是()A 、 f ( x)lg x 2, g(x)2 lg xB 、 f (x) lgx1, g (x) lg( x 1) lg( x1)x 1C 、 f (u)1 u , g( v) 1 v D 、f ( x ) =x , f (x)x21 u 1 v2、 M { x | 0x 2}, N{ y | 0 y3} 给出下列四个图形,其中能表示从集合M 到集合 N 的函数关系的有()A 、 0个B 、 1个C 、 2个D 、3个y yy y32 2 2 2 1111O1 2 xO1 2 xO1 2 xO1 2 x二、函数的解析式与定义域 函数解析式的七种求法待定系数法: 在已知函数解析式的构造时,可用待定系数法。

例 1 设 f (x) 是一次函数,且 f [ f ( x)] 4 x 3 ,求 f (x).配凑法:已知复合函数 f [ g (x)] 的表达式,求 f (x) 的解析式, f [ g( x)] 的表达式容易配成g ( x) 的运算形式时,常用配凑法。

但要注意所求函数 f (x) 的定义域不是原复合函数的定义域,而是 g( x) 的值域。

例 2 已知f (x1) x21( x0) ,求 f ( x) 的解析式x x2三、换元法:已知复合函数 f [ g (x)] 的表达式时,还可以用换元法求 f ( x) 的解析式。

高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习)

高中数学必修一函数知识点与典型例题总结(经典)(适合高一或高三复习)

精品PPT
返回
扩展提升
1.设 A {x x2 4x 0}, B {x x2 2(a 1)x a2 1 0},
其中 x R ,如果 A
新疆 源头学子小屋
/wxc/ 特级教师
王新敞 wxckt@ 新疆 源头学子小屋 /wxc/ 特级教师 王新敞 wxckt@
精品PPT
例11.证明:函数f (x) x 1 在(1, )上是增函数. x
2x+1, (x≥1)
1. 函数f (x)= 4-x, (x<1)
则f (x)的递减区间为( B )
A. [1, +∞)
B. (-∞, 1)
C. (0, +∞)
D. (-∞, 0]
2、若函数f(x)=x2+2(a-1)x+2在区间[4,+∞)
2.已知集合M -1,1,2集合N y y x2 ,x M,
则M∩N是( B )
A 1,2,4 B{1 } C{1,2} DΦ
3.满足{1,2} A {1,2,3,4}的集合A的个数
有3

精品PPT
函数 定义域 值域 单调性 奇偶性 图象
一次函数 反比例函数
二次函数 指数函数 对数函数 幂函数
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任
何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
4) y log 3 (x 3) x 6,12
1、图像法,2 、 配方法,3、分离常数法, 4、换元法,5单调性法。

(完整版)高中数学必修1函数知识点总结

(完整版)高中数学必修1函数知识点总结

高中数学必修1函数知识总结一、函数的有关概念1.函数的概念:设A 、B 是非空的 ,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .函数的三要素为 找错误:①其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;②与x 的值相对应的y 值叫做函数值,所以集合B 为值域。

注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式. 专项练习1.求函数的定义域: 类型1.⑴22153x x y x --=+ ⑵0(21)y x =- ⑶2214log (1)y x x =+-+总结:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。

) 类型2 抽象函数求定义域:1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 方法总结 练习1.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域为 练习2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法总结练习1.若函数(1)f x +的定义域为[]-23,,求函数()f x 的定义域.练习2. 已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域方法总结 练习1.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 练习2、已知函数的定义域为,则y=f(3x-5)的定义域为________。

高一必修一数学知识点例题

高一必修一数学知识点例题

高一必修一数学知识点例题第1节:函数1. 函数的概念函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

数学上常用f(x)表示函数。

例题1:设函数f(x) = 2x - 3,求f(4)的值。

解析:将x = 4代入函数表达式f(x) = 2x - 3中,得到f(4) = 2(4) - 3 = 5。

2. 函数的性质函数具有以下性质:- 定义域:函数的自变量x的取值范围。

- 值域:函数的因变量f(x)的取值范围。

- 奇偶性:当函数满足f(-x) = -f(x)时,称其为奇函数;当函数满足f(-x) = f(x)时,称其为偶函数。

- 单调性:当函数满足f(x1) ≤ f(x2) (x1 < x2),则称其为递增函数;当函数满足f(x1) ≥ f(x2) (x1 < x2),则称其为递减函数。

例题2:判断函数f(x) = x^3 - 2x^2 + x是否是奇函数还是偶函数。

解析:对于函数f(x)来说,有f(-x) = (-x)^3 - 2(-x)^2 + (-x) = -x^3 - 2x^2 - x = -f(x),所以该函数是奇函数。

第2节:二次函数1. 二次函数的特征二次函数是具有形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

二次函数的图像为抛物线。

2. 二次函数图像的性质- 开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 零点:二次函数的零点为方程ax^2 + bx + c = 0的解。

- 极值点:当抛物线开口向上时,函数的极小值点为顶点;当抛物线开口向下时,函数的极大值点为顶点。

例题3:已知二次函数f(x) = x^2 - 2x + 1,求函数的零点和极值点。

解析:首先令f(x) = 0,得到x^2 - 2x + 1 = 0。

通过求解该方程,可以得到函数的零点。

再通过求导函数得到导函数f'(x),令f'(x) = 0,求解方程得到函数的极值点。

高中数学最全必修一函数性质详解及知识点总结及题型详解

高中数学最全必修一函数性质详解及知识点总结及题型详解

必修一函数性质及题型分析例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。

(2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域四.六.函数的周期性:1.(定义)若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期。

说明:nT 也是)(x f 的周期(推广)若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式; ⑶计算:七、单调性奇偶性综合1、(2014·安徽)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎨⎧x (1-x ),0≤x ≤1,sin πx , 1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.5162、已知定义在R 上的奇函数f(x)满足f(x -4)=-f(x),且在区间[0,2]上是增函数,则( ) A .f(-25)<f(11)<f(80) B .f(80)<f(11)<f(-25) C .f(11)<f(80)<f(-25) D .f(-25)<f(80)<f(11)3、已知偶函数f(x)在区间[0,+∞)上单调递减,则满足不等式f(2x -1)>f ⎝ ⎛⎭⎪⎫53成立的x 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-13,43 B.⎝ ⎛⎭⎪⎫-13,43 C.⎝ ⎛⎭⎪⎫13,43D.⎣⎢⎡⎭⎪⎫13,434、(2015·湖北省襄阳市高三第一次调研)设f(x)为奇函数且在(-∞,0)内是增函数,f(-2)=0,则xf(x)>0的解集为( )A .(-∞,-2)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)5、(2014·课标Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x -1)>0,则x 的取值范围是_________.(-1,3).6、(2014·全国大纲)奇函数f(x)的定义域为R ,若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A .-2 B .-1 C .0 D .17、设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),则实数m 的取值范围是________________.⎣⎢⎡⎭⎪⎫-1,128、设函数f(x)=x3+x ,若0≤θ≤π2时,f(mcos θ)+f(1-m)>0恒成立,求实数m 的取值(-∞,1)5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f += ⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.例:已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.1.幂的有关概念(1)零指数幂)0(10≠=a a (2)负整数指数幂()10,n n a a n N a-*=≠∈(3)正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; (5)负分数指数幂()10,,,1m nm nmnaa m n N n a a-*==>∈>(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,sr rs a a a r s Q =>∈ ()()()30,0,rr r ab a b a b r Q =>>∈3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数(1)对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a(2)对数的性质:①零与负数没有对数 ②01log =a ③1log =a a (3)对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 (1) 213323121)()1.0()4()41(----⨯b a ab (2)1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+1、 指数函数y=a x 与对数函数y=log a x (a>0 , a ≠1)互为反函数名称指数函数对数函数一般形式Y=a x (a>0且a≠1) y=logax (a>0 , a≠1)定义域(-∞,+ ∞) (0,+ ∞)值域(0,+ ∞) (-∞,+ ∞)过定点(0,1)(1,0)图象指数函数y=a x与对数函数y=logax (a>0 , a≠1)图象关于y=x对称单调性a>1,在(-∞,+ ∞)上为增函数0<a<1, 在(-∞,+ ∞)上为减函数a>1,在(0,+ ∞)上为增函数0<a<1, 在(0,+ ∞)上为减函数值分布y>1 ? y<1? y>0? y<0?2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论1、(1))35lg(lg xxy-+=的定义域为_______;(2)312-=xy的值域为_________;(3))lg(2xxy+-=的递增区间为___________,值域为___________2、(1)041log212≤-x,则________∈x3、要使函数ay xx421++=在(]1,∞-∈x上0>y恒成立。

((完整版))高一数学必修一 函数知识点总结,推荐文档

((完整版))高一数学必修一   函数知识点总结,推荐文档

3. 函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型的形式;),(,)(2n m x c bx ax x f ∈++=②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,y x x y 型如:;),(,n m x dcx b ax y ∈++=④换元法:通过变量代换转化为能求值域的函数,化归思想;常针对根号,举例:y =x 2‒1+x 2+95,原式转化为: ,再利用配方法。

t ,则x 2=t 2+1y =t +(t 2+1)+95=t 25+t +2⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;)0(>+=k x k x y ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数: 减函数:)()(],,[,x 212121x f x f x x b a x <⇒<∈对任意的)()(],,[,x 212121x f x f x x b a x >⇒<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若>0(x 1≠x 2),则函数f(x)在区间I 上是增函数;2121)()(x x x f x f --若<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定性、互异性、无序性 4、常用数集: N 、N、Z、Q、R
(二)集合的表示 1、列举法:把集合中的元素一一列举出来,并
放在{ }内
2、描述法:用文字或公式等描述出元素的特性,
x增→ g(x)增 →y增:故可知y随着x的增大而增大
引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b) 上是减函数,其值域为(c,d),又函数y=f(u)在区间 (c,d)上是减函数,那么,原复合函数y=f[g(x)]在 区间(a,b)上是增函数。
x增→ g(x)减 →y增:故可知y随着x的增大而增大
使函数有意义的x的取值范围。
求 1、分式的分母不为零.
定 2、偶次方根的被开方数不小于零.
义 域
3、零次幂的底数不为零.
的 4、对数函数的真数大于零.
主 5、指、对数函数的底数大于零且不为1. 要
依 6、实际问题中函数的定义域

(一)函数的定义域
1、具体函数的定义域
例7.求下列函数的定义域
(1) f (x) x 1 x2
增函数、减函数、单调函数是 对定义域上的 某个区间而言的。
写出常见函数的单调区间
并指明是增区间还是减区间
1、函数 y ax(a 0)的单调区间是
a 0时,单减区间是(, 0), (0, )
a 0时,单增区间是(, 0), (0, )
2、函数y=ax+b(a≠0)的单调区间是
例8 若f (x) lg(ax2 4ax 3)的定义域为R
求实数a的取值范围。
当a 0时,函数的定义域为R;

a

0, 16a2

12a

时,函数的定义域也为R. 0
函数的定义域为R,a的取值范围是0 a 3 .
思考:若值域为R呢?
4
分析:值域为R等价为真数N能取(0,+∞)每个数。
当a=0时,N=3只是(0,+∞)上的一个数,不成立;
当a≠0时,真数N取(0,+∞)每个数即
a 0 0
求值域的一些方法:
1) y e x
3)
y 3x 7 2x 5
5)f(x) 4x 2x1 3,(x 2)
2) y 2x2 x
4) y log 3 (x 3) x 6,12
2
的单调性。
•拓展提升复合函数的单调性
复合函数的定义:设y=f(u)定义
域A,u=g(x)值域为B,若A B,
则y关于x函数的y=f[g(x)]叫做函 数f与g的复合函数,u叫中间量
•复合函数的单调性
•复合函数的单调性由两个函数共同决定;
引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b) 上是增函数,其值域为(c,d),又函数y=f(u)在区间 (c,d)上是增函数,那么,原复合函数y=f[g(x)]在 区间(a,b)上是增函数。
x5 从A到B的一个函数。
y5
函数的三要素:定义域,值域,对应法则 y6
二、映射的概念
设A,B是两个非空的集合,如果按照某种确定 的对应关系f,使对于集合A中的任意一个元 素x,在集合B中都有唯一确定的元素y于之对 应,那么就称对应f:A→B为集合A到集合B的 一个映射
映射是函数的一种推广,本质是:任一对唯一
B {x | 2x 4 x 2}
(1)求: A∪B,CR(A∩B);(数轴法)
(2)若集合 C {x | 2x a 0} ,满足
B C C ,求实数a的取值范围。
练习
1.集合A={1,0,x},且x2∈A,则x= -1 。
2.已知集合M -1,1,2集合N y y x2 ,x M,
2x+1, (x≥1)
1. 函数f (x)= 4-x, (x<1)
则f (x)的递减区间为( B )
A. [1, +∞)
B. (-∞, 1)
C. (0, +∞)
D. (-∞, 0]
2、若函数f(x)=x2+2(a-1)x+2在区间[4,+∞)
上是增函数,求实数a的取值范围
3
判断函数
ex ex y
2、抽象函数的定义域
1)已知函数y=f(x)的定义域是[1,3], 求f(2x-1)的定义域 2)已知函数y=f(x)的定义域是[0,5), 求g(x)=f(x-1)- f(x+1)的定义域
3) y f (x 2)的定义域为{x|x 4},
求y=f(x2 )的定义域
1.[1,2] ; 2.[1,4); 3. [- 2,2 ]
代数解法:
解:设u=x2-4x+3 ,u=x2-4x+3=(x-2)2-1,
并放在{x| }内
3.图示法 Venn图,数轴
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任
何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
•复合函数的单调性
若u=g(x) 增函数
减函数
增函数
y=f(u)
增函数
减函数
减函数
则y=f[g(x)]
增函数
增函数
减函数
减函数 增函数 减函数
规律:当两个函数的单调性相同时,其复合函数是增 函数;当两个函数的单调性不相同时,其复合函数是
减函数。 “同增异减”
•复合函数的单调性
例题:求下列函数的单调性y=log4(x2-4x+3)
其中 x R ,如果 A I
新疆 源头学子小屋
/wxc/ 特级教师
王新敞 wxckt@ 新疆 源头学子小屋 /wxc/ 特级教师 王新敞 wxckt@
B B,求实数a的取值范围
2.设全集为R,集合 A {x | 1 x 3} ,
函数知识结构
函数
函数的概念
函数的基本性质
函数的单调性 函数的最值 函数的奇偶性
一、函数的概念:
B
A
思考:函数 C
值域与集
x1 x2
A.B是两个非空的数集,如合果B的关 按照某种对应法则f,对于 系
y1 y2
x3 集合A中的每一个元素x,
y3
在集合B中都有唯一的元素y
x4
和它对应,这样的对应叫做
y4
则M∩N是( B )
A 1,2,4 B{1 } C{1,2} DΦ
3.满足{1,2} A {1,2,3,4}的集合A的个数
有3

函数 定义域 值域 单调性 奇偶性 图象
一次函数 反比例函数
二次函数 指数函数 对数函数 幂函数
函数的复习主要抓住两条主线 1、函数的概念及其有关性质。 2、几种初等函数的具体性质。
用定义证明函数单调性的步骤:
(1) 设元,设x1,x2是区间上任意两个实数,且x1<x2; (2) 作差, f(x1)-f(x2) ; (3)变形,通过因式分解转化为易于判断符号的形式 (4)判号, 判断 f(x1)-f(x2) 的符号; (5)下结论.
例11.证明:函数f (x) x 1 在(1, )上是增函数. x
a 0时,单增区间是(, )
a 0时,单减区间是(, ) 3、函数y=ax2+bx+c (a≠0)的单调区间是
a 0时,单减区间是(, b ],单增区间是[ b , )
2a
2a
a 0时,单增区间是(, b ],单减区间是[ b , )
2a
2a
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
永切隔数形数焉数
,
,
——
远莫离形少无能与
联忘分结数形分形
系几家合时时作本
华莫何万百难少两是
罗分代事般入直边相
庚离数休好微觉飞倚




一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
一、集合的含义与表示
考查集合的运算
例(4 1)已知I {0,1,2,3,4}, A {0,1,2,3}, B {2,3},求CI B,CAB.
(2)已知A {x 1 x 3}, B x x 0,或x 2 ,
求A B, A B.
例5 设U=1,2,3,4,5,若A B=2,(CUA) B =4,(CUA) (CUB)=1,5,求A.
题型示例
考查集合的含义
例1 已知x {1, 2, x2},则x 0或2
例2 A y y x2 , B x y x2 ,
求A B.
Q A [0, ), B R, A I B [0, ).
考查集合之间的关系
例3 设A x | x2 x 6 0 , B x | mx 1 0,
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
三、集合的并集、交集、全集、补集
1、A B {x | x A或x B} A
B
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
三、函数单调性
定义:一般地,设函数f(x)的定义域为I:
相关文档
最新文档